

Remedial Investigation Report

Martin Aaron Superfund Site Camden, New Jersey

Volume 2 of 2

Prepared for

U.S. Environmental Protection Agency Region II

December 2004

Prepared by

CH2MHILL

Appendix A
Field Sampling Plan

Field Sampling Plan

Remedial Investigation at the Martin Aaron, Inc. Superfund Site - Camden, New Jersey

RESPONSE ACTION CONTRACT NO. 68-W6-0036 EPA WORK ASSIGNMENT NO. 953-RICO-02MN CH2M HILL PROJECT NO. 164453

Prepared for

U.S. Environmental Protection Agency

August 31, 2001

Table of Contents

1.0 INTRODUCTION	1
1.1 SITE BACKGROUND	1
1.1.1 Site Location and Description	
1.1.2 Site History	
1.1.3 Previous Investigation Findings	3
1.2 OVERVIEW OF THE FIELD INVESTIGATION	5
2.0 SAMPLE NETWORK RATIONALE	
2.1 Project Objectives	7
2.2 PROJECT APPROACH	
2.3 ANALYTICAL PROGRAM	8
2.3.1 Contaminants of Concern	8
2.3.2 Program Objectives	
2.3.3 Contract Laboratory Program (CLP) Analysis	
2.3.4 Independent Laboratory Analysis	9
3.0 GENERAL FIELD OPERATIONS	11
3.1 SAMPLE MANAGEMENT	11
3.1.1 Sample Identification	
3.1.2 Sample Containers	
3.1.3 Sample Preservation and Holding Times	
3.1.4 Sample Handling, Packaging and Shipment	
3.2 FIELD ACTIVITY DOCUMENTATION AND LOGBOOK	
3.2.1 Field Logbook and Daily Reports	
3.2.2 Photographic Documentation	
3.2.3 Sample Chain-of-Custody	
3.3 QUALITY CONTROL SAMPLE PROCEDURES	
3.3.1 Decontamination and Drilling Water	
3.3.2 Field Duplicates	
3.3.3 Equipment Blanks	
3.3.4 Trip Blanks	
3.3.5 Matrix Spike/Matrix Spike Duplicate	
3.3.6 Temperature Blanks	
3.4 DECONTAMINATION PROCEDURES	
3.4.1 Personnel Decontamination	
3.4.2 Non-Aqueous Sampling Equipment	10
3.4.3 Aqueous Sampling Equipment	19
3.4.4 Monitoring Equipment Decontamination	
3.4.6 Heavy Machinery	
3.5 DISPOSAL OF RI-GENERATED WASTES	
3.5.1 IDW Roll-Off Container Management and Sampling	
3.5.2 Sampling of Purge, Decontamination, and Development Water	
3.6 FIELD MONITORING INSTRUMENTATION	

4.0 TASK SPECIFIC SITE OPERATIONS	24
4.1 Mobilization	24
4.2 SITE RECONNAISSANCE	25
4.3 GEOLOGICAL INVESTIGATIONS	26
4.3.1 Utility Clearance	27
4.3.2 Drilling Notes and Stratigraphic Characterization	
4.3.3 Surface Soil Sampling	
4.3.4 Subsurface Soil Sampling	
4.3.5 Borehole Abandonment	
4.4 Hydrogeological Investigation	
4.4.1 Monitoring Well Installation	31
4.4.2 Groundwater Sampling	
4.4.3 Water Level Measurements	35
4.4.4 Tidal Influence Study	
4.4.5 In-situ Hydraulic Testing	
4.5 CONDUCT GEOPHYSICAL INVESTIGATION	
4.6 ECOLOGICAL INVESTIGATION	37
4.7 IDW SAMPLING	
4.8 DEMOBILIZATION	

List of Tables

- TABLE 2-1 SUMMARY OF SAMPLE LOCATIONS AND RATIONALE
- TABLE 3-1 ESTIMATED NUMBER OF QUALITY CONTROL SAMPLES

List of Figures

- FIGURE 1-1 SITE LOCATION MAP
- FIGURE 1-2A MARTIN AARON SITE BASE MAP (EAST)
- FIGURE 1-2B MARTIN AARON SITE BASE MAP (WEST)
- FIGURE 4-1 PROPOSED NEW SOIL SAMPLE AND PREVIOUS SOIL BORING LOCATIONS
- FIGURE 4-2A PROPOSED AND EXISTING MONITORING WELL LOCATIONS (EAST)
- FIGURE 4-2B PROPOSED AND EXISTING MONITORING WELL LOCATIONS (WEST)

List of Appendices

- APPENDIX A: STANDARD OPERATING PROCEDURES FOR CONDUCTING FIELD SAMPLING ACTIVITIES
- APPENDIX B: PROJECT FIELD FORMS

1.0 Introduction

This document represents the Field Sampling Plan (FSP) for the Remedial Investigation (RI) at the Martin Aaron, Inc., Superfund Site, Camden County, New Jersey. CH2M HILL prepared this FSP in accordance with Work Assignment (WA) No. 953-RICO-02MN, under Response Action Contract (RAC) No. 68-W6-0036 with the U.S. Environmental Protection Agency (EPA) Region VI. This FSP is a companion document to the Revised Work Plan, Martin Aaron Remedial Investigation/Feasibility Study (Work Plan, prepared by CH2M HILL, April 2001).

This FSP consists of the following:

- Section 1 describes the site location, project history and presents a general overview of the RI field activities.
- Section 2 describes the objectives and approach for the sampling program, including contaminants of concern and the analytical program.
- Section 3 provides the general technical guidelines and procedures to be followed by the field personnel conducting the RI. This section also identifies the sample management, sample custody procedures and quality assurance/quality control (QA/QC) requirements for sample collection, handling and shipping.
- Section 4 provides the task-specific sampling procedures for the field personnel. This
 section includes the analytical objectives, sampling equipment and sampling
 procedures.
- Appendix A includes the Standard Operating Procedures (SOPs) for performing the sampling tasks, calibrating the equipment, and completing project forms.
- Appendix B provides examples of the project forms that will be used during the RI to document sampling data and field changes.

1.1 Site Background

Information in this section was obtained primarily from the report entitled, Draft Remedial Investigation Report (RI Report, dated June 2000), prepared by L. Robert Kimball and Associates, Inc. for the New Jersey Department of Environmental Protection (NJDEP).

1.1.1 Site Location and Description

The 2.4-acre Martin Aaron site is located at 1542 South Broadway Street in the City of Camden, Camden County, New Jersey (Figure 1-1). The property is identified as Lot 1 of Block 460 in the Camden County Tax Assessor records for the City of Camden (see Figure 1-2A).

The property is situated on relatively level land in an area of mixed industrial and residential zoned properties. The site is roughly rectangular with about 309 feet adjoining

090401 MA FSP WW FINAL

1

the east line of the South Broadway Street right-of-way and about 334 feet adjoining the west line of the Sixth Street right-of-way (see Figure 1-2A). A junkyard (Lots 10 and 4) and Everett Street are located north of the Site. A food processing company (Comarco) is located south of the site (Lots 26 and 3). During summer months, the site is mostly covered by dense vegetation.

Access to the site is restricted by a chain-linked fence with a locked gate. The main structure, formerly located at the southwest portion of the Site and occupied by the Westfall Ace Drum Company (Wadco) was demolished (except for the concrete floor) by the City of Camden in November 1998. Three underground storage tanks (USTs) were formerly located in the processing area just north of the former structure, and one UST was located east of the former structure. These USTs and associated contaminated soil were removed by the NJDEP during the spring and summer of 1999. In addition, five above ground storage tanks (ASTs) associated with the former operations were removed by the NJDEP prior to the start of RI activities in 1997. The remaining concrete floor of the former building contains a number of floor drains that led to three former settling basins. According to former site operators, all three basins reportedly received drum rinseate waters from site operations, and discharged to the Camden County Municipal Utility Authority (CCMUA) sanitary sewer system (although the actual discharge for basins 2 and 3 remains unknown). According to the RI Report, Basin 1 was removed by the NJDEP during UST removal activities in 1999.

The only remaining surficial structure, formerly occupied by Rhodes Drum Company, is located in the southeast portion of the lot (see Figure 1-2A). According to the RI Report, one processing vessel and a single skimming basin (basin 4) were located near the east end of the building, and were removed by EPA in the winter of 1999. The basin received drum rinseate effluent from Rhodes Drum Company operations and discharged to the CCMUA sanitary sewer system, following pre-treatment activities. The remaining portions of the Site were historically used for drum storage, and consist of paved and unpaved surfaces; these areas are predominately open. Most or all of the stacked drums were removed by NJDEP.

An additional property of concern is located west of the Martin Aaron property, at 1535 South Broadway Street (Lot 15, Block 458), and is owned by the South Jersey Port Corporation (SJPC). The SJPC property was formerly leased to Wadco, which used it for office space and drum receiving/sorting. Three commercial buildings occupy the lot, with the remaining acreage consisting of paved and unpaved lots (see Figure 1-2B).

The site overlies the most productive source of groundwater in the Camden area, the Potomac-Raritan-Magothy (PRM) aquifer system. There is hydraulic interconnection vertically throughout the PRM aquifer system in the Camden area. Public water-supply wells tapping the PRM aquifer system within 4 miles of the site provide water to approximately 105,000 persons. The nearest of these wells is a Camden City well located approximately 1.75 miles to the east-northeast.

1.1.2 Site History

Various companies, including Martin Aaron, Inc., used the site for drum recycling for approximately 30 years. Historically, Kifferty Morocco Manufacturing Co. operated a

tannery at the site from 1887 until 1908. Castle Kid Company purchased the property in 1908 and manufactured glazed leathers until the City of Camden seized the property for tax delinquency in 1940. Benjamin Schmerling bought the property in 1940 and leased portions to H. Preston Lowden Co. for wool and hair blending and to American Chain and Cable Company-PA Lawnmower Division for manufacturing. Martin Aaron, Inc. purchased the property from Benjamin Schmerling in 1969, and operated a drum reconditioning facility until 1985 under the name Drum Service of Camden. In 1985, Martin Aaron, Inc. sold the business to a corporation jointly owned by Westfall Ace Drum Company (Wadco) and Rhodes Drum Co, two major clients of the former Drum Service of Camden. Wadco occupied the majority of the facility and ceased operations in March 1995. Rhodes Drum Co. operated at the building near the southeast corner of the site until they ceased operations in 1998. It is reported that a trucking company recently used the property for the storage and transfer of trailers and parking of automobiles. Martin Aaron, Inc. still owns the property.

Previous Investigation Findings

Numerous areas of concern have been identified at the site. The processing rooms, where drums were drained, pressure-washed with caustic solutions, and rinsed, are major areas of concern. The residues from drum contents, rinseate runoff, and steam blowdown were collected in drainage tanks and floor drains. There was a baghouse for dust collection from drum sandblasting and a paint booth where oil-based paint was applied. Various ASTs and USTs were also associated with the site processes. The outdoor paved and unpaved portions of the property were used for drum storage. Leaking roll-off containers and drums had been observed on the site. The NJDEP confirmed reports of disposal, observed buried drums of hazardous waste, and found contaminated soils at depths below the water table. Numerous sampling events conducted by the NJDEP between 1986 and 1998 identified volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and inorganic constituents in site settling basins and drums, as well as soil and groundwater. The highest concentrations of these constituents were detected near the drum processing areas where the settling basins are located.

The NJDEP RI was conducted in three phases (May to September 1997, September to November 1998, and December 1999 to March 2000) and included the following major components:

- Site reconnaissance and professional assessment/evaluation of the structural stability of buildings requiring invasive investigation;
- Geophysical investigation over the yard area of the Martin Aaron property, using magnetics, electromagnetics (EM) and ground penetrating radar (GPR);
- Soil investigation including the drilling and sampling of soil borings (with prefix "SB")
 on the Martin Aaron and SJPC properties, and the excavation and sampling of test
 trenches/pits (with prefix "TP") on the Martin Aaron property;
- Hydrogeologic investigation, including the installation, development, and sampling of 14 monitoring wells on the Martin Aaron property (designated MW-1S, -1M, -2S, -2M, -3S, -3M, -5S, -6S, -7S, -9S, -9D, -10S, -11S and -11M) and two wells on the SJPC property (designated MW-4S and MW-8S), as well as Hydropunch® sampling (note that the

shallow wells are approximately 15-25 feet in depth and the intermediate wells are approximately 55-65 feet in depth);

- Sediment investigation (with prefix "SD") which included sampling of an operating skimming basin at the Rhodes Drum facility and an abandoned settling basin inside the former Martin Aaron complex; and
- · Site mapping and surveying.

The following sections (Items 1 through 3) are summarized from the RI Report.

1. Former Disposal Areas and USTs

Soil and sediment samples collected from former basins were found to contain chlorinated and aromatic VOCs and metals at concentrations above the NJDEP soil cleanup criteria. Soil and groundwater samples collected in the vicinity of the former USTs located near the former Martin Aaron building found evidence of impacts attributable to past leaks and spills. However, during the summer of 1999, the NJDEP completed a removal action of all on-site USTs and associated soils, so these impacts have likely been mitigated to a significant extent.

2. Soil Conditions

Seventeen (17) VOCs were detected in site surface and/or subsurface soils at concentrations exceeding the NJDEP soil cleanup criteria. The primary VOCs of concern include 1,2-dichloroethane, 1,2-dichloroethene (total), 1,2-dichloropropane, benzene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylenes (total). Several chlorinated VOCs are present across the entire Martin Aaron property and extend beyond the property boundaries to the northeast, east, and possibly south. Aromatic VOCs detected at concentrations in excess of NJDEP soil cleanup criteria are generally located around the former USTs immediately north of the former Martin Aaron building, and in the area northeast of the Rhodes Drum building.

Twelve (12) SVOCs were detected in site surface and/or subsurface soil at concentrations above the NJ soil cleanup criteria. The SVOCs of concern generally include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene and naphthalene. The majority of total SVOC results in excess of 150 mg/kg were identified on the Martin Aaron property extending beyond the property border to the northeast, and in the northern portions of the SJPC property.

Pesticide compounds of concern include aldrin, dieldrin and heptachlor found in site surface and subsurface soils. The highest pesticide concentrations were identified in soil borings located immediately north and east of the former Martin Aaron building and immediately north of the Rhodes Drum building with contamination in excess of 100 times the current NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Total PCB concentrations in excess of the NJ soil cleanup criteria were detected at several sampling locations on the Martin Aaron property. Total PCB concentrations in samples from the SJPC property did not exceed the NJDEP soil cleanup criteria.

Metals of concern include arsenic, beryllium, cadmium, chromium, copper, lead, thallium and zinc, which were found in site and off-site surface and subsurface soils at concentrations above the NJDEP soil cleanup criteria. The horizontal extent of metals contamination possibly emanating from the site has not been fully delineated to the west, north, east, south or southeast.

3. Groundwater Conditions

The VOCs found in the shallow portion of the PRM aquifer system consist of both aromatic VOCs (benzene and xylenes) and chlorinated VOCs (tetrachloroethene, trichloroethene, and 1,2-dichloroethene). Aromatic VOCs were found at the highest levels in wells MW5S, MW7S, and MW2S while the highest level of chlorinated VOCs were detected in wells MW7S and MW5S. Only one VOC (tetrachloroethene) was found above the NJDEP groundwater quality standard (GQS) in groundwater samples from the intermediate wells.

The SVOCs found in samples from the shallow wells consisted mainly of naphthalene in MW1S and MW2S. Only one SVOC (bis[2-ethylhexyl]phthalate) was detected above the NJDEP GQS in one intermediate well (MW11M).

Metals at levels above the NJDEP GQS were detected in all monitoring wells (shallow and intermediate) during each sampling round. In general, metals at concentrations above the NJDEP GQS were more prevalent and at higher concentrations in the shallow groundwater zone. The most common analytes detected above the NJDEP GQS included aluminum, arsenic, iron, lead and manganese. Each of these analytes were found to be relatively widespread in the site surface and subsurface soils.

Pesticide and PCB contamination in the shallow groundwater zone was limited to one occurrence of aldrin in MW6S, one occurrence of dieldrin in MW11S, and one occurrence of total PCBs in well MW6S. No pesticide/PCB compounds were detected above the NJDEP GQS in samples from the intermediate wells.

4. Radioactivity

Radioactivity was tested for but not detected in groundwater samples at the site. No site soils were tested for radioactivity (personal communication with Richard Robinson, EPA Remedial Project Manager [RPM] for the Welsbach Superfund Site, May 31, 2001).

1.2 Overview of the Field Investigation

The field investigation was designed to evaluate the impact of former site operations, especially drum washing operations and residuals, on the surface and subsurface soils and on groundwater and building materials in the Rhodes Drum building. The specific investigation objectives were developed based on observations during the site visits, current site conditions, available information on past activities and suspected source areas, available soil and groundwater analytical data, and discussions with EPA. The general objectives for the field investigation are to:

 Define the nature and extent of the contamination in surface and subsurface soil and groundwater to support the assessment of potential risk to human health and the environment, and to determine whether remedial actions are necessary.

- Determine whether nonaqueous phase liquids (NAPLs) and radioactivity are present around the identified potential source areas (e.g., former settling basins, processing rooms, ASTs, USTs, and outside drum storage areas) such that remedial action alternatives can be evaluated.
- Collect site-specific geologic and hydrogeologic information necessary for the evaluation of risk and remedial action alternatives.
- Perform a structural analysis of the Rhodes Drum building to ascertain if persons or vehicles accessing the building could cause any health and safety risks. If the Rhodes Drum building is deemed safe to enter, CH2MHILL will determine if contamination exists in the building that may pose potential risks to human health and/or affect the future actions for the building.

To achieve these objectives, the collection of environmental samples and the performance of other characterization activities will be conducted under the following RI tasks:

- Mobilization (Section 4.1) This task consists of constructing support facilities, mobilizing the equipment to the site prior to the field activities, and establishing the field office.
- Perform Site Reconnaissance (Section 4.2) This task consists of obtaining information
 on the structural integrity of the Rhodes Drum building, well inventory, property
 boundaries and utility right-of-ways, and historical land use, to refine and verify some
 assumptions made during scoping of the field investigation.
- Conduct Geological Investigation (Section 4.3) Sample data generated during this task will help define the current nature and extent of soil contamination. Lithologic and geotechnical data will be collected to evaluate contaminant fate and transport, potential site risks and remedial alternatives.
- Conduct Hydrogeological Investigation (Section 4.4) Data generated during this task
 will be used to develop a conceptual model of the aquifer system, help define the nature
 and extent of groundwater contamination, and evaluate contaminant fate and transport,
 potential site risks and remedial alternatives.
- Demobilization (Section 4.8) At the end of the field work, personnel, equipment, and supplies will be demobilized from the site.

Other field investigation-related activities associated with the RI and addressed in this document include: sample management; documentation; quality assurance requirements; reporting, and; disposal of investigation-derived waste (IDW).

2.0 Sample Network Rationale

2.1 Project Objectives

The field investigation was designed to evaluate the impact of former site operations, especially drum washing operations and residuals, on surface and subsurface soils, groundwater and building materials in the Rhodes Drum building. Based on the existing information and suspected source areas, the specific sampling and objectives for each medium are as follows:

- Surface soil samples will be collected to help determine the extent of surface soil contamination remaining at the site since the previous investigations and removal of various site structures (basins, USTs, etc.) were performed by the NJDEP and EPA.
- Subsurface soil samples will be collected to help determine the lateral and vertical extent of contamination and to help determine if the contaminants are present at levels that may pose risk to human health or the environment and require possible remedial actions.
- Surface and subsurface soil samples will also be screened and analyzed in a laboratory for the presence or absence of nonaqueous phase liquids (NAPLs).
- Surface and subsurface soil samples will only be screened in the field for the presence or absence of radioactivity. Laboratory analysis for quantity of radioactivity will not be performed.
- Groundwater samples will be collected to help determine the vertical and horizontal
 extent of contamination within the upper PRM aquifer system that can be attributed to the
 site.
- Site-specific stratigraphic, hydraulic, and chemical information will be collected to develop a conceptual model of the site, which will be used to evaluate contaminant fate and transport and potential remedial alternatives.
- A structural analysis will be performed to determine whether the integrity of the Rhodes
 Drum building will allow investigation operations to be undertaken. If conditions allow, a
 combination of wipe and chip samples will be collected to determine if residual
 contamination exists in the Rhodes Drum building that may affect the future actions on
 the building.

2.2 Project Approach

Extensive investigation has been conducted at and in the vicinity of the site by EPA and NJDEP. These data were reviewed and used to build a conceptual model of the existing site conditions. However, since the data were collected, the soil and structure removal actions have disturbed some areas. In addition, comparison of the existing data with the EPA's generic soil screening levels indicates that the limits of the soil contamination have not been defined. Some data quality deficiencies were also noted. Also, data gaps were identified

relative to groundwater flow directions and limits of contamination. Thus, additional soil and groundwater sampling have been identified as requirements to fill in data gaps. Additional sampling will further delineate the nature and extent of contamination by including additional areas for evaluation. Geochemical and engineering data will also be collected to evaluate contaminant fate and transport and potential remedial alternatives.

The sampling program defined in this FSP addresses four different types of media (surface soil, subsurface soil, groundwater) at the Martin Aaron site. Table 2-1 provides an overview of the proposed sampling approach. The rationale for selection of the sampling locations is presented in Sections 3.2.2, 3.2.3 and 3.2.9 of the Work Plan.

2.3 Analytical Program

In developing the chemical analytical program for the Martin Aaron site, the project objectives identified in Section 2.1 above and the following three elements were considered:

- Identification of target compounds and associated degradation products with respect to historic operations, chemical usage, and the results of previous investigations.
- Determining appropriate and acceptable analytical methodologies that meet the data quality objectives (DQOs), including site-specific applicable, relevant and appropriate requirements (ARARs).
- Determining an effective analytical program with appropriate QA/QC requirements such that site sampling locations and frequency are optimized.

2.3.1 Contaminants of Concern

The contaminants of concern (COCs) are defined as those most likely to contribute a risk as a result of exposure. Based on the results of the previous investigations conducted by NJDEP and EPA, the primary COCs include VOCs (primarily 1,2-dichloroethene, tetrachloroethene and trichloroethene) and metals (primarily arsenic, cadmium, mercury, selenium, barium, chromium, and lead). In addition, SVOCs and pesticides/PCBs will be analyzed to confirm the findings of the previous investigations and to determine the potential risk related to exposure to these analytes. Groundwater samples will be analyzed for various additional parameters (see Table 6 of the QAPP) to evaluate if existing aquifer conditions are conducive to natural attenuation of site-related compounds.

2.3.2 Program Objectives

Previous investigations conducted by NJDEP and EPA indicate that some VOCs and metals are present in soil and groundwater at levels greater than the NJDEP's soil and groundwater criteria. Additional information is necessary to define the full extent of the contamination and its impact on human health and the environment. The extent of soil contamination will initially be determined using the lower of the NJDEP criteria and EPA generic soil screening levels. The extent of groundwater contamination will be evaluated using the lower of the NJDEP and EPA water quality criteria.

The overall RI objectives are to: 1) characterize the nature and vertical and horizontal extent of contamination in soil and groundwater; 2) identify potential contaminant source areas;

3) assess human health and ecological risks posed by the contamination, and; 4) develop and evaluate remedial alternatives to mitigate the risks posed by contaminated media. The data generated during the RI and associated analytical program will be used to achieve these objectives.

2.3.3 Contract Laboratory Program (CLP) Analysis

Early in the week prior to the collection of samples requiring CLP analysis, EPA's Regional Sample Control Center (RSCC) will be notified of the expected date of shipment and anticipated sampling duration, approximate number of samples to be collected, the sample matrices, the required analyses, and the analytical turn-around-times. Only when results of the radioactivity screening yield negligible levels will CH2M HILL collect the samples as scheduled and ship them to the CLP laboratories identified by the RSCC. The RSCC or Contract Laboratory Analytical Services Support (CLASS) personnel, as directed, will be notified of sample arrival on the day of shipment or at the start of the next business day. CH2M HILL will use EPA's Field Operations Reporting Management System (FORMS) II Lite software program to assist with sample tracking.

Surface and subsurface soil samples (and associated QA/QC samples) will be analyzed by the assigned CLP laboratory for Target Compound List (TCL) VOCs, SVOCs, pesticides/PCBs, and Target Analyte List (TAL) metals using EPA Statement of Work (SOW) OLM04.2 (for organic target compounds) and ILM04.1 (for inorganic target compounds).

Groundwater samples (and associated QA/QC samples) collected from the monitoring wells and the municipal well will be analyzed by the assigned CLP laboratory for TCL low concentration VOCs, SVOCs, and pesticides/PCBs and TAL metals (total and dissolved) analyses using EPA SOW OLC03.2 (for organic target compounds) and ILM04.1 (for inorganic target compounds). Aqueous waste samples (from the on-site storage tank) will be analyzed for the same parameters.

The analyte lists and required reporting limits for the CLP-laboratory analyses shall be those specified in the above mentioned EPA SOWs and are presented in Tables 4 through 7 of the QAPP. The comparison of the analytical method quantitation limits and the risk-based screening levels on these tables indicate that the proposed analytical program is adequate for assessing potential risks to human and ecological receptors caused by environmental contamination.

The data package deliverables generated by the CLP laboratories will be validated by EPA using the EPA Region II data validation procedures. Re-analysis of samples because of QC problems will be performed, if needed, by the CLP laboratories as required by the EPA SOW criteria.

2.3.4 Independent Laboratory Analysis

Groundwater samples from about 72 locations (2 sampling rounds of the 22 new wells, 13 existing wells [note that three formerly installed cannot be located] and one City of Camden well) and soil samples from about 15 locations will be analyzed by an off-site laboratory(ies) for natural attenuation and geotechnical/ engineering parameters, respectively. The laboratory(ies) performing these analyses will be procured by CH2M HILL. The natural attenuation and geotechnical/engineering analyses results will be used during the RI and

090401 MA FSP WW FINAL

Q

Feasibility Study (FS) to assist in the evaluation of contaminant fate and transport, remedial technologies and remedial alternatives potentially applicable to the site. Table 6 in the QAPP provides a listing of these parameters, methods, and respective quantitation limits.

Upon completion of the field work, one or two composite soil samples (collected from the roll-off containers used to store soil cuttings) will be submitted for waste characterization. These analyses will include TCLP VOCs, SVOCs, pesticide/PCBs and metals. The waste soil characterization analyses will be performed at a laboratory procured by CH2M HILL.

3.0 General Field Operations

The following sections provide procedures for activities to be performed throughout the field investigation. The procedures are not task-specific. These activities include sample management, field documentation, collection of quality control samples, decontamination, disposal of investigation-derived waste (IDW), and field monitoring.

3.1 Sample Management

The procedures described in this section ensure that once representative environmental samples are obtained, they will be properly containerized, preserved, shipped, and otherwise handled in a manner that will maintain sample integrity. The use of these techniques will ensure that samples are representative of current conditions and will significantly reduce the possibility of sample contamination from external sources. Additional information is also provided in the SOPs found in Appendix A.

3.1.1 Sample Identification

A sample numbering system will be used to identify each sample, including duplicate and blank samples. Each sample (including field duplicates and blanks) to be analyzed by the CLP will be assigned a unique CLP organic or inorganic sample number by the RSCC. Samples analyzed by an independent laboratory will be assigned an EPA sample number comprised of an assigned Special Analytical Services (SAS) number (if needed) followed by a unique sequential number. The CLP or SAS number will ensure that the each sample has a unique name as required by Earthsoft's EQuIS Site Management software. The EPA sample numbers will be provided by the RSCC on printed, self-adhesive labels that will be permanently affixed to the sample container, with polyethylene tape, to prevent loss of the label during shipment. The CLP or SAS sample numbers will also be transcribed onto the traffic report/chain of custody record (note that sample tags will not be used).

Each sample will also be assigned a CH2M HILL site-specific sample identifier that will contain a project identification code (identifying "MA" as the Martin Aaron site), sequential station location, and depth (for soil) or sampling event (for groundwater). The site-specific identifier will be based on the following system:

- Site Always MA (included to differentiate from previous investigation locations)
- Station Location (see below)
 The station location is the unique name of the sampling location (e.g., soil boring, monitoring well, etc.). The location name will vary depending on the reason for sampling and the numeric location number assigned to that location. The two letters at the beginning of the location name will indicate one of the following types of sample locations:
 - SB Direct push or auger borings for locations that are being resampled from a previous RI performed by L. Robert Kimball and Associates (June, 2000).(consistent in number with borings conducted during previous RI that were also labeled "SB")

- SO direct push or auger boring location
- MW Monitoring Well
- CW City Well
- DS Waste Disposal Sample (Solid)
- DL Waste Disposal Sample (Liquid)

The characters following the two-letter sample location type will indicate the type of sample collected, and the depth or sample event number, as appropriate. The designation "SS" will be used for surface soil samples. For subsurface sample locations, the designation "S" will be used. For groundwater samples, the designation "GW" will be used. This approach allows for the proper naming of several samples from a single location (including both soil and groundwater samples from a boring converted to a monitoring well).

- Sample Depth/Event Number-The sample depth or number will consist of a two-digit number hyphenated to the station location. For subsurface soil samples, this sequence will indicate the depth that represents the start of the sample interval in feet below ground surface (bgs). For example the sample depth designation will be "05" for the sample collected from an interval of 5 to 7.5 feet bgs. For well samples, this sequence will indicate the number of the sampling event (01 or 02). Note that depths will not be included for surface soil samples.
- QA/QC Identifier Field QA/QC samples will be identified using the following QA/QC identifiers: D duplicate, FB field equipment blank, and TB trip blank. The QA/QC identifier for duplicate samples will be placed after the sample depth/number with which the QA/QC sample is associated. For example, the duplicate of sample MA-SB2-SS will be numbered MA-SB2-SSD. The field equipment blank and trip blanks are typically not associated with an individual location, thus the two letter component of the station location will designated as a "FB" or "TB" and the samples numbered sequentially.

Several examples for numbering the environmental samples and associated QA/QC samples are provided in the table below. The following samples are included: the surface soil sample collected at the SB1 location (Example 1); a subsurface soil sample collected at 5-7 feet bgs at the SB2 location (Example 2); a subsurface soil sample collected at 5-7 feet bgs in the boring for monitoring well MW-15S (Example 3); the groundwater sample from the first round of sampling at monitoring well MW15S (Example 4); the water sample from the City's Municipal Well No. 7 during the first sampling event (Example 5), and; a trip blank and equipment blank sample (Examples 6 and 7).

Example	Site			QA/QC Sample *		Sample with 0A/06
, No.			Depth/Event Number		Sample Identifier	Identifier
1	MA	SB1	0 – 0.5 ft bgs	NA	MA-SB1-SS	
2	MA	SB2	5 - 7 ft bgs	Duplicate	MA-SB2-S-05	MA-SB2-S-05D
3	MA	MW15S	5 - 7 ft bgs	NA	MA-MW15S-S-05	
4	MA	MW15S	01	NA	MA-MW15S-GW-01	

Example No.	Site		Sample Depth/Event • Number	QA/QC Sample	CH2M HILL Sample Identifier	Sample with QA/QC ldentifier
5	MA	CW07	01	Duplicate	MA-CW07-GW-01	MA-CW07-GW-01D
6	MA	TB02	NA	Trip blank	MA-TB02-00	
7	MA	FB03	NA	Equipment blank	MA-FB03-00	

3.1.2 Sample Containers

The contaminant-free sample containers (bottles) used for this sampling effort will be purchased from an approved vendor. All sample containers for CLP laboratory analysis will meet or exceed EPA requirements specified in OSWER Directive #9240-05A, Specifications and Guidance for Obtaining Contaminant-Free Sample Containers (April 1990). The containers used for the non-CLP analyses will be supplied by the CH2M HILL-subcontracted laboratory and will also meet or exceed EPA requirements specified in OSWER Directive #9240-05A. Bottles used for the sampling activity are not to contain target organic and inorganic contaminants exceeding the level specified in the above-mentioned document. Specifications for the bottles will be verified by checking the supplier's certified statement and analytical results for each bottle lot.

Equipment (field) blanks, trip blanks, etc., will be used to monitor for contamination. Corrective actions will be taken as soon as a problem is identified, and may include:

- Discontinuing the use of a specific bottle lot,
- Contacting the bottle supplier(s) for retesting the representative bottle from a suspect lot,
- Assessing decontamination procedures,
- Resampling the suspected samples, and
- Validating the data.

3.1.3 Sample Preservation and Holding Times

Table 3 of the QAPP summarizes the requirements for sample containers, preservatives and sample holding times. Sample containers will be certified by the laboratories or vendors as pre-cleaned. Chemical preservatives will be added to certain aqueous samples in accordance with the QAPP and SOP F.21 to retard degradation during storage and shipment prior to laboratory analysis. Preservatives will be prepared using reagent-grade chemicals and added to appropriate samples at the time of collection. Sample bottles received from the CH2M HILL-subcontracted laboratory will be pre-preserved by the laboratory before shipment to the field team. In addition to chemical preservatives, all samples for chemical analysis will be transported to the laboratory in temperature controlled coolers. Ice will be used to maintain the internal cooler temperature at 4°±2°C during sample collection and shipment to the laboratory. A temperature blank (consisting of vials containing deionized water) will accompany each cooler to the laboratory to verify the internal cooler temperature.

Filtered groundwater may be submitted for metals analyses if turbidity levels can not be reduced during purging. Filtering will occur in the field during sample collection. Samples will be filtered through a 0.45-micron filter following procedures in the SOP F.15.

13

3.1.4 Sample Handling, Packaging and Shipment

The sample handling, packaging, and shipping procedures are described in Section 2.3.2 of the QAPP and SOP A.6. Each sample bottle will be sealed, labeled, put in individual plastic bags, and placed in waterproof plastic coolers for transport to the CLP or independent laboratory for analysis. Before samples are put in the cooler, any drains will be sealed with tape to prevent leaking. Sufficient ice will be placed in the cooler to maintain the internal temperature at 4°±2°C while at the sampling site and during transport. The coolers will be packed with an appropriate cushioning material and absorbent materials to prevent breakage of the sample bottles and to absorb the entire volume of the liquid being shipped. All sample documentation (i.e., chain-of-custody forms) will be enclosed in a waterproof plastic bag and taped to the underside of the cooler lid. The cooler lid will be sealed and custody seals will be affixed to the opposite corners of the cooler and covered with clear plastic tape. The cooler will then be sealed shut with strapping tape in at least two locations.

Sample coolers will be shipped to arrive at the CLP or independent laboratories the morning after sampling (priority overnight) or will be sent by a courier to arrive the same day. For non-CLP samples analyzed at an independent laboratory, the laboratory will be notified of the sample shipment and the estimated date of arrival of the samples being delivered.

3.2 Field Activity Documentation and Logbook

Several procedures will be implemented by CH2M HILL to document the location, media, and parameters of samples collected in the field. These procedures include: maintaining a bound field logbook to record daily activities, including the acquisition of samples; preparing a daily report to record the individuals, equipment and supplies involved in each day's work; photographing sampling locations (to the extent practicable); completing chain-of-custody (COC) forms for all environmental samples and field QC samples; maintaining parameter data generated as a result of sampling activities on file, and; surveying sampling locations relative to the state datum, and noting on-site drawings with respect to permanent landmarks or site features. The following sections describe additional sample documentation methods to be used at the site.

3.2.1 Field Logbook and Daily Reports

A field logbook will be initiated at the start of the first on-site activity (i.e., site reconnaissance) and will be maintained to document field activities during the RI. The field logbook will consist of a bound notebook with consecutively numbered pages that cannot be removed (see SOP A.3). The logbook cover will indicate the following:

- Site name and EPA work assignment number
- Project number
- Site manager's name and mailing address
- Sequential logbook number
- Logbook start date

The field logbook is a controlled document that becomes part of the permanent site file. Because information contained in the field logbook may be admitted as evidence in cost recovery or other legal proceedings, it is important that this document be well maintained.

Daily entries will be made during periods of site activity. Entries will be recorded in ink; no erasures are permitted. Each page will be initialed. Incorrect entries will be stricken with a single line and initialed. At the beginning of each daily entry, the date, start time, weather conditions, and names of site personnel and visitors present will be recorded. At a minimum, entries in a field logbook will include the following:

- Time of arrival and departure at site
- Time and date of sample collection
- Field sample number
- Detailed description of the sampling location including sketch
- Identification of sampler
- Type of sample (e.g., groundwater, surface soil, etc.)
- Requested analytical determinations
- Sampling methodology, including distinction between grab and composite sample
- Sample preservation
- QC samples
- Field measurements (e.g., PID, pH, water level)
- Instrument calibration information
- Field observations (weather, description of sample)
- Sample pickup including chain-of-custody form number, carrier, date, and time
- Arrival and departure of site visitors
- Health and safety issues (including the level of personal protection)
- Signature and date

Sampling situations may vary widely; however, records will contain sufficient information so that the sampling activity can be reconstructed without relying on the collector's memory.

In addition, the CH2M HILL Field Team Leader (FTL) or his/her designee will complete a concise Daily Report, which will contain a summary of labor, equipment and supplies associated with each day's work, as well as a summary of the daily health and safety meeting.

3.2.2 Photographic Documentation

The FTL or his designee will selectively photograph field activities to complement descriptions of field activities in the field logbook. The following information will be recorded in the logbook when photographs are taken:

- Date and time
- Exposure number/roll number
- Location of the photograph
- Description and identification of the subject
- The initials of the person who took the photograph

Photographs will be maintained by CH2M HILL for reference during the project.

3.2.3 Sample Chain-of-Custody

For samples collected for analysis, the EPA chain-of-custody (COC) protocols will be followed, as described in the National Enforcement Investigations Center (NEIC) Policies

and Procedures, EPA-330/9-78-DDI-R, Rev. June 1985. The COC forms will be completed either manually or through the use of EPA's FORMS II Lite software program. Custody procedures are described in Section 2.3.2 of the QAPP. The protocol for filling out the COC is provided in SOP A.1.

3.3 Quality Control Sample Procedures

Each off-site laboratory identified in the QAPP has a QC program to ensure the reliability and validity of the analyses being performed. QC procedures will also be implemented for the on-site instruments: photoionization detector (PID); radioactivity meter, and; meter(s) for pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance, and temperature measurements. The instruments will be calibrated as described in the SOPs (see Appendix A), and periodically duplicate readings from a single sample will be taken to check the reproducibility of the measurements. Field sampling precision and bias will be evaluated by collecting field duplicate and equipment blanks for laboratory analysis. The frequency of QC sample collection is summarized in Section 2.6 of the QAPP.

3.3.1 Decontamination and Drilling Water

Potable water will be used for drilling purposes and to decontaminate drill rigs and other large equipment through steam cleaning after each use. However, on sampling equipment (e.g., stainless-steel trays, split-spoons), potable water will only be used with a mixture of Alconox® (or similar detergent) during the initial stage of decontamination. To ensure that this water will not cause cross-contamination, the source water will be demonstrated analyte-free prior to any environmental sampling by submitting a sample of the water to a CH2M HILL-subcontracted laboratory for analysis of VOCs, SVOCs and metals. The criteria for analyte-free water will be determined by the detection limits of the laboratory methods used for analysis of the sample analytes.

If the potable water to be used for the above noted purposes is found to contain common laboratory contaminants (i.e., methylene chloride, toluene, acetone, 2-butanone, and phthalate esters) at concentrations less than ten times the concentration detected in a blank (i.e., trip blank, rinse blank), the water will still be considered appropriate for use for drilling and decontamination purposes.

3.3.2 Field Duplicates

Field duplicate samples will be used to measure the heterogeneity of the sample matrix and the precision of the field sampling and analytical process. Duplicate samples will be collected at a frequency of one duplicate per 20 samples of each analyte and sampled medium. For soils, field duplicate samples will be collected by placing the soil in a stainless steel bowl, mixing the sample by stirring, and then filling the individual sample and duplicate containers from the bowl. The soil fraction for VOC duplicate analysis will not be collected in this manner; instead these samples will be obtained first by collecting the original sample and then collecting the duplicate sample as close as possible to the original sample location.

The groundwater field duplicate samples will be collected by alternately filling first the sample bottle for one analysis and then the duplicate bottle for the same analysis. This procedure will be followed until the bottles for all analyses are filled. If dissolved metals

samples are collected, a separate inline filter will be used to fill the sample and duplicate containers.

The sample bottles will be labeled as described in this plan. The samples will be preserved and stored in the same manner as the field samples. The estimated number of field duplicates is presented in Table 3-1.

3.3.3 Equipment Blanks

Equipment (field) blanks will be collected and analyzed to determine whether the decontamination procedure has been adequately performed and that there is no cross-contamination of samples occurring due to the equipment or residual decontamination solutions. Equipment blanks will be collected for all matrices to be sampled. A consistent volume of demonstrated analyte-free distilled and deionized water will be poured directly into or over the decontaminated sampling equipment and then collected in sample containers. The sample containers will be labeled as described in this plan. The samples will be preserved and handled in the same manner as the groundwater samples. The frequency of collection will be at least five percent, and the estimated numbers of equipment blanks are provided in Table 3-1.

3.3.4 Trip Blanks

Trip blanks will be used to determine if any on-site atmospheric contaminants are seeping into the sample bottles, or if any cross-contamination of samples is occurring during shipment or storage of sample containers. For this project, aqueous trip blanks will be collected to accompany both aqueous and solid samples for VOC analysis.

The aqueous trip blanks will consist of demonstrated analyte-free distilled and deionized water preserved with 1:1 HCl to a pH of less than or equal to 2 standard units in 40-mL Teflon-lined septum vials. One set of trip blanks will accompany each sample cooler containing one or more samples for VOC analysis. The sample bottles will be labeled as described in this plan. The samples will be stored in the same manner as the groundwater samples. The estimated number of trip blanks is listed in Table 3-1.

3.3.5 Matrix Spike/Matrix Spike Duplicate

The matrix spike/matrix spike duplicate (MS/MSD) samples will be used by the laboratories to assess the precision and accuracy of sample analysis. The MS/MSD samples will be fortified by the laboratories in accordance with the specifications of the analytical methods. Two extra volumes of sample are required for each combination of MS/MSD samples. Sample containers will be filled and stored in the same manner as field duplicate samples. The frequency for collection of MS/MSD samples will be at least 5 percent. The estimated numbers of MS/MSD samples are provided in Table 3-1.

3.3.6 Temperature Blanks

A temperature blank allows the laboratory receiving the shipment of samples to determine if the samples have been maintained at the proper temperature. The temperature blanks will consist of an un-preserved sample container filled with deionized water. One temperature blank will accompany each sample cooler being shipped to the laboratory.

3.4 Decontamination Procedures

Decontamination of personnel, sampling, monitoring and heavy equipment will follow NJDEP and EPA Region II guidance. The SOP D.1 presents the procedures for decontamination operations. The following sections present the procedures to be employed for the decontamination of sampling equipment and heavy machinery. Refer to Section 3.3.1 for additional detail on decontamination procedures. The potable water to be used in equipment decontamination will be either from bottles or from a public water supply system. A sample of the water from each source used will be collected at the time of its first use and sent for analysis of VOCs, SVOCs and metals.

3.4.1 Personnel Decontamination

Site personnel will perform the following decontamination procedures after completion of tasks whenever the potential for contamination exists and when leaving the contaminated area.

- Wash boots in a water/detergent solution, then rinse with water. If disposable latex booties are worn over boots in the work area, rinse with water/detergent solution, remove, and discard.
- Wash outer gloves in water/detergent solution, rinse, remove and discard.
- Remove respirator if worn.
- Remove disposable coveralls (e.g., Tyveks ®) and discard.
- Remove inner gloves and discard.
- At the end of the workday, shower entire body, including hair, either at the work site or at home.
- Sanitize respirator if worn.

These procedures may need to be modified based on field conditions.

3.4.2 Non-Aqueous Sampling Equipment

All equipment (e.g., stainless-steel trowels, split-spoons, etc.) used to collect soil samples as well as the geophysical and hydraulic testing equipment, will be decontaminated after each use according to the following procedure.

- 1. Detergent/tap water rinse.
- Tap water rinse
- 3. 10% nitric acid (ultra-pure) rinse (if sampling for metals)
- Distilled/deionized water rinse
- Air dry.

Augers will be decontaminated by scraping soil from equipment, steam cleaning, and air drying.

3.4.3 Aqueous Sampling Equipment

3.4.3.1 Submersible pumps

Submersible pumps will not be dedicated to each existing and newly installed monitoring well. Rather, pumps used for groundwater purging and sampling will be decontaminated before being used in another well. The non-disposable sampling equipment, including the pump, support cable and electrical wiring which contact the sample, will be decontaminated thoroughly each day before use ("Daily Decontamination") and after each well is sampled ("Between-Well Decontamination"), as described below.

Daily Decontamination

- Pre-rinse: Operate pump in a deep basin containing 8 to 10 gallons of potable water for 5 minutes and flush other equipment with potable water for 5 minutes.
- Wash: Operate pump in a deep basin containing 8 to 10 gallons of a non-phosphate detergent solution, such as Alconox, for 5 minutes and flush other equipment with fresh detergent solution for 5 minutes. Use the detergent sparingly.
- Rinse: Operate pump in a deep basin of potable water for 5 minutes and flush other equipment with potable water for 5 minutes.
- Disassemble pump.
- Wash pump parts: Place the disassembled parts of the pump into a deep basin containing 8 to 10 gallons of non-phosphate detergent solution. Scrub all pump parts with a test tube brush.
- Rinse pump parts with potable water.
- Rinse the following pump parts with distilled / deionized water: inlet screen, the shaft, the section interconnector, the motor lead assembly, and the stator housing.
- Place impeller assembly in a large glass beaker and rinse with isopropanol.
- Rinse impeller assembly with distilled/deionized water.

Between-Well Decontamination

- Pre-rinse: Operate pump in a deep basin containing 8 to 10 gallons of potable water for 5 minutes and flush other equipment with potable water for 5 minutes.
- Wash: Operate pump in a deep basin containing 8 to 10 gallons of a non-phosphate detergent solution, such as Alconox, for 5 minutes and flush other equipment with fresh detergent solution for 5 minutes. Use the detergent sparingly.
- Rinse: Operate pump in a deep basin of potable water for 5 minutes and flush other equipment with potable water for 5 minutes.
- Final Rinse: Operate pump in a deep basin of distilled/deionized water to pump out 1 to 2 gallons of this final rinse water.

3.4.3.2 Other Aqueous Sampling Equipment

Other aqueous sampling equipment will be decontaminated after each use according to the following procedure.

- Wash and scrub with a solution of low-phosphate detergent (e.g., alconox) and tap water.
- Rinse with pre-sampled and approved water.
- Rinse with 10% HNO3 solution.
- Rinse with deionized/distilled water.
- Rinse with optima-grade methanol.
- Rinse with analyte-free distilled and deionized water (five times the volume of solvent used).
- Air dry.
- Wrap in aluminum foil.

All decontamination-derived water will be placed in containers and later transferred to a large on-site tank (e.g., "Baker Tank") for sampling and subsequent transportation/disposal at an approved facility (see Section 3.5 for Disposal of RI-Generated Wastes). Soil or sludge wastes from decontamination of the drill rig will be moved by the drilling subcontractor and placed in a tarped, sealed-gate roll-off container and labeled. The roll-off container will be staged in a centralized area. As the fieldwork nears completion, the contents of the on-site tank and roll-off container will be sampling and then disposed of accordingly.

3.4.4 Monitoring Equipment Decontamination

Monitoring equipment will be decontaminated between sampling locations (borings, wells, etc.) by the following procedure.

- Wipe all surfaces that had possible contact with contaminated materials with a paper towel dampened with a water/detergent solution.
- Wipe all surfaces with a paper towel dampened with potable water.
- Wipe with a towel dampened with analyte-free distilled and deionized water.
- Dispose of all used paper towels as specified in Section 3.5.

3.4.5 Sample Container Decontamination

The outer surface of sample containers filled in the field must be decontaminated before being packed for shipment or handled by personnel without dermal hand protection, as described below.

- Wipe container with a paper towel dampened with detergent solution after the containers have been sealed.
- Wipe container with a paper towel dampened with potable water.
- Dispose of all used paper towels as specified in Section 3.5.

3.4.6 Heavy Machinery

All heavy machinery, such as the drill rig, downhole drilling tools, and the backhoe (if used) will be decontaminated by the subcontractor after each use with hot water (see SOP D.1). The decontamination procedure will include a high-pressure hot water wash, a high-pressure hot water rinse, and air drying. If the high-pressure hot water wash is insufficient to clean the heavy equipment, the equipment will be washed with a low-phosphate detergent (e.g., alconox) and scrubbed with brushes. The equipment will then be rinsed with water. Decontamination of the heavy equipment will be performed at the decontamination pad approved for use by the CH2M HILL FTL.

All decontamination-derived water will be contained, placed in containers, and later transferred to a large on-site storage tank for sampling and subsequent transportation/disposal at an approved facility (see Section 3.5). Soil or sludge wastes from decontamination of the drill rig or backhoe will be placed in a roll-off container, as noted in Section 3.4.3 above.

3.5 Disposal of RI-Generated Wastes

The waste materials generated during a field investigation are known as investigation derived wastes (IDW). The materials that may become IDW requiring proper treatment, storage and disposal are:

- Personnel protective equipment (PPE). This includes disposable coveralls, gloves, booties, respirator canisters, etc.
- Disposable equipment (DE). This includes plastic ground and equipment covers, aluminum foil, Teflon® tubing, broken or unused sample containers, sample container boxes, tape, etc.
- Soil cuttings from drilling or hand augering.
- Groundwater obtained through well development or well purging.
- Decontamination water.

The solid and liquid IDW generated during the field work will be containerized, sampled, characterized, and disposed of following the completion of the RI fieldwork. CH2M HILL assumes that all solid wastes generated will be disposed of at a licensed municipal landfill and all liquid wastes will be disposed of at a local POTW.

A quantity of soil estimated to fill 45 drums will be generated during drilling and soil sampling activities. The subcontractor will appropriately contain the cuttings at the drilling site, and will transfer the cuttings into a tarped, labeled, sealed-gate roll-off container placed in a central staging area. One composite waste sample will be collected for each roll-off container (except for the VOC fraction, which will be collected from a discrete location within the container). The samples will be sent to a CH2M HILL-subcontracted laboratory to determine the RCRA disposal characteristics as required by NJAC 7:26G-6.2 and 40 CFR 261. It is anticipated that 1 composite soil sample will be collected and analyzed for TCLP VOCs, SVOCs, pesticides/PCBs and metals.

In addition, an estimated 30,000 gallons of purge, development, and decontamination water will be generated over the course of the field effort. The groundwater samples will be collected and analyzed after each well is developed or purged so there will be ample analytical data for all containerized water. As a precautionary measure to ensure that the water contained in the drums and/or tank is appropriate for the recommended disposal option, one water sample will be collected for every 10,000 gallons of development, purge, decontamination, and other water generated. It is anticipated that three water samples will be analyzed to determine disposal requirements. The water samples will be analyzed for TCL VOCs, SVOCs, and pesticides/PCBs and for TAL metals by a CH2M HILL-subcontracted; additional disposal characterization parameters, if required, will be analyzed. If the containerized waters are contaminated to the extent that they cannot be accepted by the POTW for treatment and disposal, then these waters will be set aside for disposal at an RCRA-licensed treatment/disposal facility.

The spent PPE, after decontamination, will be treated as debris and will be placed in a ten cubic yard dumpster along with other non-hazardous general refuse. The dumpsters will be emptied every two weeks during the course of the investigation. This waste will be disposed of at a non-hazardous facility according to 40 CFR. 268.45.

3.5.1 IDW Roll-Off Container Management and Sampling

The sealed-gate roll-off container(s) used for containerizing drill cuttings produced during the RI will be marked with an identification number. All available information concerning the roll-off container will be recorded in a field logbook, including: the type of container, total capacity estimate, and the actual volume of soils contained within the container. The personnel involved in handling and transporting containerized waste from the drilling site to the roll-off container shall work in teams containing no fewer than two people. The roll-off container will be tarped when not in active use.

The sampling of the containerized solid materials (i.e., soils) will generally be accomplished through the use of a scoop, trowel, or bucket auger. Once the roll-off container tarp is opened, a decontaminated sampling device will be inserted into the center of the material. The sample will be retrieved and immediately transferred to a sample bottle. To obtain a core sample, a stainless-steel bucket auger (or equivalent) will be used. If the sampling device is disposable, it will be left in the container. Otherwise, the device will be decontaminated thoroughly before collection of the next sample (as needed).

3.5.2 Sampling of Purge, Decontamination, and Development Water

During the course of the RI, water will be generated as a result of well purging, personnel, and equipment decontamination, and drilling activities. This water will generally be temporarily containerized at the point of generation, then transported to a central staging area where it will be transferred to a 10,000 - 20,000-gallon water tank. Once the water tank is approximately 75 percent full, a sample will be collected for disposal characterization analyses. The sampling of the water tank will be performed through the use of a disposable plastic bailer (see SOP F.3). The bailer will be lowered to the base of the tank, then retrieved. The appropriate sample containers will be filled from the bailer and preserved, as necessary.

090401 MA FSP WW FINAL 22 3 0 2 2 1 4

3.6 Field Monitoring Instrumentation

Numerous monitoring instruments will be used during RI activities, including:

- Water quality meters which measure pH, specific conductance, temperature, turbidity, DO and ORP;
- PIDs;
- Combustible gas/oxygen/hydrogen sulfide monitors;
- · Electric water level indicators; and
- · Radioactivity meters.

Each device will be calibrated according to the manufacturer's operating manual prior to each day's use. The following table identifies the SOPs which will be used for calibration and maintenance of the field monitoring instruments.

Instrument	SOP Number
Photoionization Detector	B.1
Combustible Gas/Oxygen/Hydrogen/Sulfide Monitor	B.2
Miniature Real-Time Aerosol Monitor (MiniRam)	B.3
Multiprobe Water Quality Meter	B.4
Radiation Meter	B.6
Water Level Indicators	F.7

Calibration of the equipment will be documented on an Equipment Calibration Log (see Appendix B). During calibration, an appropriate maintenance check will be performed on each piece of equipment. If damaged or failed parts are identified during the daily maintenance check and it is determined that the damage could have an impact on the instrument's performance, the instrument will be removed from service and replaced until the identified parts are repaired or replaced.

4.0 Task Specific Site Operations

This section provides an overview of the task-specific operations that will be performed during the RI. It also references specific SOPs in Appendix A, which provide step-by-step procedures for conducting the field tasks. In the instances where SOPs are not referenced, the text of that section will act as the SOP.

4.1 Mobilization

Prior to initiating any field work, the following preparatory activities must be completed:

- Confirm that access agreements for field and sampling activities have been obtained, and notify property owners of upcoming fieldwork (if not all access agreements have been obtained, determine how, if necessary, the schedule and field program can be modified until all the agreements have been obtained)
- Mobilize and set up support facilities (field office, phone, electrical and portable toilet)
- Mobilize all field office equipment and supplies (fax and copy machines, computer, water cooler)
- Mobilize and set up IDW storage areas (Baker tanks, roll-off container)
- Identify and contact all utility companies to get underground utility clearance for all subsurface sampling locations
- Post signs that provide appropriate contacts for information and for reporting suspected criminal activities (it is assumed that information for signs to be provided by EPA)
- Extend the existing chain link fence to restrict access by trespassers and install new locks at the three existing gates
- Obtain and transport to the site and/or field office the identified field supplies (e.g., PPE, sample containers, preservatives, sample forms and other related items) and field monitoring equipment
- Obtain proper groundwater monitoring well and soil boring permits from drilling subcontractors
- Mobilize direct-push (e.g., Geoprobe®) and drilling contractor and supplies and materials
- Confirm that analyses are scheduled through the EPA CLP and the CH2M HILLsubcontracted independent laboratories
- Confirm that all field equipment is in proper working order and has received appropriate quality control checks

CASTOR/PROJ/160849/SITE SPECIFIC PLANS/FINAL DOCS/090401 MA FSP WW FINAL

- Purchase certified analyte-free trip blank and field equipment blank water and preservatives
- Locate the Federal Express office nearest the site that will accept sample coolers, and note its hours of operation (also determine whether the office will provide sample pickup service)
- Clear vegetation from staging and sampling areas

During mobilization activities, the FTL will perform a walk-through inspection of the site and inspect and generate field sampling maps (updating them if needed). The level of health and safety protection during the mobilization activities will be Level D.

4.2 Site Reconnaissance

Site reconnaissance will be conducted prior to the start of the sampling activities. The field staff will perform the following activities.

- Inspect the Rhodes Drum building to evaluate and propose safety measures necessary to protect against possible structural deficiencies of the building. A brief report of findings, including photographs, will be prepared and submitted to EPA.
- Visually survey the Rhodes Drum building to identify potential asbestos-containing materials.
- Obtain from the City of Camden and the NJDEP an inventory of well records (including
 well logs, pumping rate and schedule) that exist within a one-mile radius of the site, and
 field-verify the well locations (to the extent practicable).
- Locate and inspect existing on-site and off-site monitoring wells. The inspection will
 include visual observations of well condition and verification of well construction (e.g.,
 depth of well). All observations and measurements will be documented in the field
 logbook.
- Obtain a legal description, title report and ownership plat maps from the City of Camden.
- Acquire existing maps of historical land use in the vicinity of the site. This will include a
 review of historical maps and aerial photographs from the NJDEP Aerial Photo and Map
 Library in Trenton, NJ. This review will include trying to identify channels, ditches, or
 waterways that may have existed at the site. Also, a review will be conducted of NJDEP
 files for the metals recycling facility (east of the site) and the gasoline station (northwest
 of the site).
- A survey subcontractor will verify locations of property boundaries, utility right-ofways, well locations and measurement points (including prior sample locations), establish a site benchmark (for horizontal and vertical control), and generate additional topographic information for off-site sampling locations.

• Meeting with the City of Camden personnel to identify which drains, if any, can be used to discharge wastewater (i.e., decontamination, purge and development water) temporarily stored in the on-site storage tank during the field activities.

4.3 Geological Investigations

A geological investigation will be conducted to collect soil data that will be used to:

- Define the nature and extent of contamination from VOCs, SVOCs, metals, and pesticides/PCBs in the surface and subsurface soils, and;
- Characterize the lithologic and geotechnical properties of site-specific soils (e.g., bulk density, porosity, total organic carbon, etc.) that will be used in the evaluation of contaminant fate and transport, the analysis of risk, and the remedial alternative evaluation.

These objectives will be accomplished by collecting surface and subsurface soil from the unsaturated zone. The rationale for the sampling locations and selection of analytical parameters is based on the site history and results from previous investigations conducted by NJDEP and EPA. The specific objectives, approximate locations, estimated number of samples, and analyses are presented in Table 2-1. The preliminary soil sample locations are shown on Figure 4-1.

Prior to the start of sampling, a radiation detector (e.g., Geiger-Muller [GM]) will be used to survey the site for elevated radiation levels. This will be done to evaluate whether soils from the Welsbach site (or similar fill material) were disposed on-site. The soils from the Welsbach site are known to contain high levels of thorium. If the initial radiation survey indicates that radiation levels are above levels generally recognized as safe, then all sampling will cease, EPA will be notified immediately, and discussions will be held as to the proper means of moving forward with the RI.

Surface and subsurface soil samples will be collected from about 72 locations and will be obtained using direct-push methods (e.g., Geoprobe®) or an equivalent method (e.g., split-spoon samplers). The sample locations were selected based on the existing analytical results for four VOCs (tetrachloroethene, trichloroethene, 1,2-dichloroethene and benzene), in discussions with EPA on June 29 and July 26, and are distributed as follows (the soil boring designations are listed; see Figure 4-1):

- *Martin Aaron Property* 23 locations on Martin Aaron property (identified as 20 proposed re-sample locations [SB], 02, 04, 06, 08, 09, 11, 13, 14, 31, 42, 47, 56, 60, 112, 118, 120, 122, 124, 130, and 131) and three new sample locations SO201, 203 and 214).
- South Jersey Port Company Property (SJPC) 15 locations on the SJPC property (identified as 12 proposed re-sample locations [SB] 29, 62, 66, 67, 68, 69, 71, 72, 75, 77, 78, and 79 and three new sample locations SO 301, 302 and 303).
- Junkyard Property (north of Martin Aaron Site) 4 new sample locations (identified as SO 210, 211, 212 and 213).

- City of Camden Road Rights-of-Way 10 locations consisting of two new sample locations along Everett Street (SO208 and 209), five re-sample locations (SB96, 97, 98, 106 and 108) and one new sample location (SO207) along 6th Street, and two re-sample locations along Broadway (SB81 and 82).
- Comarco Building area 5 locations near the Comarco Building, south of the Martin Aaron property, (consisting of one re-sample location [SB85] and four new sample locations [SO202, 204, 205 and 206]).
- Jackson street properties new sample locations [SO] 401, 402, 403, and 404.
- *Monitoring Well Locations* 11 locations (see Section 4.4, subsurface samples only to be collected from the borings for shallow wells MW-12S through MW22S).

During probe or drilling advancement, the soils will be screened using a photoionization detector (PID). It is assumed that two samples (one at/near the surface [designated surface soil sample] and one at the soil/water interface or interval of highest PID reading [designated subsurface soil sample]) will be collected at each location. The soil sampling procedures are provided in the following SOPs:

- F.12 Surface and Subsurface Soil Sampling;
- F.16 Direct-Push Soil Sample Collection; and
- F.20 Collection of Soil Samples for VOC Analysis Using EnCore™ Samplers.

Activities related to this task are described in additional detail in Sections 4.3.1 through 4.3.5.

4.3.1 Utility Clearance

Prior to the geological investigation, each sampling location will be thoroughly investigated and field-checked to determine whether buried lines, underground storage tanks, or other subsurface hazards may be present at each specific location. The pre-drilling utility clearances will be performed using the following steps.

- New Jersey One-Call Center will be contacted and primary utility lines will be marked (this will be conducted under the mobilization task see Section 4.1).
- A subcontractor who specializes in underground utility identification will mark out
 underground utilities either on a site-wide basis or within a 10-foot radius around the
 proposed geologic investigation points (this will be conducted under the geophysical
 investigation task see Section 4.6).
- If needed, drilling sites will be refined to avoid these known utility lines and buried objects.
- A magnetometer or metal detector will be used by the drilling subcontractor as a final check to verify that metallic objects/lines are not located under any of the drilling sites.

4.3.2 Drilling Notes and Stratigraphic Characterization

Prior to drilling at each location, the field geologist (or geotechnical engineer) will be responsible for recording in the field logbook the location of the new hole (written text and

rough sketch of location, including points of reference and landmark), date, time, weather conditions, drilling crew present, drilling equipment, and CH2M HILL geologist(s) present. The CH2M HILL geologist supervising the drilling crew will be responsible for making sure that the borehole is located properly; the area has been cleared of buried utilities and hazards; the personnel present have been advised of potential hazards and safety concerns, and; all sampling equipment, utensils, and sample containers necessary to perform the drilling and subsurface sampling are present, in working order, and are decontaminated prior to the start of drilling activities.

During the drilling activity, the CH2M HILL geologist will describe and record all drilling activities, environmental measurements, samples collected, and other information in the field logbook. In addition, a drilling log form sheet will be filled out as drilling progresses. Information on the boring log sheet shall include the location, borehole number, date(s) and times of drilling, personnel and equipment present, down time, samples collected, measurements taken, and any other significant observations or information that might be necessary to document field activities and drilling conditions. The format of the Soil Boring Log is presented in Appendix B (to the extent practicable, the boring log format will be compatible with EquIS).

When a hollow-stem auger (HSA) rig is used, the field geologist will use soil cuttings brought up to the ground surface by the auger and soil cores from split spoon samplers to describe the geologic strata on the boring logs. The lithologic descriptions of unconsolidated materials shall be described in accordance with the American Society for Testing and Materials (ASTM) Method D-2488-90 (Standard Practice for Description and Identification of Soils). The descriptive information to be recorded in the field shall include: identification of the predominant particle size and range of sizes, a description of the grading and sorting of particles, Munsell color, moisture content, plasticity of fine-grained soils, cementation (weak, moderate, or strong), etc. The Unified Soil Classification System (USCS) will be used to classify each soil stratum. Additional information to be recorded during drilling will include the depth to the water table, depths of all samples collected, presence of organic materials, presence of fractures or voids, odors (if encountered), and PID readings. All soil borings will be located at the time of drilling by driving a steel pin (with fluorescent flagging) into the ground. As needed, fluorescent paint will be sprayed around the pin so that it can be relocated during elevation surveying activities.

4.3.3 Surface Soil Sampling

The surface soil samples will be collected at approximately 90 locations (all locations except the monitoring well locations). Samples will be collected from the upper six inches of soil using decontaminated sampling equipment, which may consist of a direct-push (e.g., Geoprobe®) rig, a hand auger, and/or an equivalent method (e.g., split-spoon samplers). Only soil, small gravel, and dust (not large pieces of gravel and/or asphalt, concrete or matted roots) will be sampled. The soil cores will be logged and examined for visual indications of contamination and screened using a PID. All observations and field measurements will be recorded in the field logbook. In order to generate data consistent with the previous investigations, the sample fractions to be analyzed for metals, SVOCs, and pesticides/PCBs will be collected from the uppermost sample horizon, and the sample fractions to be analyzed for VOCs will be collected just below the upper horizon (all within

the uppermost six inches). Upon collecting soil from the uppermost horizon, the soil will be placed in a bowl or pan, where it will be thoroughly homogenized before filling the appropriate sample containers. It is very important that the non-VOC soil fraction be mixed as thoroughly as possible to ensure that the sample is representative of the entire interval. The soil fraction to be analyzed for VOCs will be collected using EnCore™ samplers for low level VOC analysis (see SOP F.20).

The surface soil samples will be analyzed by an EPA Region II CLP laboratory for TCL VOCs, SVOCs, and pesticides/PCBs, and for TAL metals.

4.3.4 Subsurface Soil Sampling

The subsurface soil samples will be collected by two methods. Samples will be collected by the direct-push method from the same 90 probe holes used for the surface soil samples (see Section 4.3.3). Also, subsurface samples will be collected from 11 boreholes advanced for installation of the shallow monitoring wells.

4.3.4.1 Unsaturated Soils

Subsurface, unsaturated soil samples will be collected during probehole advancement (at 90 locations) and during drilling of the boreholes for the 11 shallow monitoring wells. The soils will be described and field screened using a PID from below the depth of any surface soil sampling to the top of the water table (about 12 feet bgs) using direct-push techniques (e.g., Geoprobe®) or equivalent (e.g., split-spoon sampling using a drill rig). During field screening of the soil column, each 1-foot soil interval with an elevated organic vapor reading will be containerized and stored at 4°C until the water table is encountered. The subsurface soil samples submitted for laboratory analysis will be those within the unsaturated zone with the highest organic vapor reading, or from the soil/water interface. The sample fraction to be analyzed for VOCs will be collected from the soil core using an EnCore™ sampler; the remaining sample fraction will be homogenized and used for the other analyses. The subsurface, unsaturated soil samples will be analyzed by an EPA Region II CLP laboratory for TCL VOCs, SVOCs, and pesticides/PCBs, and for TAL metals.

4.3.4.2 Saturated Soils

The subsurface, saturated soil samples will be collected during drilling of several shallow, intermediate and deep monitoring wells (see Section 4.4.1). The soils from below the water table will be collected continuously using split-spoon samplers, described, and field screened to the desired depth for well installation. All observations and field measurements will be documented in the field logbook. Fifteen (15) samples of saturated soils will be collected to gather lithologic and geotechnical information only. Four soils samples will be collected from the shallow zone (about 15 to 20 feet bgs) among the 11 shallow monitoring well borings. Seven samples (one per boring) will be collected from the base of the upper aquifer (55 to 65 feet bgs) among the eight intermediate monitoring well borings. Finally, four samples will be collected from the clay layer underlying the upper aquifer (greater than 65 feet bgs). All samples will be analyzed for total organic carbon (TOC), porosity, moisture content, pH, grain size and bulk density (soil samples from below the water table will not be analyzed for CLP parameters).

4.3.4.3 Screening for the Presence of DNAPLs

Since there may be high concentrations of trichloroethene, tetrachloroethene, or other organic compounds in the subsurface soils, the soil cores will be screened for the presence of DNAPL. The Field Geologist will carefully observe the soil cores to identify where subsurface soils are contaminated with organic compounds, using visual observations (i.e., discolored soil or iridescent sheen, oil droplets, etc.), organic odor, or PID readings to screen for the presence of DNAPL.

4.3.5 Borehole Abandonment

Following the completion of sampling, abandoned monitoring wells and completed soil borings will be backfilled with native soil if their depth does not exceed 25 feet bgs. If the completed borings and abandoned monitoring wells have been advanced deeper than 25 ft bgs, they will be sealed in accordance with the NJDEP Procedures for Drilling and Sealing Borings/Probe Holes (SOP F.13), as follows:

- 1. A mixture in the ratio of 94 pounds of Portland Type II neat cement, to 6-8 pounds bentonite, to 8-10 gallons of water will be pumped into the boring, under pressure, through a tremie pipe that discharges at the bottom of the boring. The tremie pipe will be retrieved while pumping the sealing material through it.
- 2. The sealing material will be pumped into the boring until all of the water in the boring has been displaced, and the sealing material overflowing the boring is of the same density and consistency as the sealing material being pumped into the boring. The amount of sealing material added to the borehole will be recorded in the geologist's logbook.
- 3. The drilling subcontractor will complete an abandonment form (Form DWR-020) to the New Jersey Bureau of Water Allocation for each of the sealed borings.

4.4 Hydrogeological Investigation

The objectives of the hydrogeological investigation are to:

- Establish the site-specific horizontal and vertical groundwater gradients and groundwater velocity within the upper aquifer system (water table and above the confining layer separating the upper and middle aquifers);
- Evaluate the quality (metal and organic levels) of groundwater flowing onto the site from adjacent properties (i.e., site background);
- Define the horizontal and vertical limits of groundwater potentially impacted by site activities;
- Determine if the contamination from the site may potentially impact the nearest City of Camden wells (located 1.75 miles from the site);
- Collect site-specific hydrogeological data to evaluate contaminant fate and transport.

These objectives will be accomplished by installing additional on-site and off-site monitoring wells in the upper and middle aquifers, measuring water levels, performing insitu hydraulic conductivity testing, and collecting and analyzing groundwater samples.

4.4.1 Monitoring Well Installation

A total of 22 groundwater monitoring wells will be installed at 11 locations to evaluate the aquifer system and monitor groundwater quality. The locations include nine on-site locations and two off-site locations (see Figures 4-2A and 4-2B). The 22 monitoring wells will consist of 11 "shallow" wells completed near the top of the upper aquifer, eight "intermediate" wells completed at the base of the upper aquifer, and three "deep" wells completed in the middle aquifer. The total will include: three 3-well nests (shallow, intermediate and deep wells, tentatively identified as MW-14S/MW-14M/MW-14D, MW-18S/MW-18M/MW-18D, and MW-20S/MW-20M/MW-20D), five 2-well nests (shallow and intermediate wells, tentatively identified as MW-12S/MW-12M, MW-13S/MW-13M, MW-15S/MW-15M, MW-17S/MW-17M, MW-19S/MW-19M) and 3 individual shallow wells (tentatively identified as MW-16S, MW-21S and MW-22S). The rationale for the additional monitoring well locations is based on the site history and results from previous investigations conducted by the NJDEP and EPA. The specific objectives and approximate locations are described in the QAPP. The preliminary monitoring well locations are shown on Figures 4-2A and 4-2B. The well installation and development procedures are described in SOPs F.1 and F.2, respectively.

Prior to the drilling of the wells, all locations will be thoroughly investigated and field-checked to determine whether buried lines, underground storage tanks, or other subsurface hazards may be present at each specific location. The pre-drilling utility clearances will be performed as described under Section 4.3.1 (Utility Clearance).

4.4.1.1 Well Drilling

The 11 shallow and 8 intermediate wells will be installed in the upper aquifer. The shallow well will be screened across the water table (to a depth of about 15 to 20 feet bgs), and the intermediate wells will be screened at the base of the upper aquifer (to a depth of about 55 to 65 feet bgs). The borings for the upper aquifer wells will be advanced using HSA methods. Soil samples will be collected continuously to the target depth of the well, using split-spoon samplers. The samples will be logged and field screened using a PID. The soil descriptions, field measurements, samples collected, and other observations will be recorded in the field logbook. In addition, the field geologist will complete a drilling log form as the drilling progresses.

The three deep wells will be installed below the confining unit separating the upper and middle aquifers (to a depth of greater than 65 feet). The deep wells will be installed following completion of the adjacent intermediate wells such that the depth to the confining unit is known. The deep wells will be "double-cased" to prevent the potential for cross-contamination between the upper and middle aquifers. The uppermost zone (from ground surface to the confining layer) will be blind drilled (i.e., no sampling) using HSA or air rotary methods. The borehole diameter through the upper zone will be 10 inches, to allow installation of a six-inch diameter steel isolation casing. Prior to installing the casing, a 1-foot bentonite seal will be placed in the annulus at the bottom of the borehole and then

hydrated with potable water. The 6-inch diameter steel casing will be lowered inside the augers (or open borehole), seated into the clay layer and grouted. Then, drilling of the deep wells will be conducted through the permanent casing to a depth of approximately 15 feet below the bottom of the confining clay layer. A 2-inch monitoring well will then be installed such that the entire sensing zone (i.e., well screen and filter pack) is below the confining clay layer and within the middle aquifer. The soil cuttings will be logged and observations will be recorded in the field logbook, and a drilling log form will be completed.

4.4.1.2 Well Construction

The shallow, intermediate and deep wells will be constructed of 2-inch-diameter PVC casing and well screen materials. The casings and screens will have threaded, flush joints. The well screens will be 10 feet long and have a slot size opening of 0.01 inches (10-slot screen). All casings, screens, and fittings will be factory sealed or will be cleaned with high-pressure hot water before installation.

The well screens will be filter-packed with appropriately sized, graded, washed, and well-rounded siliceous sand. The filter pack will extend six inches below the base of the screen to a minimum of two feet above the screen. Two feet of clean fine sand (if depth permits) and a two-foot bentonite seal will be placed above the filter pack to inhibit migration of annular seal material into the filter pack. The depth of the filter pack will be determined using a weighted tape, rigid rod, or a small-diameter rigid tube. The remaining annular space will be filled to grade with a bentonite cement slurry grout mixture by tremie method. After allowing the grout to settle overnight, additional grout will be added to maintain grade.

Each well will be capped by a waterproof, keyed-alike locking cap. A protective-steel, flush-mounted "road box" outer casing will be installed around the riser pipe at the ground surface. The protective outer casing will be at least 12 inches in diameter, and will be set into a cement collar after the monitoring well grout seal has set up. A layer of sand (approximately six inches to one foot in thickness) will be placed at the base of the road box to allow for drainage of any water that does enter. The cement collar will be sloped away from the well to permit drainage. The well identification number will be steel-stamped onto the outer protective steel casing. The format of the Well Completion Diagram is in Appendix B.

4.4.1.3 Well Development

The new and existing monitoring wells will be developed by pumping the groundwater with an electric-powered submersible pump. Polyethylene tubing, connected to the pump with stainless-steel clamps, will be used. New tubing will be used for each well and will be disposed of after use. The submersible pump intake will be placed below the water level and lowered as the water level drops. The pump will be surged to facilitate the removal of fine sediments at the bottom of the well. Water will not be added to any well to aid in development, nor will any type of airlift technique be used. Measurements of water quality parameters will be recorded every three to five minutes (or at least twice during each consecutive well volume) during well development. The water quality parameters will include: pH, temperature, specific conductance, DO, ORP, and turbidity. The development water will be containerized in a portable polyethylene tank and transported to a central storage area. The containerized water will then be pumped to a larger bulk storage tank

along with other IDW water. The water in the storage tank will be sampled and disposed of at the local POTW (pending approval).

Well development will begin no sooner than 48 hours, but no later than seven days, after the concrete pads are in place. The development will proceed until either of the following conditions is met (as long as the sediment thickness remaining in the well is less than 5 percent of the screen length):

- 1. At least three well volumes (including the saturated filter material in the annulus) plus the volume of water added during the drilling process (if any) are removed from the well, and stabilization of water quality parameters has occurred (defined as less than 10 percent variance between the removal of two successive well volumes.
- 2. Five well volumes are purged, regardless of stabilization of the water quality parameters.

Development of the new wells will be conducted in accordance with SOP F.2. The well development data will be recorded on the Well Development Log in Appendix B.

4.4.1.4 Well Surveying

Following installation, all wells will be surveyed by a New Jersey-licensed surveyor for horizontal location and elevations. The vertical elevations will be surveyed to the nearest 0.01 foot, and the horizontal locations will be surveyed to within ±0.1 feet. The elevations will be referenced to the National Geodetic Vertical Datum (NGVD), and will be taken from a designated point on the riser pipe (chisel mark). The surveyor will complete the NJDEP Groundwater Monitoring Well Certification - Well Form B (included in Attachment B).

4.4.2 Groundwater Sampling

Upon completion and development, the wells will be sampled. Samples will be collected from the new wells (11 shallow, 8 intermediate and 3 deep), existing wells (9 shallow and 4 intermediate), and the City of Camden Well No. 7 (assuming access can be obtained). Two groundwater sampling events will be conducted as part of this RI.

4.4.2.1 Low-Flow Sampling of Monitoring Wells

Prior to purging and sampling, groundwater levels will be measured at each well to verify general groundwater flow directions (see Section 4.4.3 for additional details). The low-flow sampling method outlined in SOP F.4 will be used for purging and sampling the wells. Low-flow sampling minimizes the disturbance of sediment on the bottom or sides of the well, minimizes the concentration of suspended sediment in resulting well samples, allows the water quality parameters in the pump discharge water to stabilize more quickly, and reduces the quantity of purge water (IDW) to be containerized, treated and disposed. The low-flow sampling will be performed by lowering the pump to the desired depth in the well. For wells with screens longer than 10 feet, the pump may be positioned at any of the following: the portion of the screen of interest based on the results of logging the borehole; the most transmissive portion of the screened materials, or; as a default, the middle of the screened interval. The pump intake will be kept at least two feet above the bottom of the well to prevent disturbance and resuspension of any sediment or NAPL present at the

bottom of the well. The field geologist will record the depth to which the pump is lowered and the rationale used in selecting this depth.

The discharge water from the pump will be monitored inline for pH, temperature, turbidity, ORP, DO, and specific conductance. Pumping will be continued until the field parameters stabilize, as described in SOP F.4. Once the indicator parameters stabilize, the groundwater sample will be collected as described in SOP F.4. The appropriate sample bottles will be filled and preserved, as needed. If the stabilized turbidity levels exceed 10 NTUs a field-filtered sample will also be collected for metals analysis. The sampling details will be recorded on the Low Flow Sampling Log in Appendix B.

All discharge water from the pump will be transported to a temporary storage tank until it can be hauled off-site for treatment and disposal at a local POTW.

4.4.2.2 Sampling of the Municipal Well

The City of Camden's Well No. 7 will be sampled during the same time period as the monitoring wells, assuming that access can be obtained. The municipal well will be purged before a sample is collected (see SOP F.6 in Appendix A) to ensure that water representative of the formation is sampled and not the water in the well casing or pipes. The amount of purging necessary will be dependent on the operating status of the well (i.e., if it is currently in operation).

The port used to sample the well will be selected upon discussion with City personnel. The sample will be collected by opening the sample port valve, letting water purge from the valve area, and then filling the sample bottles.

4.4.2.3 Sampling Analyses

All groundwater samples will be analyzed for TCL VOCs, SVOCs, pesticides/PCBs, and for TAL unfiltered (total) metals. If turbidity levels after purging are greater than 10 NTUs, a filtered fraction for dissolved (total) metals analysis will also be collected. In addition, all monitoring well samples will be submitted for analysis of "natural attenuation parameters" (parameters selected from Table 2.3 of EPA's Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater, 1998). The natural attenuation parameters include: alkalinity, total suspended solids (TSS), total dissolved solids (TDS), hardness, iron (total and dissolved), ferrous iron, arsenic (dissolved), ammonia, total Kjeldahl nitrogen (TKN), nitrate, nitrite, calcium, potassium, manganese, phosphorus (total), sodium, chloride, sulfate, sulfide, methane, ethane, ethene, TOC, biological oxygen demand (BOD), chemical oxygen demand (COD), and carbon dioxide.

Also, it is assumed that one water sample, derived from the decontamination of equipment, well development and sampling, will be collected from the bulk water storage tank. The fate of the containerized water will be decided based on the sampling results and discussions with the City of Camden and EPA. The disposal of the wastewater will be conducted under Section 4.7.

4.4.2.4 Groundwater Field Parameter Measurements

The field parameters of pH, temperature, specific conductance, DO, ORP and turbidity will be measured while conducting the groundwater sampling (as described in Section 4.4.2.1 above). The procedures to perform those field analyses are described in SOP B.4.

4.4.3 Water Level Measurements

The water-level measurements will be collected synoptically to verify local groundwater flow directions and gradients. Water levels will be measured in all existing and new monitoring wells, the City of Camden wells (where accessible), and up to 4 monitoring wells on the Welsbach site (as requested by EPA). In addition, stage information from the Delaware River will be obtained from local sources (e.g., NOAA). It is assumed that the water level data will be collected during the two sampling events.

The depths-to-water readings will be obtained using a conductivity-based electronic water level measuring device, as described in SOP F.7. The electronic device emits an audible signal when the probe touches the water. The depth measurement will be made from a designated point on the innermost riser pipe.

In addition, the total depth will be measured in all monitoring wells. The well depth will be used to calculate the required purge volumes and assess the amount of solids present in the wells.

4.4.4 Tidal Influence Study

A tidal influence study will be conducted using the wells installed during the RI. The study will consist of installing pressure transducers and data loggers in 5 shallow wells, 5 intermediate wells, and 2 deep wells at the site for a 48-hour period, monitoring a downgradient sewer line, and obtaining stage data from the Delaware River and pumping well data from the City of Camden's Well No. 7 over the same period. The proposed locations for testing include the following:

- Shallow and intermediate wells in the two-well nest installed near SB80 (MW-17S/M)
- Shallow and intermediate wells in the two-well nest installed near SB106 (MW-19S/M)
- Shallow and intermediate wells in the two-well nest installed as replacement for MW7 (MW-15S/M)
- Shallow, intermediate and deep wells in the three-well nest installed as a replacement for MW3 (MW-14S/M/D)
- Shallow, intermediate and deep wells in the three-well nest south of the Comarco Building (MW-20S.M/D)

The data will be evaluated to determine if the water levels beneath the site are influenced by any off-site sources (i.e., pumping wells, tidal fluctuations in the Delaware River).

4.4.5 In-situ Hydraulic Testing

In-situ hydraulic testing (i.e., slug testing) will be performed at all new and existing well locations to determine the site-specific hydraulic conductivity of the aquifer. The tests will consist of monitoring the aquifer response to a sudden change in hydraulic head (increasing

and decreasing). The head change at each well will be induced by the emplacement of a physical "slug" into the water column (falling head test), and the removal of a physical "slug" from the water column (rising head test). Pressure transducers and data loggers will be used to measure the changes in water level over time during the testing.

Prior to testing the wells, the water-level will be measured to determine if the water level is above or within the screened interval of the well. If the water level is within or above the screened interval, a falling-head slug test followed by a rising head test will be performed. If the water level is below the screened interval, then two rising-head slug tests will be performed. The test procedures are described in SOP F.10.

The slug test procedures generally consist of:

- Measure the static water level in the well using an electronic water level indicator
- Lower the pressure transducer with attached cable to within about 2 feet of the bottom of the well
- Activate the data logger and check to see if the data logger/transducer are working correctly
- Start the data logger and rapidly insert the slug completely below the static water level for falling head tests (or remove the slug completely for a rising head test, following stabilization of the water level from insertion of the slug), so that the change in head is essentially instantaneous
- Intermittently measure the water levels with a water level-indicator noting the time of measurement in reference to the start of the test (this will serve as a backup to the data logger)
- Monitor water levels until the levels have stabilized (i.e., water levels are within \pm 0.2 feet of the static reference level, or within 80 percent of static level)
- Perform at least two tests at each location (as described above)
- Decontaminate the water level indicator and transducers by wiping first with methanol and then deionized water to prevent cross-contamination between wells
- Decontaminate the slug between successive wells using standard decontamination procedures

It should be noted that the displacement of water could also be performed using an inert gas (e.g., nitrogen). The use of an inert gas to depress the static water level in a well (rising head test) is limited to wells in which a sufficient volume of water can be displaced from the riser pipe without lowering the water level below the top of the screen. This method is preferred because contact between potentially contaminated well water and testing equipment is minimized. The use of a gas displacement method will be determined based on the water level data collected. The procedures for performing the nitrogen depression method are also presented in SOP F.10.

4.5 Conduct Geophysical Investigation

A detailed geophysical investigation is not proposed for this field effort, with the exception of surface geophysics for the sole purpose of utility clearance on private property (New Jersey One-Call will not clear utilities on private property unless there are major lines). A subcontractor who specializes in underground-utility identification will mark out underground utilities within a 10-foot radius around proposed geologic investigation points. It is anticipated that the subcontractor will use one or more geophysical methods including ground penetrating radar (GPR) and electromagnetics (EM).

4.6 Ecological Investigation

A CH2M HILL ecologist will conduct a site visit. The following activities will be performed to support the ecological investigation:

- Qualitatively observe the existing terrestrial habitats and wildlife present on the site
- Request identification of rare, threatened and endangered species in the site environs from the State of New Jersey and the U.S.: Fish and Wildlife Service

4.7 IDW Sampling

This task will include characterizing and disposing of the IDW in accordance with local, tate and federal regulations. The following types of IDW are anticipated from the investigation activities:

- Spent PPE, including clothing and sampling supplies
- Soil cuttings (containerized)
- Wastewater from well development, purging and decontamination activities (containerized)
- Sediment from the on-site wastewater storage tank

The spent PPE, after decontamination, will be treated as debris and will be placed in a ten cubic yard dumpster along with other Type 10 and 13 trash. The dumpsters will be emptied regularly (approximately every two weeks) during the course of the investigation. This waste will be disposed of at a non-hazardous facility according to 40 CFR. 268.45.

The soil cuttings generated from drilling and soil sampling during the field work will be placed into a tarped, labeled, sealed-gate roll-off container. One composite waste sample will be collected from each roll-off container. The sample(s) will be sent to a CH2M HILL-subcontracted laboratory to determine the RCRA disposal characteristics as required by NJAC 7:26G-6.2 and 40 CFR 261. It is anticipated that one composite soil samples will be collected and analyzed for TCLP VOCs, SVOCs, pesticide/PCBs, and metals.

In addition, an estimated 30,000 gallons of purge, development, and decontamination water will be generated over the course of the investigation. One water sample will collected for every 10,000 gallons of stored water (expected total of three samples), and the samples will be analyzed to determine disposal requirements. The water samples will be analyzed by a CH2M HILL-subcontracted laboratory for TCL VOCs, SVOCs, and pesticides/PCBs, and

TAL metals. Any additional disposal characterization parameters, as required, will be conducted by an independent laboratory subcontracted by CH2M HILL. If the containerized waters are contaminated to the extent that they cannot be accepted by the POTW for treatment and disposal, then these waters will be set aside for disposal at an RCRA-licensed treatment/disposal facility.

4.8 Demobilization

Upon conclusion of the field activities, all support facilities and equipment from the site will be demobilized. All equipment and tools will be properly decontaminated before they are demobilized from the area. No site restoration activities are anticipated other than what the drilling firm may be required to do at the sampling locations (i.e., asphalt patch).

Appendix A
Standard Operating Procedures for
Conducting Field Sampling Activities

Standard Operating Procedures for Conducting Field Activities

	STANDARD OPERATING PROCEDURES (SOPS)
SOP#	SOP NAME
A.1	Sample Documentation
A.3	Field Logbook Procedures
A.6	Sample Packing and Shipping
B.1	Photoionization Detector
B.2	Combustible Gas/Oxygen/Hydrogen Sulfide Monitor
B.3	Miniature Real-Time Aerosol Monitor
B.4	Multiprobe Water Quality Meter
B.6	Radiation Monitor
D.1	Equipment Decontamination
F.1	Monitoring Well Design and Construction
F.2	Monitoring Well Development
F.3	Collection of Water Samples with Bailers
F.4	Low-Flow Groundwater Sampling
F.6	Sampling of Public and Private Water Supply Wells
F.7	Water Level and Well-Depth Measurements
F.10	Hydraulic Testing - Slug Tests
F.12	Surface and Subsurface Soil Sampling
F.13	Borehole Abandonment
F.15	Procedures for Filtering Metals Samples
F.16	Direct-Push Soil Sample Collection
F.20	Collection of Soil Samples for VOC Analysis using EnCore™ Samplers
F.21	Sample Preservation

Appendix B Project Field Forms

Field Forms

Field Change Request Form

Field Parameter Form

Field Equipment Calibration Form

Well Development Log

Low Flow Sampling Log

Well Purging and Sampling Field Sheet

Groundwater Field Sample Data Record

Soil Boring Log

Well Completion Diagram (Unconsolidated)

NJDEP Groundwater Monitoring Well Certification - Well Form A (As-Built Certification)

NJDEP Groundwater Monitoring Well Certification - Well Form B

NJDEP Abandonment Form (Form DWR-020)

Appendix B
Geophysical Survey Report

Final Report
USEPA Response Action Contract # 68-W6-0036
Work Assignment #053-RICO-02MN
Martin Aaron Project
Solicitation #50021 for Utility Clearance Services
Enviroscan Reference Number 070115

Prepared For: CH2M HILL Prepared By: Enviroscan, Inc. December 20, 2001

December 20, 2001

Mr. Dave Nisula **CH2M Hill**1700 Market Street
Suite 1600
Philadelphia, PA 19103-3916

RE: U.S. EPA Response Action Contract No. 68-W6-0036

Work Assignment #053-RICO-02MN

Martin Aaron Project

Solicitation #50021 for Utility Clearance Services

Enviroscan Reference Number 070115

Dear Mr. Nisula:

Pursuant to acceptance of CH2M-HILL Solicitation No. 50021 for Utility Clearance Services, Enviroscan, Inc. conducted a geophysical survey of the above-referenced site between the dates of 12/05/01 and 12/07/01. This constituted the second mobilization of a survey begun on 08/21/01. The purpose of the survey was to trace all known utilities present within the remainder of the Martin Aaron survey area and locate underground metallic and non-metallic utilities and structures beneath each of 28 individual proposed boring locations. Seventeen boring locations were located within two fenced-in properties on the west side of Broadway Street (across the street from the first survey mobilization). Within the southern fenced-in area were two abandoned buildings and an asphalt parking/driveway area. The other fenced-in area (north of the two buildings) contained no structures, and the ground surface appeared to have been disturbed/excavated and graded. Additional boring locations were located across Broadway Street; specifically, four borings within a junkyard south of Everett Street (SO-210 to SO-213), and five borings in an alley adjoining Sixth Street (SO-401 to SO-404 and SO-202).

Methods

The survey was completed in two phases, differentiated by scanning procedures. The first phase consisted of scanning the entire Martin Aaron property to identify and trace both known utilities (where surface indicators were present), and unknown potential utilities and structures. The second survey phase consisted of scanning designated areas 10 feet in diameter and centered upon each individually marked sampling location (28). Within these areas, Enviroscan marked and recorded all identified linear and non-linear anomalies. If an anomaly was noted within the sample location, it was moved to a nearby location (still within the 10-foot diameter area) that was outside the anomalous region.

Both phases of the geophysical investigation were completed using standard and/or routinely accepted practices of the geophysical industry and equipment representing the best available technology. Equipment and methods used to conduct the survey are described below.

EM

The survey areas were scanned with a Fisher TW-6 pipe and cable locator and tracer. In pipe and cable search mode, the TW-6 is essentially a deep-sensing metal detector that detects highly electrically conductive materials by creating an electromagnetic field with a transmitting coil. The field strength is measured by a receiving coil at a fixed separation from the transmitter. As the instrument is swept along the ground surface, subsurface metallic bodies distort the transmitted field. The change in field strength is sensed by the receiver, setting off an audible alarm and/or causing deflection of an analog meter. The TW-6 can nominally detect a 2-inch metal pipe to a depth of 8 feet and a 10-inch metal pipe to a depth of 14 feet. In pipe and cable tracing mode, the TW-6 transmitter can be coupled directly (conductively) to exposed portions of a metallic pipe, cable, or wire or inductively to a subsurface metallic utility with known location and orientation. The transmitter remains stationary and energizes the utility to be traced with an 81.92-kilohertz signal that can be traced at the ground surface using the mobile TW-6 receiver.

In addition to the TW-6, Enviroscan employed an EM-61 metal detector manufactured by Geonics, Ltd. The EM-61 uses a rectangular coil to transmit 150 electromagnetic pulses per second into the ground at each measurement station. A second transmitter coil is used to narrowly focus the pulses, making the instrument less sensitive to overhead and/or nearby sources of electromagnetic interference such as buildings, fences, power lines, surficial debris, and atmospheric electromagnetic activity. During the off-time between transmitted pulses, a receiver coil measures the decay of transient electrical currents induced by the transmitted pulses. Electrical currents in moderately conductive earth materials (e.g. damp clays, mineralized or oxidized soils, etc.) dissipate rapidly, leaving the more prolonged currents due to buried metallic objects. The EM-61 measures the surficial electrical potential due to the prolonged subsurface currents, providing a digital read-out of the relative metallic content of the subsurface. Note that the EM-61 focusing coil minimizes, but does not entirely eliminate, the response from nearsurface metallic reinforcing or debris which would mask the presence of deeper metal from standard EM, magnetic, metal detector, or GPR instruments. In addition, if a metallic object at the surface is large enough, it may saturate the instrument, thus preventing any determination of subsurface conditions directly underneath the object.

The EM-61 is capable of detecting a single 55-gallon steel drum at a depth of 12 feet and more massive targets (e.g. USTs) to greater depths. Note that these detection depths are not affected by mineralized soils or ionic groundwater of the type that can severely limit GPR penetration.

Enviroscan collected EM readings at one-second intervals (at walking speed) along profiles spaced roughly ten feet apart across the site (see Figure 1). EM readings are indicated with a plus sign. At each measurement station, the top and bottom coil differential responses (in millivolts or mV) were digitally recorded using an Omnidata Polycorder. Survey location control was maintained using a backpack-mounted global positioning system (GPS) receiver manufactured by Trimble Pathfinder.

The survey areas were also scanned with a Radiodetection C.A.T. and Genny pipe and cable locator and tracer. In Power mode, the C.A.T. detects the 50/60 Hz energy signal present on most buried power cables and on other nearby cables or metallic pipes. In Radio mode, the C.A.T. detects buried conductors (cables or metallic pipes) as they re-transmit commercial broadcast radio energy. In Genny mode, the C.A.T. detects signal generated by the Genny transmitter. The Genny transmitter can be coupled directly (conductively) to exposed portions of a metallic pipe, cable, or wire or inductively to a subsurface metallic utility. The Genny transmitter can also be set to broadcast tracing signal over an extensive area – facilitating "blind" searches for undocumented utilities.

In order to properly combine the survey results with an AutoCAD map provided by the client, Enviroscan also mapped select base features with the GPS receiver. The GPS base features and EM data stations were differentially corrected relative to a continuously operating community base station in Trenton, NJ, with the resulting differential GPS (DGPS) positions having an accuracy of approximately three feet or better.

GPR

The survey areas were scanned with GPR to identify nonmetallic or metallic utilities/structures. GPR systems produce cross sectional images of subsurface features and layers by continuously emitting pulses of radar frequency energy from a scanning antenna as it is towed along a survey profile. The radar pulses are reflected by interfaces between materials with differing dielectric properties. The reflections return to the antenna and are printed on a strip chart recorder or displayed on a video monitor as a continuous cross section in real time. Since the electrical properties of metal are distinctly different from soil and backfill materials, metallic pipes and other structures produce dramatic and characteristic reflections. Fiberglass, plastic, concrete, and terra-cotta pipes and structures produce recognizable, but less dramatic reflections.

Scanning was performed using a GSSI SIR-2 GPR controller with a color display and internal hard drive, and a 500-megahertz scanning antenna.

MAG

The survey areas were scanned with a Fisher FX-3 MAG instrument which contains two elements that measure the difference in total strength of the earth's magnetic field between two fixed heights above the ground surface (i.e. the magnetic gradient). In the absence of artificial magnetic fields or buried ferromagnetic objects, the natural gradient of the earth's field is relatively constant. Where buried magnetic or ferromagnetic objects (e.g. magnetite or iron/steel respectively) are present, the gradient varies rapidly as the instrument is swept along the ground surface, triggering an audible alarm. The MAG instrument employed for this survey can nominally detect a 2-inch steel pipe to a depth of 4 feet, and a buried manhole cover to a depth of 10 feet.

Survey Results

Phase 1: Site-Wide Utility Survey

The information depicted in Figures 1 and 2 summarizes the results of the first phase of geophysical work, i.e. the search and tracing of any known or unknown utilities that could cross the Martin Aaron property and nearby areas.

A C.A.T. in both Power and Radio modes was used to delineate any sort of live power, gas, or water utilities that cross the Martin Aaron property. No power anomalies were detected across the entire survey area. Several radio anomalies were noted surrounding two buildings within the southern portion of the Martin Aaron site. Their limits were marked on the ground surface, the locations of which are shown in Figures 1 and 2. These anomalies did not terminate at any surfical utility manifestations; therefore, based upon the CAT-R results alone it is not clear what type of utilities they could be, or even whether they are utilities at all. In order to confirm the CAT markings and potentially resolve the type of utility, TW-6 was used in induction mode along the marked CAT anomalies. One line (shown in blue) to the east of the large building was traced to a water valve cover along Broadway Street. Two lines (shown in red) were traced to their apparent sources (what appeared to be small junction boxes) on the sides of buildings. It is not clear whether these apparent electric lines were active or not. Other CAT-R anomalies that could also be traced by the TW-6, but could not be traced to a definitive source, are marked in orange.

As the final portion of the Phase 1 utility survey, Enviroscan performed an EM-61 survey across all accessible portions of the Martin Aaron property, the results of which are shown in Figure 2. The two highest magnitude anomalies shown are reinforced concrete pads. The dashed contour line represents a boundary between normal background response and increasing subsurface metal. This contour line correlates well with subsurface features delineated by the CAT and TW-6 instruments.

Within the northern section of the survey area are several linear zones of increased metal content. They are marked with a dashed line (See Figure 2) and could represent buried metal piping or inactive utilities; however, note that these features were not detected by any instruments sensitive specifically to utilities. Adjacent to these linear anomalies are two large clusters that display apparently low levels of metal content (marked A and B). Borings SB-68 and SB-29 are located here, and though no utilities were detected using either the CAT or TW-6, caution should be exercised when drilling within these two zones, as well as any other areas determined to have a high metal concentration.

Phase 2: Individual Boring Clearance

As described above, 28 individual sample locations were cleared (in a 10-foot diameter surrounding each center point) area using a C.A.T in Power and Radio modes, a TW-6 in metal detection mode, an FX-3, and GPR.

Any anomalies detected were marked on the ground surface with spray paint, and their location measurements were recorded using a pull-tape and survey wheel. Those measurements were transferred to documentation sheets (copies of which are included as Appendix A) and an AutoCAD basemap (provided by the client, see Sheets 1-4 of 070115.dwg). Note that any sample locations present within an anomalous area were shifted to a "clear" spot within the 10-foot diameter area) and then marked on the ground surface with blue spray paint. The moved locations are also contained within the AutoCAD drawings and are listed in Table 1.

Limitations

The geophysical survey described above was completed using standard and/or routinely accepted practices of the geophysical industry and equipment representing the best available technology. Please also note that the survey data are based on site conditions at the time of the geophysical investigation. Enviroscan does not accept responsibility for survey limitations due to inherent technological limitations or unforeseen site-specific conditions. However, we make every effort to identify and notify the client of such limitations or conditions.

We have enjoyed and appreciated this opportunity to work with you. If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

Enviroscan, Inc

Michael A. Douglas, M.So. Geophysics Project Manager

Technical Review By:

Enviroscan, Inc.

Felicia Kegel Bechtel, M.Sc., P.G.

President

enc.: Figure 1: EM-61 Data Coverage

Figure 2: Utility Survey Summary

070115.dwg (Sheets 1-4): Boring Location information

Table 1: Relocated Boring Areas

Appendix A: Daily Field Logs and Notes of 28 Proposed Boring Locations (copies)

Diskette with AutoCAD drawing (.dwg format)

Table 1 Relocated Boring Areas

Boring Location	Moved (N/S)	Moved (E/W)
00.00	ALOUAL U	
SB-66	1' 0" North	
MW-21S	3' 0" South	2' 0" West
SO-206	3' 0" North	

Appendix A

Daily Field Logs and Notes of 28 Proposed Boring Locations

Appendix A

Daily Field Logs and Notes of 28 Proposed Boring Locations

-4.1) , 10.14 , 10.12

Project No.: 070115 Project Name: Martin Agroz Client: CHZMH.11 Site Location: Martin Agron Superfund Site Data: 12-06-01 Hours On Site: Personnel: MAD-TER Weather: PROPERTY OF STREET Geophysical Equipment GPR: GSSI Sir-2 Fisher TW-6 EM: C.A.T: EM: Fisher FX-3 MAG: THE RESERVE AND PERSONS ASSESSED. **Daily Summary** GPR Location: EM MAG Coverage (feet) Notes: performed western (relative to Stanning on entire Broadway propert sectorned locations TW-K south side inccessible unt. EveretA tomorrow

Project No.:	070115	Project Name:	Martin Agra	Client:	
Site Location	Martin A.	ron Saper-	and Site		
Dato: 12-0	7-01	Hours On Site	Martin Agreement Site		
Personnel: /	MAD- TE	3			
Weather: _ i	ondy				
Geophysical I					
	GSSI Sir-2				
EM:	Fisher TW-6	 			
EM:	C.A.T:		P		
MAG:	Fisher FX-3				
mad.	TISTICIT X-3		The state of the s	ماريس والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع و	
Daily Summar	у				
Location:	GPR	EM	MAG	Coverage (feet)	Notes:
	T				
4 location	5 - (50 210	150 213) 5	danced w/	GPR, TW-6,	+CAT
all we	re clear.			7	
	1				
A11 util+	Feature	s were GP	S'ed in for	antocad a	99 P.
	1)
10++ 140	site of	approx 11:3	3 b		
		111			
		<u> </u>			
······································	<u> </u>	 	 		
					······································
		<u> </u>		i	
· · · · · · · · · · · · · · · · · · ·					
		İ			
					······································
		<u> </u>			
	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·				
				<u> </u>	

any i loid riopers

Troject No	Z/Q113	Project Name:	Nart. 7 A.roz	Client: CHZ	М <u>Н. П</u>
Site Location:	Martin	faron Super	turd site	Client: CHZ	
Date: 12-6	05-01	Hours On Site:	1 後 フ	<u> </u>	
Personnel:	MAD + JE	R	:		
Weather:					
Geophysical E		Carrier Charles and Charles and Charles		AN ASSESSMENT OF THE SERVICE OF THE	and the second
GPR:	GSSI Sir-2				• • • • • • • • • • • • • • • • • • • •
EM:	Fisher TW-6			· '	· · · · · · · · · · · · · · · · · · ·
EM:	C.A.T:		<u> </u>		
MAG:	Fisher FX-3				
TOTAL PROPERTY OF THE PARTY OF		TENNER TOTAL	and the same of the same of		
Daily Summary	/				
Location:	GPR	EM	MAG	Coverage (feet)	Notes:
CAT GPR	TW-6 se	ening pert	braned out	17 locations	West
0'		7 1			
et Broad	way street	5 EM-61	to be we	Tomorrow	
•	/ -	l .	1		
- Utility S	canning a	Entire we	Stern Prope	ties perte	red using
7					7
CATYT	V-6		t		
	_				
-					
		·	·	<u> </u>	
					
					
					
					
					
	-				
					
					

Project N	o.: <u></u>	770115			Proje	ct Nam	ie: M	112.	Anron	•	
Location:	507	112			Clien	t: (2 HZ	14.71			
Date:	12-07-				Time						
		T				y Doot	.				
GPR.:							h: ~ 7	0-20	105		
		Range:	6015		File N	o.; ———					
rW-6:	, .	Setting:	6.5				-				
C.A.T.:		Setting:	(()	®	G			 			
•X·3:		Setting:	5_								
								,			
				1	t t		1	i I	1	1	N->
	L			; ; ;) 		ļ 		!	!	
	1		1				1	1	1	 	
		1 1	1	1			1	; ; !	1	3	, ,
			1	· 1					, 		1
			!	 		1	} !	1	1	1	1
							-				
		i i	1	i l			1	i i	i I		
					. 			·			
		1 1	1	. 1			I I	1	} 	: 1	
	·] i	<u> </u>	 		<u> </u>	1	l J] 	i i	
	l		1	!	,	ľ	1	1	•	1	·
	1	 ! !		!			1	; ;	, 	; ;	
		r	 ا	م ــــــــــــــــــــــــــــــــــــ				r	r	; 1	·
		1 I 2 i	1	1 1			t I	i I	\$ 1	t !	
		<u></u>					<u></u>	<u></u>			
			1	1			[} 1	ί 	1	; ;	
		; 	·				, 	, 	, , ,	; ;	
			E I	1			! !	i I	1 	; 1	
			1	1			! ! 	! ! 	! !	1	
				1		1	 		, 		
		i	i	i 1	.	1	1	i i	,) :		
				- 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			****		<u> </u>	
otes GP					_			ponet rat	107)		
Fx-	3-00	bege, 1	78.5	970~0	lies	deter	red				
		nomili						· · · · · · ·			1
		-20 921				d					
(La	cationi	3 clear	tou	drilli	na						

. Markita

Location					Client	: CH	HMS	. 1/			
ate:	12-00-				Time:						
SPR.:		Antenna					1: ~	ZO-7	2505		
		Range:	6013		ile No	·.:					
TW-6:		Setting:		<u> </u>							
C.A.T.:		Setting:		(B)	G					· · · · · · · ·	
X·3:	 	Setting:	5								
		- - 	 			,					- 1
	1	1 . 1	1	1	•		1	1	J	1	1 N-
		1 1	1	! !		L	 	!	1	!	_
	- 1	1 1	; ;	i			! !		 	1	1
	.]	1 1	. j	i			1	i	i I	1	<u> </u>
				۱۲			!				-
		1 1	1	; ;	İ] {	!	1 !	1	
	 						<u></u>				-
	1	1 1	1	i I			; !	1 t	i I]	
							<u></u>				.]
		1 1	1	1			1	1	1	!	
		1 1	I I	1			; ;	;	! !	;	1
		1 1	, ! !	, !			! !	i	i	1	
	İ	f f	1	t I	ľ		1	1	1	:	
	ļ	, L				!	r		1	1	
		1 1	1	1		·] 	1	1	i i	
		i i	; ;	; ;		į		i I	i) 	
		1 1	1	1) }		!	1	1	
	ļ	L		! ! 				- 			
		! !	; ; !	i		; ;		i	i I	i	
		i i	;	1		; !		1	1	1	
laka C	PR		1	1	0 (-		1	1		1	
	PR-10							ponet?	71.07)		
		, ,	_			~ 160	10				
	0-6-10.							<u></u>			
	AT P/R					2					
(2)	ocation	is clear	for a	Prillin	덕						
					7						
				····							

110,000 110					,-	 -			revor		
Location:					Client	: CI	12MH	.11			
Date: 1	2-06-0	21			Time:						· · · · · ·
GPR.:		Antenna:			Appro	x. Dept	h:				· · · · · · · · · · · · · · · · · · ·
ina	ccess.ble	Range:			File No).:					
TW-6:		Setting:	6.5		·······						
C.A.T.:		Setting:	Ø	8	.G	,					
FX-3:		Setting:	5		· · · · · · · · · · · · · · · · · · ·			u			
		1 - 1						1	1	.	1
		; ; ; ;	! !	; ;			1	1	} !]]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	}	ļļ-	 -				- -	- 			
		1 1 3 1	; !	! !			1 !	1] 	1	
	ļ	i 	<u>-</u>					·			
]	· I	1			1	1	1	I	
				 				; 		<u></u>	
] 	1	1			1	1	i I	:	
•		 						 	. – – – –		
		t t	i	i I			1 1	1	1		
	1	! !	l !	l I		<u></u>] 	! :	1	:	
	j	i - 1	i - I	1		•	; } !	; } !	i I		<i>:</i>
	i	i 1	i I	1		, i	 	- 	1		
	,	1									
	, 	i 1	i i	1		i		 	t :		
	م ا	1	p	1					;		
	1	; ;	1	1	1	; ;			; ; } ;		
•						!			r		
	1	1	; ;	1) 	! !		;		
ł	·			j		. – – – ; i	i		<u>-</u>		
	 	1 1) 	1 1 2		} !]] 1	1	;		
L		···	<u>·</u>				<u> </u>				
lotes // 0	020	nalies	lator te	l 1	3. -	برا.	strum	10+	locati	ים	
is is		70 dr	11	<u>\</u>	7						
	टाख	13 CM									
								· · ·			<u> </u>
											
											

Project No.: 070	0115			Project N	Name: 🖊	Artin	Aaro	27			
Location: SOYOY				Client: CHZMH.11							
Date: 12-06-	01			Time:							
GPR .: inccessible	Antenna:			Approx. D	epth:						
	Range:			File No.:							
TW-6:	Setting:	6,5			<u> </u>						
C.A.T.:	Setting: Setting:	(b)	€	G							
FX-3:	Setting.	<u>5</u>	····								
				,			1	-,	1		
	1 1	1		:] ;	!	; ;	i i	$N\rightarrow$		
	·			; 							
	1 1	1			1	1	1	1			
	! ! !					! 		1			
		1	1		1	i	; ;	1			
	1 1	į.	İ		1	1	j I	l I			
			!								
	; ; ;	t t	i 1		i	i i	1				
	Ļ	·	r 1		;		· !				
	1 . 1	f I	i J		1 1	f i	1 -	:			
	1 1	- !	1		1	1	1	:			
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1	1		3	1	; }				
	, 						·				
	l ! l l	1	1	,	1	1	! 1	;			
	 	, 	1 1		 	 	1	1			
		į	1		1	1	1				
	1) 	i I		!	i i	i				
ļ			, 					-[]			
	1	1	1) !	1	; !	1			
			· - - ¦			· - -					
	1	1	1		1	1	1	;			
<u> </u>		<u> </u>	1		<u> </u>	1					
		•	,								
Notes 10 ano	malies	detecte.	<u>ال</u>	by any	instru	ment,	loca	tion			
is clear	10 de	~:		//-							
							-				
									·—		
		· · · · · · · · · · · · · · · · · · ·									

Client: Date: 12-07-0 Time:	
Antenna: 500mHz Approx. Depth: 275-30, S Range: 60, s File No.: TW-6: Setting: 6.5 C.A.T.: Setting: Ø Ø G EX-3: Setting: 5	
Range: 60-73 File No.: TW-6: Setting: 6.5 C.A.T.: Setting: Ø Ø G FX-3: Setting: 5	
FW-6: Setting: 6.5 C.A.T.: Setting: 6 G FX-3: Setting: 5	
FW-6: Setting: 6.5 C.A.T.: Setting: 6 G Setting: 5	
Setting: 5	
	√ -5
	-
 -	

ocation: 50	270115			Project	Name:	Mart	77/	gar o	7	
	210			Client: CHZMH11						
Date: 12-0	07-01		 	Time:		<u> </u>				· · · · · · · · · · · · · · · · · · ·
GPR.:	Antenna	500	MHZ	Approx.	Depth:∕≂	307	503	·····		
	Range:	60n		File No.:						
ſW·6:	Setting:	6, 5 P	5	-						
C.A.T.:	Setting:		(R)	G						
X-3:	Setting:	5	. <u></u>		<u>-</u>					
<u> </u>	<u> </u>		,						·	- ;
)]			1 1 1	 		! !	; ; ;	N-
					i	<u>-</u> -		; 	- <u>-</u>	
	; ;	1	; ;] 	. !		! !	1	1 .
								, 	- <u>-</u>	_]
	1 1	1	1		1	1	1) 	1	
		; 	ا ا م				! ! ,		_ -	_
	i I	j i	; ;		; ;	;	; ;		1	
			! ! 		! ! 	!	 		 	
	, i	1	1 1		; }	! !	1 1		1 1	
	l I L 1	1			l 1				1] .
	!!!	!	1	1	1	i i]
j	1 1	1	1 1 1		; ; t	1	1		;	1
 	,	۱							, ,	
	; i] }		} 	 	1		1	
	·					'			· 	
	1 1	1 \$! }		1	1	1		1	
ļ		<u>-</u>					!		 	
	i i	i 1	1		;	i	1		1	
ļ	ļļ-									
	; ;	i			;	1	1		1 1	l
	1 1	1	1		t t	<u> </u>	<u> </u>		!	ł

Project No.: O-			-	Project Name: Martin Agron Client: CHZMH.II						
Date: 17-06-01				Time	<u> </u>	··········				
GPR.:	Antenna	1: 50c	MA	Appro	x. Dept	h:~70	-J0	75		
	Range:			File N					.	
TW-6:	Setting:	5	<u> </u>							
C.A.T.:	Setting:		®	G		·				
X-3:	Setting:									•
			i i	1		!		1.	i	$\neg \land \mathcal{N} \neg$
	1 1		! } '	} !) 	!	1	1	7 N-
	- -	;		ŕ		- -			· ·	-1 CAT
	1 1	,	!	l I	1	1	1	.1 J	! !	
	-	ا ا		<u> </u>	.					
	1 1	1		! !		1	1	l t	1	ı
	1 1	 		; ; =				,		
	1 1	; ;		! !		1		i	!	
		i		!	-	1	i	i	i 1	
	,		· ·			<u>ر</u>			-	
	; ! ! ;	1	1			1 1	1	1	i :	
	1 1	1			<u> </u>	1	-	1	:	_
	1 1	l l	1			1 1	1	t I	; }	İ
L	1 1	 	1		L	! !	1	 		J.
		/	1+	- 5	>	1	7		1/	•
		G.	AT	- 1	_ /	: /				
 	// 	/	-/ -	<i>;</i> -	/	/ : !	- - /	ئے ۔ ۔ مُ ۔ کم ا		-
	- I	- +	-/+			L	1		- -	
						·				-
		1	1) 	!	1	i	
	; ; ; 	, 					·			_[
	i I	i	1		1		i	1	1	
	1	1	1		1		1	1	1	
				•						_
otes GTRo		line 1	ر المار ال		•					
TW-6-1					0				:	
CAT-P, R	- 70	979m	alies .	latec	tel		<u> </u>			
FX-3-10										
1										
						·	_			

Project No.: O	70115	Project Name: Mrtin Amron				
ocation: SB	62	Client: CHZ MHII				
)ate: 12-06-0) l	Time:				
GPR.:	Antenna: 500mH	Approx. Depth: ~30 ~5				
	Range: 60 as	File No.:				
W-6:	Setting: 5					
.A.T.:	Setting: P R) G				
X-3:	Setting: 5					
ľ	1 1 1	$ \cdot $ $ \cdot $ $ \cdot $				
L						
	1 1 1					
	1 1 1					
	1 1 1					
[
	;					
 						
	1 1 1					
	1 1 1					
	1 1 1					
		·				
	1 1 1					
L	1 1 1 1					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
<u> </u>		the second of the second of the second of the second of the second of the second of the second of the second of				
2-6	Saturated (lots of s					
•	R - 70 970male					
GPR-0	o annalies lete	ected				
Borny loc	ation appear char	no completation of TW-6 growny w/				
	- instrument					
	_:.					

Project No.: 070115	Project Name: Martin Aron
Location: SB-69	Client: CHZMH.11
Date: \$ 12-06-61	Time:

GPR.:	Antenna: 500 MHz Approx. Depth: 3075
	Range: 60 ₁₅ File No.:
TW-6:	Setting: 5
C.A.T.:	Setting: P R G
FX-3:	Setting: 5

Notes GPR- pointlife prabole setlector, de above
TW6-20 420-41:es detected
(AT-R- no gramates detected
CAT 70 410 mores dericita

Project No.: 070		Project Name: Marin Auron						
Location: SB_6&	Client: CHZMH/							
Date: 12-06-01		Time:						
GPR.:	Antenna: 500 MHz	Approx. Depth: 3075						
	Range: 60 75	File No.:						
TW-6:	Setting: 6							
C.A.T.:	Setting: (P) (R)	G						
FX-3:	Setting: 5			=	•			
			24	ation !		N->		
Notes	Coxy		<u> </u>	i				
	ear grounds proved	in industr	07 2-	le (see	a bour.			
	grander detected	e motel	letection	n mode				
CAT- R- See	e. Above (-nerr +	romply mar	lerd)					
3PR-70 6	anomalies detecte	4						
B Boring Ma	ved I foot ,	0-14						
								

Project No.: Arry Arron Location: SB-72 Date: 12-06-01			Project Name: 070(15 Client: CH2MH,						
Date: 12-06-0) · · · · · · · · · · · · · · · · · · ·		Time:						
GPR.:	Antenna:	500 MHZ	Approx.	Depth:	30,	5			
	Range: 60	715	File No.						
TW-6:	Setting: 6								
C.A.T.:	_ 	6	G						
FX-3:	Setting:	5							
			T			1	т .		7
		1 1 1 1		1 1		1 	1	1 1 1	N
1) -1-1-1		·				<u></u>			
1 1/.1		1 1	.	1	. •	} ;	1	1	
1 K/- 4-						: 	, 	·	
1 / /	f 1 f 1	1 1		i t	,	t 1	1	; !]
		1 1			 	! ! 	! !	1	
	, . , . , .	1 1		,	; ;		1 		
	1 1	1 1		1	! !		i 1	1 1	
[- r	. !		 !	ر ا		. 		
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	; ;) 	1		! }		
1 1/1	1 1	1 1	*	1	1		1		
/	1 1	1 1 t t		1	1	!		<u>!</u>	
 - ; -:	-				h	<u>-</u>			
	1 1	i i		1	1	1		1	
				· <mark>-</mark> -	إ	!			
		1 1		; }	1	1			
(- /	·			. - <mark>-</mark> -					
CKT-Y	1 1	1 1		1 !	1	1	!		
1 //	·						;		
	1 1	1 1		1	!	1	1 1		
1 1/1	1 1 1 · 1	1 1			<u> </u>	} }	1		
ates GPP-no	montles d	letected							
	o granging	,							
			-2.1						
	no gromali					,		, ,	710 6
	re above (1.00	/						K-ced	7W-6 300
FX-3-3	my po-ath	te target	3 202	o large	, or	1.200			
·				· · · · · · · · · · · · · · · · · · ·					

Project No.: 020115					Project Name: Marchin Aaron						
Location:			B-8	5	Client	CH	MHI	//			
Date: 12	-06-01				Time:						
GPR.:		Antenna	500 1	uHZ	Approx	. Depth	ո։ 40	275			
		Range:	60 15		File No	.:					
TW-6:		Setting:					•	****			
C.A.T.:		Setting:		⅌	G						
FX-3:		Setting:	5								
		,									
			1		1 1 1		!	1	1 1 1	; ! !	$\mathcal{N} \rightarrow$
		//- /- -							 !	·	
		/					ļ				
	(ا ا ا م			1 !		 	; ; 	
		*	i 1 1	1 1			 	; ; ;	; ; ;	i i	
	 	7		; ; ;			; ; ;	- 		:	
		70	1	1			1	1	1		•
		$\overline{\mathcal{A}}$. -				! 	; 		; 	
			1 1 1	1 1		1	 	1	; ; !	1 1 1	
		-/	 ! !	<mark>-</mark>			! !	·	 		
	 	A	 					; 	; 	; 	
			1 1 1	} } }		; ; ;		1 1 1	1 ! !	1	
		~/				; !			 ! !		•
			I I	1		1		<u>i</u>	1	;	
Notes Fx-	3 s->1/	pointh	ke yer	gets,	つつつと	1-ge	or 1	v 76a/	· .		
		92024 1.6	,		•						
CAT	-P-00	oronal	لم ره.	atect	ed						
		see at									
GP	2- 500	2 glow	-795	<u> </u>							

Project No.: 070115	Project Name: Martin Avon
Location: 50-706	Client: C HZMH, 11
Date: 17-06-01	Time:

GPR.:	Antenna: 500 MHz Approx. Depth: 3015	
	Range: 6023 File No.: 3223	
TW-6:	Setting: C	
C.A.T.:	Setting: P (R) G	
FX-3:	Setting: 5	

Notes C4		
oil grownles see along map		
FX-3 -0 granily detected		
(*) Boring location moved 3 feet	10rth	
		· · · · · · · · · · · · · · · · · · ·

Project No.: 070115	Project Name: Martin Acron
Location: MW-215	Client: CHZMH.//
Date: 17-05-01	Time:

GPR.:	Antenna: 500 m/g Approx. Depth: 30 ns
	Range: 60,5 File No.:
TW-6:	Setting: 5
C.A.T.:	Setting: © & G
FX-3:	Setting: 5

Notes GP	R- see abou	R			
TW-6	- חם מחסחון	es detect	tel		
-	P,R - 10 97				
Fx3	-10 anomi	es detect	red		
100,77	er moved ?	"o" b) /	, 3'0" S		
				<u>-,</u>	

Project No.:-07	10101-070115	Project Name: Martin Acron								
Location: So-	202	Client: CHZ MHill	1 1 To 1							
Date: 17-06-	01	Time:								
GPR.: 10	Antenna:	Approx. Depth:								
GPR.: GPR (incressible)	Range:	File No.:								
TW-6:	Setting: 6									
C.A.T.:	Setting: (P)	€D G								

Setting:

FX-3:

Notes	FY-3-small point la	he trigets none	1000 or 1.700	·
	(AT-P- 70 670-47			
•	CAT-R-10 grun	ales detected		
	GPR-inaccessible			

302267

Project No.: 2	70/15	Project Name: Martin Agron Client: Cff7 MH1/1									
l											
Date: 17 - 06	-01	Time:									
GPR .: 1272	Antenna: Range:	Approx. Depth: File No.:									
TW-6:	Setting: 6	1.10.170									
C.A.T.:		5 G									
FX-3:	Setting: 5										
		· · · · · · · · · · · · · · · · · · ·									
ļ											
	1 1 1										
L	1 1 1										
) ! ! } ! !										
ļ											
	1 1 1 1 1 1										
	1 1 1	 									
j	t 1 t										
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;										
	1 1: 1 1 1 1:	1 (A) - 18									
	3+										
¥-6-	·										
4 -	+ - -										
		;									
l	1 1 1	1 1 1 1									
		_									
Notes TW-6-	3-t-inted (due	to concide pad									
FX-3-	no aromales det	ected									
CAT -F	7-10 anonales	letected .									
2 IT P	- Se above m-										
<u> </u>	- 20 9300 29										

Project No.:		Projec	t Name:	Matin	Auron	
	0-402		: CHZM	H.//	·	
Date: F 12	-06-01	Time:				
GPR.: 1018	Antenna:		k. Depth:			
	Range:	File No).; 			
TW-6:	Setting: 6	(5)				
C.A.T.:	Setting:	® G				
FX-3:	Setting: 5					
		·			, , , ,	7 —
		1				17/
1				<u></u>		1///
	Ţ			<u></u>		1 1/_
-(0/	, , , , , , , , , , , , , , , , , , ,				 	1 / 0
enforced	1 1		1	! !	1 1	
concrete		r			·	
Tar	, , , , , , , , , , , , , , , , , , ,	1 1	j	i		
			<u>-</u>			
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	; ; ; i)) 	7 7 1 6	
	1 1	1 1	t 1	i i	1 : 1 i	,
	1 1			1		
	1 1 1		1	1	:	
ļ					·	
	i i i		1	1	, . r	
ļ						
l	1 1 1	1	1 1	1 1	!	
	1 1 1			; 	; 	
İ	1 1 1	,	i			
			i	1 1		
ļ	[[
			 	1 1		
<u> </u>			· · · · · · · · · · · · · · · · · · ·			
2		. / ,	1 4			
Notes FA-3	- 70 000m	<u></u>	cted	· · · · · · · · · · · · · · · · · · ·		
TW6-	59t-19ted (=	ic above)	Collesport	S 70 (outete pa	1
CAT	P. R no 400	nulies det	ected			
	inaccessible					
			·····			

Project N	o.: O	70115			Proje	ct Na	ame:	An	P01/	Mart	tin S	5,+2
Location:					Client	 t:	CH	ZM	14,11			
	2-05-				Time:							
		Antons			Annro		nth:	70				
GPR.:					Appro			001	<u>s</u>			
		t	601	<u>S</u>	File No	o.:						
TW-6:		Setting		<i>7</i> 51	G							
C.A.T.: FX-3:		Setting Setting		R	<u> </u>				<u> </u>			
ΓΛ·3:		Setting	<u>· </u>		·····		- -					
	<u></u>		· · · · ·		1				Т		-;	7 N->
	-	1	1	1	1		1		1	1	1	1,"
	L	 	 	1	! 	.L	1		!	 	1	_
		l]	1	1		1		1		1 1	
	İ	; ;	<u>.</u>	, !	, 1		į		1	, !	i	
			<u></u>	, 	<u></u>				, 			-
		: !	, , ,]	 		1		!	!	i	1
		·	; 			<u> </u>	j		i 	- 		-1
		1	! !	 	 		1		1	1	1	1
	}	1	t 1]]	1	}	1		l I	1	1	
			r	r 1					г -	, ,	-,	-
		1 1	1 1	; ;			1		! !	1	:	
		1	<u> </u>		· 	k —	1		<u> </u>	1	;	- :
	ł	1 1	: I	1) j		l I	1	1	
	j	1 1		 			 		 - 	1	: 	
		l ,		1						1)	
		1 1	1	1			1		i	1	!	
	 			·		- - -						-
		; ;	i	!			j	į		i	ŀ	Ì
	L	; ; 	, , ,	, , ,				;		, 	, 	.
	İ	. , l !	i	; ;	İ		į	į		! !	i	
			i	i			i	í]	1	
		<u>-</u>	 1		·					ر ا		· <u> </u>
	1 :	1 1	1 1	1 1	1		1	i i		! }	1	
		1	1							<u></u>	<u> </u>	į
								^				
Notes GP	R-No	9701	nales	deter	ted o) D. 28	5 ^ 4 1 C	e et	dist	whel	50 i	Lin record
)-6-1											
•												
	T-P/F											·,
FX-	·3 - 5×	29/1 M	etalle	point	target	15	1016	1.0	e or	1.700		
				1	/_			/				
-Bc	ring 1	s clea	r to	dei	/							
	$\rightarrow 4$				· · · · · · · · · · · · · · · · · · ·			• •				

rruject is				·····	Client: CH7M Hill Time: Approx. Depth: 3015							
ocation:	50-30	7										
Date: 1-	<u> 2-05-</u>	01		-,								
GPR.:		Antenna	: 500	\ IL_								
ar iv		Range:			File No			15		<u></u>		
 W-6:		ł.		>	1116 140		···					
A.T.:		Setting: Setting:		(R)	G				 	· 		
X-3:		Setting:						,				
												
	<u> </u>	7		1		T .	-			:	7 <i>ルー</i>	
		1 1	;	 	1 1		i i	i	i	; ;		
	}				, 	}						
			;		; ;		1	; !	1	1 1		
							<u> </u>		, 			
	1	1 1	!	i	1		i t	i	i	1		
		1 1	1	1 1	:		1 f	f f	1	t t		
	T			· 1				ļ	, -L	,		
		! (! !	<i>i</i> 1	; !				! !	!	!		
	} -	, <u>-</u>		·		;		·				
		 ! !	; !	i		;		, 		:		
		i ·	<u> </u>	<u> </u>		i		<u>i</u>	<u>i</u>	<u>:</u>	·•	
			1	1				1	1	; 1	·	
	1 :] [1	1		1		1	1	:		
			ا ۔ ۔ ۔ .									
		1	1	!		! !		; !	!	1		
			م'					 :	<u></u>			
		1	i	i		i		, 	1 :			
		 -						i 			•	
	;	1 1	1 1	1 1		1		! !	; ;			
		i !) 		1		! !				
		: F =	1	1		1	i					
		1	i i	l 1	ļ	1	i	i	1			
												
/ Di	3 - 11-		1	0			1	0_6	ایای	es -1	in reco	
						DESCA	ce ex	M121	w 3×2^	30 1 1	TO LECO	
•	-6-10											
CA^{-}	I-P/R	-10 g	7000	1.45	detect	ed in	e.15	er.m	ode			
FX-	3 - 5-	all met	·//c	Do-1+	target:	5, 101	e 100	ge or	1.700			
•					_/_			<u> </u>				
-Bo	ring is	clear	10	dril								
												

cation:			<u></u>			Client: CHZMH.11							
e:	12-09				Time								
R.:		Antenn	a: 500	nHz	Appro	x. Dept	h: 30.	15					
		Range:	600	S	File N	o.:							
-6:		Setting	: 5										
.T.:		Setting		(R)	G		-						
3:		Setting	: 5							·			
		_				_					7 N-		
		1) 1	; ;	J]		1	;	7 /V ⁻		
		i	1	! !	i i		i	į	i •	i i	1		
				!					-r				
	1		; ;) 			1	 	1			
	 		r;							- <u>-</u>			
	1	1	i i		! !		1	1	1	1 1			
		 					- -						
	1	! ! ! !] 	1] !		3	1	1	1			
		, , , ,,		- - ;		L	·	; 	_	. <u>.</u> 			
		1 1	; ;	1			1	t I	i i	:	·		
) :	1 1	1	!]	1	1	1	:			
		1	1				1		1	:	,		
		I	1				, !	1	1				
				· i			<u></u>	·	. -	·			
		1	1	1 1			1 3	1	t I	:			
								ļ	٠				
		1	1	1			! !	; !	1				
		, , ,									•		
	i	; ;	i	;			! !	<u>i</u>	1				
	1	l t	1	1			1	t	1	ì			
		L		r !					!				
) 	} !) 			; !	1		<u> </u>			

Notes GPR - No gramales detected, appearance of disturbed so. I in record

TW-6-10 gramales detected

CAT-P/R-10 gramales detected in entrer mode

FX-3 - Small metallic point targets, none large or linear

-Boring is clear to drill

Location:					Client: CHZMHIII								
Date:	5B2				Time:		2/4/	7111					
		,											
GPR.:		Antenna					1: 30,	15					
		Range:		<u>.</u>	File No.:								
TW-6:		Setting:						<u>-</u>					
C.A.T.:		Setting:		<u>(B)</u>	G	····							
FX-3:		Setting:	<u>s</u>			~	·						
					r					·	1 N/=		
			!		} }	٠	1	1	1	1	1		
			; 		; 					; 			
		1 1	1	į	i i		1	i I	i	! !			
		1 1	1	! ! 			! !) 	1			
		1 1	1	!			3	1	1	1			
		; ; 1	1	1			i t	i I	1	1			
				ب ا			; !						
		; ; ;	1	1) 	1	1	! !			
		;;- 	 -	;			; I	· -	·;				
		l 1 : :	3	1) 1	1 .	1	: :			
			1		- *	·	l i	1	1		* *		
		! !	1	! !		•	; ; ,	1	1				
	;	<u>i</u> -		<u>-</u>				i 	, 				
		1	j I	1 1		. : !) 	1	1 i				
) !	 	! !		 	 	1	 				
		i 1	; ;	;) 	; ; ; ;	1			
		i	i I	i I		i		Î I	i i				
	1	p -				!		 !	i i				
		1 1 1	1 1	} } !		1		t 1	, ! } : ; :				
	 		·	. ــــــــــــــــــــــــــــــــــــ		<u>-</u>		r!	ř	[
		1	1	!		:	,	; }	,	- 1			
	<u> </u>	 -		·									
	וג פו			0.	L. #		ſ		.d.1	e1	\		
lotes GF						22856	rue ex	d121	W 04.Y	<u>00.1</u>			
•	0-6-10												
CA	T-P/R	-00 0	rome	1.25	detect	ed i	eits	er.m	ode				
FX-	-3 - 5-	all met	4/c	De-1+	target:	, 10	10/10	ge or	1.700				
					_/	<u>′</u>		<u>/</u>					
-B	oring 1	clear	to	dril									
		·											
						····							

		<u> </u>						107	14191	.,	
Location:	SB 7	7			Clien	t: C	HZM	H, []			
Date: 12	-05-0	1 .			Time:						
GPR.:		Antenn	a: 🖘	n 11_	Appro	x. Dept	h: 30,				
<u> </u>		Range:			File No			7 3			
TW-6:		Setting:	5								
C.A.T.:		Setting:	(P)	(F)	G						
FX-3:		Setting:	5								
		i	:	ī	1		l	i		i	
	1	1 1	.	1	1		I I	i	1	1 1	
	}			·	<u></u>						
		! !	! !	1	1			1	i i]	
	L			!	! ! 		, , 	;	; ;	; ;	·
	İ	; ;		į.	, !		į	į	1	1	
	1	, , , ,		1	, !		1	į	1	, !	
		, ;		ر مر ا			- -		- 	·	
		; ; ;		! i)		1	1	ì	1	
		<u>-</u>		1				·	·	<u> </u>	
		1		t i			1	t I	1	:	·
		1		l l'			1	1	1	:	
		:	1	i i			1	1	ı		
		1	 	1 1			1	1	1	! !	
	h							<u></u>	<u></u>		
		;	, 1	1				1	1		
	L	<u>i</u>					<u></u>	; 	; 	; 	·
		i	i	į			!	; !	1	1	
		1	1	1			1	1	1 1	1 1	
	<u> </u>		r	· 1				L	l	[
	!	1 1	1 1	† 3			1 E] }	1 : 1 :		
i	<u></u>						<u></u>		 		
				1			, !	; ;			
	<u>'</u>	i	<u> </u>	i							
							_				
							ince of	- dest	wbed	50:	in record
70	-6-10	170	م ا ا	s det	ected						
CA-	C-P/R	-00	9700	a 1.23	detec	ted,	2 e.T4	er. m	ode		:
	3 - 5-										
				1	7	/		/			. —

ocation:	$-\mathcal{U}_{\mathcal{L}}$	011)			Client: CHZMHill							
Location: (Date: 12	1-02 0R-6		 		Time:		12/11	14.11				
						D44						
GPR.:					Approx		1: 30,	5			·	
TN C.		Range:		<u>s</u>	File No	. <u>:</u> 						
W-6: CA.T.:		Setting:		(R)	G						· ·······	
X-3:		Setting:					· · · · · · · · · · · · · · · · · · ·			•		
											A / ~	
		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		; ; !	I I				i		7 // -	
				! !	; ; ;		; ; ;	1	į	i !		
		, , ,		,				·				
			.5	, ,				i	; ;	!	1	
ſ		·	 !	!					-r	-r		
		1	1	. 1			1 1 1	1	i i	:		
		 I	, 1	، ا			 !	ļ				
) 1] 	; !	1) [) 	} 	1		
f				; ;			<u></u>	, 	·	;		
	1	I I	1	1 1			l I	1	1	:	·	
-		<u>-</u>		<u>!</u>	*			! 1	<u> </u>	<u>:</u> :		
))	1 !	, 1 1	1		, i		, ; ;	i I	!		
}								! 	<u></u>	: 		
	1	1	1	1		1] i	! !	l t		
ļ.	<u>-</u>		<u>i</u> -	<u>-</u>		i			·			
	1	1	1	.1		1			1	1		
ļ.						 						
	i	t t	i 1	1		;	i))			
1.		<u> </u>	<u> </u>] 		<u>-</u>	! !) 			
	; ;	i 1	i	; ;		1	, i					
L	 	1	1	1		! !	! !	1	i 1			
							~					
tes GPR	- No	97079	1.25	detect	ted, of	728554	ce of	dist	whel	50:	in ceco	
7W-6						1						
•	,			_	detect	ed in	e. 15	er.m	ode		•	
					targets			•				
					/ / /				THE STATE OF THE S			
-Borin	14 13	clear	70	dcil	/							
	4											
												

Location: 5030	<u></u>	Client: CHZ-	M H, 11	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Date: 12-05-		Time:		
GPR.:		Approx. Depth: 7	D15	
	Range: 6015	File No.:		
W-6:	Setting: 5			
.A.T.:	Setting: P R	G		
X-3:	Setting: 5			
				N/
	1 1 1		1 1	
		; ;		
	1 1 1			
	1 1 1		1 1	
	1 1 1			
	, , , , , , , , , , , , , , , , , , ,		1	
ļ	, , , , , , , , , , , , , , , , , , , ,			
			1 1 1	
	. 			
			1 1 :	
	1 1 1		1 1 :	
	, , , , , , , , , , , , , , , , , , ,			
	1 1 1 1	1	1 1 I	1
	1			
	, , , , , ,) 1 1	
			1 1 1	
]
			3 J t t t t t t t t t t	
 				
1	1 1	1		
	. 0	. •	0.4	,
tes GPR - No	anomales deter	ted, opperance	at disturbed	Soilin reco
+W-6-1	o gromalies dete	ected		
CAT-P/R	-no gromales	detected in ei	Ther mode	
/		targets, none		
FX-5 - 3,	All Frence Carri			

Location:		0114 3			Client	· · · · · ·	HZMI	111	<u> </u>		ブ と
Date: 12	-05-0)]			Time:			7,1			
GPR.:		Antenna	: 5000	Hz	Approx	. Depth	: 30,	·5			
		Range:			File No						
ſW-6:		Setting:	5.							· · · · · · · · · · · · · · · · · · ·	
D.A.T.:		Setting:	<u> </u>	(R)	G						
X-3:		Setting:	5		· · · · · · · · · · · · · · · · · · ·	·					
		 								:	\mathcal{N}
	1	; ; ;	i		, . !)] [1	!	1	,
				!						- <u>-</u>	
			i	, ! !			1 1	;	i		-
							, 	·			
		, <u>I</u> l t	1 1	1 1 1		!	• 1	i l	1		
	ļ	L 		ا				<u> </u>	- 	<u></u>	
]	;] 	l		l	! !	! }		
			 	·		· [- -	<u> </u>	. .		
		: :	!	1		1		1 !	1		
		<u>;</u>				1		! !	<u> </u>		*,*
		1	t t	1) 		t 1	1 1	;	
		! ! 	·	1) 	 		
		1 1	i	; ;			İ		1 :		
) 	1 .	! !		1	! ! ,	! !	i i		
		, 1 1	i	; ;	Ì	;	; ; !		, . ; i		
	L ;		1	1 1			!		i		
		1	1	1		i 1	: :		; ; } 		
			l 1	1		, 	!	 	1		
		1		- - 			;	: :	1		
j	1	! !	1	1		1	! !) 	† 1		
otes GPI	R-No	97079	1.25 d	etect	ed of	7785541	ue et	dista	rbel	50:1	ع م
+w						1					
•	r-P/R		_		_	ed in	e. T 5.	er - m	ode		•
	/										1
	3 - Sm	7.7.5		u-cr_	- de la	1			I - IF B'		
-Bo	در م	clear	to 1	dr://							
·											

} 							- 14		17.0	·/ , -	7/271
Location:	SB7	8			Clien	: C	12M	4.11		· .) ,
Date: 12-	-05-61	<u> </u>			Time:						
GPR.:		Antenn	ia: 🔊	on Hz			h: 30,	,5			
		Range:		5	File No	o.:					
TW-6:		Setting									
C.A.T.:		Setting		(F)	G					· ······	
FX-3:		Setting	<u>: 5</u>							•	
											7 N-
])))	1	; ; ;		 	1	; ; ;	; ! !	7 // -
	}	ļ	r	·	·	.					-
	1	1	1	1	1		1 .	1	1	; ;	
	L	!	! !	 	; !	L		.) 	} 1	
] !	!						!	
		1	I } •	1) !		1		t t	1	•
	 	;			, 						
	l	; ;	!	J I	1 1		<u>;</u>	1	i]	
		! 		r		L			·		
		! !		l .) 		! !	1 	1 .	:	
		: :		i	; ,		1	1	1	:	
		1		1			1	1	1	;	
		1	! !	l 1			1	! !	1	!	
	 -		!	!					<u></u>		
		! !	i i] [į	- ,	1 	; ;	1	1	
		, , ,	! ! ,	ا ا 			: 	! 	! 	· 	
i	,	•	j	6	i		•		•	•	

Notes GPR - No anomalies detected, appearance of disturbed so: I in record

TW-6-10 anomalies detected

CAT-P/R-10 anomalies detected in either mode

FX-3 - Small metallic point targets, none large or linear

-Boring is clear to drill

ate:	12-05	B-79 -01			Time:	CHZ	· · · / / /				
	1000										
PR.:		Antenr	ia: 500	nH=	Approx	Depth:	30,	S			
			600		File No					*	
 W-6:		Setting		>				··· -			<u> </u>
A.T.:		Setting		B	G						
(⋅3:		Setting									
			<u> </u>								
					Ţ	 		1		-,	7 N
		1			1			!	1	1	'
	L	, , 			!] 	; ;	.
		į			, ;	! !			1		l
		i .	; ;			i		į	;	i	-
	 		, ,			<u>-</u>		; 	. j	-r	1
•		i I J	i i	i	;	į		l J	1	1	
			 i	· i					·	·	
		i	; ; ;	1		1		1	1	1	
	j	1 1	1	1		1		 	1	! i	1
				1				l L	, , , , , ,	:	
		1 1	1	1		1		<i>!</i> !	I I	:	
		1 1	:	- 1	*	:			<u> </u>	:	
	- [1 1	t L	1 1	1	!		!	1	+ 	•
		! ! ! !		, ,					, , 	! : 	
		, . , .				1	į		, ;	, !	
			1	i		į	į		! !	l	
	h	1	. حرا حات حات . ا	-			i			r	
		1 1	1	1		1	!		l !		
,	ļ			¦							
	1	1 1	1	1		1	1		} }		
	[! ! ! !) 		!	! ! 		 		
			3	•	1	i	į				
		<u> </u>	į	į		į	į	j	İ		

)

And the second

)

Location	n: MW-	225			Clien	: c1	MS	411			
Date:	12-05				Time:						
GPR.:		Antenna	: 500,	nHz			h: 30	915			
		Range:		>	File No).: 					
TW-6:		Setting:		<i>7</i> 6\		<u></u>					
C.A.T.: FX-3:		Setting: Setting:	<u> </u>	®	G						
[7.3.		Setting.	<u> </u>								
		, ,			r					-;	7 N->
		1 1 1 1]] ! !		1	1	1 1	1	
			 -		, 	·				-}	-
		1 1 1 1 1 1	; ;	; !			; ; . ; ;	1	1	1 1	
		 		₁						1	•
]	1) 			1 1 1	 	1 1 1	1 1 1,	
		i i					-				
		, , , , , , , , , , , , , , , , , , ,	; ;	į			; !	; ;	; ;	i i	
		, , ,	 ا	ا ۔۔۔۔						:	
			; !	. i			! !	1 1	1 1	:	
		;			 ,	(!	i	!	:	1
			! !	1) 	, ,	1 1	; ;	
			- ا				<u></u>]	, !	
		t t	1	1		*	! !	; []	: ! }	; ! !	
							r			, !	
		1 1 1	; }	! !	[; !	i I t	l L	
							i	·			
		1 1 1	! !	! !		ļ		} 	} 		
	ļ	 I		j.				.; !			
		1 1 1	1 1 1	1	-			; !	1 1 1 1 1 1		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	•	<u> </u>		······································		<u></u>	<u> </u>		
Notes 6	PR - No	<u> ۵۰۵</u> ۰۰۹	1.25 0	leter	ed, o	Porte	nce o	Eda	turbed	50:	in record
	W-6-10										
	AT-P/R	- 10 9	romal	.43	detec	ted i	, eit	400-	mode		
E)	<u>-3 - 5-7</u>	all met	elfc s	>0.1t	tacget	5, 10	16 /	rge a	1.700		
					/						
~ 15	oring 13	clear		dcil			<u> </u>				·
	7										
											

Appendix C
Well Construction Diagrams

SHEET 1 OF 1

CLIENT:		EPA Regi	ion 2			WELL NUMB	ER / PERMIT:_	MA-	MW12S	/ 31-6208	32
PROJEC	T NUMBER:	164453				LOCATION:	Martin Aaron Prop	er			
PROJEC	T NAME: EPA-Mar	tin Aaron				FINISHED WE	LL DEPTH:	15.4	ft bgs		
SURFAC	E ELEVATION:	6.91	feet msl			INNER CASIN	IG ELEVATION	(S):	6.74 ft msl		
DRILLIN	G CONTRACTOR:	Unit-Tech	3			FOREMAN:		CH2N	A GEOLOGIS	ST: Wojciech	Winkler
DRILLIN	G METHOD:	Hollow St	em Auger			DRILLING EC	UIPMENT: CM	E 85 Rig	4 1/4in I,D./8ir	O.D. HSA	
START:	10/30/2001 9:00:0	0 AM	FINISH: _	10/30/2001 11:00:00	AM	NORTHING:	398434.287	feet	EASTING:	318492.002	feet
DEPTH BELOW GRADE (FT)	WELL CO	NSTRU	CTION D	IAGRAM			DES	SCRIP	TION		

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2		WELL NUMBER / PERMIT: MA-MW12M / 31-62085
PROJECT NUMBER:	164453		LOCATION: Martin Aaron Proper
PROJECT NAME: EPA-	Martin Aaron		FINISHED WELL DEPTH: 48.1 ft bgs
SURFACE ELEVATION:_	6.56 feet msl		INNER CASING ELEVATION(S): 6.22 ft msl
DRILLING CONTRACTOR	R: Unit-Tech		FOREMAN: CH2M GEOLOGIST: Mark Eshbaugh
DRILLING METHOD:	Hollow Stem Auger		DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
START: 11/05/2001 11:	20:00 AM FINISH:	11/05/2001 2:30:00 PM	NORTHING: 398423.444 feet EASTING: 318484.55 feet
GRADE (FT) ORANGE (FT)	CONSTRUCTION I	DIAGRAM	DESCRIPTION
0 -		0	−0-0.67 ft bgs: Concrete Pad, 3ft x 3ft

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2		WELL NUMBI	ER / PERMIT:_	MA-MW13S	/ 31-620	83
PROJECT NUMBER:	164453		LOCATION:	Martin Aaron Prop	per		
PROJECT NAME: EPA-M	lartin Aaron		_ FINISHED WE	LL DEPTH:	16.6 ft bgs		
SURFACE ELEVATION:	7.86 feet ms		INNER CASIN	G ELEVATION	(S): 7.66 ft msl		
DRILLING CONTRACTOR	: Unit-Tech		FOREMAN:		CH2M GEOLOGIS	ST: Wojciech	Winkler
DRILLING METHOD:	Hollow Stem Auger		DRILLING EQ	UIPMENT: CM	E 85 Rig 4 1/4in I.D./8ir	O.D. HSA	
START: 10/30/2001 12:4	10:00 PM FINISH:	10/30/2001 3:00:00 PM	NORTHING:	398438.594	feet EASTING:	318808.35	feet
WELLO WADE (FT)	ONSTRUCTION	DIAGRAM		DES	SCRIPTION		

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

DeCaro, David/PHL

From:

DeCaro, David/PHL

Sent:

March 07, 2003 8:28 AM

To:

Zarlinski, Stephen/PHL; Holcomb, Bernard/PHL; Clayton, Michael/PHL

Subject: RE: DEGT-AGT NY Proposal

See my responses below and the attached revised cost sheet.

----Original Message-----

From: Zarlinski, Stephen/PHL Sent: March 06, 2003 5:32 PM

To: DeCaro, David/PHL; Holcomb, Bernard/PHL; Clayton, Michael/PHL

Subject: FW: DEGT-AGT NY Proposal

I have made several comments in "comment mode" on the attached DEGT file. Just a few other comments;

1. Terry Doyles original email referenced 3 projects (1 NJ/2 NY) and specifically broke out the inspection from the Hudson River ground work? Do these need to be broken out better? I will look to Bernie since he knows HIS client.

[DD] Spoke with Bernie, this is correct as one project.

- 2. Secondly, I will approve the cost --- with a BUT --- you need to revisit (and send me revised) for the following:
 - a. Your expense marks are 0% except on subcontractors which is 5%.[DD] Completed
- b. Therefore, your expenses are too high (if you want to be conservative revenue wise --- this is ok --- however, this is going to make your margin be too high from what you will actually deliver.[DD] Completed
- c. You need to update your "internal" mark and service centers to reflect 2003 rates --- see Clayton's spreadsheet --- for example service center charges changed, and direct labor mark up is not 35% but 37.5%...[DD] Completed FYI Project Pricing Tool from Intranet has not been updated for 2003 rates
- 3. Do you need to insert any Goodwin information?[DD] No, CH2M HILL will coordinate the initial SHPO filing and sub Goodwin if the results require additional work.

Address these changes. If Bernie is ok, Please consider this my PD approval.

-----Original Message----From: DeCaro, David/PHL
Sent: March 06, 2003 2:46 PM

To: Zarlinski, Stephen/PHL; Holcomb, Bernard/PHL; Clayton, Michael/PHL

Subject: DEGT-AGT NY Proposal

Gentleman:

Attached is the proposal and cost Table.

Please review and let me know any issues or questions. I will provide a 374A shortly.

DD

David R. De Caro

Project Scientist CH2M HILL 1700 Market Street, Suite 1600 Philadelphia, PA 19103-3916 Tel: 215/563-4244 ext 441

EFax: 267/675-4512 Mobile: 484/467-3345

E-Mail: ddecaro@ch2m.com

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2	WELL NUMBER / PERMIT: MA-MW145 / 31-62519
PROJECT NUMBER:	164453	LOCATION: Martin Aaron Proper
PROJECT NAME: EPA-I	Martin Aaron	FINISHED WELL DEPTH: 20 ft bgs
SURFACE ELEVATION:	6.60 feet msl	INNER CASING ELEVATION(S): 6.26 ft msl
DRILLING CONTRACTOR	R: Unit-Tech	FOREMAN: CH2M GEOLOGIST: Winkler/Rech
DRILLING METHOD:	Hollow Stem Auger	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in 1.D./8in O.D. HSA
START: 01/10/2002 9:1	5:00 AM FINISH:	NORTHING: 398382,355 feet EASTING: 318512,705 feet
GRADE (T)	CONSTRUCTION DIAGRAM	DESCRIPTION

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2		WELL NUMB	ER / PERMIT:	MA-MW15S	/ 31-6208	0_
PROJECT NUMBER:	164453		LOCATION: _	Martin Aaron Prop	er		
PROJECT NAME: EPA-Ma	artin Aaron		FINISHED WE	LL DEPTH:	16.8 ft bgs		
SURFACE ELEVATION:	7.67 feet msl		INNER CASIN	IG ELEVATION	(S): 7.03 ft msl		_
DRILLING CONTRACTOR:	Unit-Tech		FOREMAN:		CH2M GEOLOGIS	ST: Wojciech V	Vinkle
DRILLING METHOD:	Hollow Stem Auger		DRILLING EC	UIPMENT: CM	E 85 Rig 4 1/4in I.D./8ir	n O.D. HSA	
START: 10/29/2001 11:00	0:00 AM FINISH:	10/29/2001 12:00:00 P	M NORTHING:	398518.442	feet EASTING:	318524.696	feel

NOTES: Coordinates are New Jersey State Plane-NAD83.
Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface ags = above ground surface

302292

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

- 9

- 10

- 11

13

15

WELL CONSTRUCTION LOG

3.5-16.5 ft bgs: Filter Pack, 9-50 lb bags of #1 sand and 1-50 lb bag of #00 sand $\,$

6.5-16.5 ft bgs: 2-in ID PVC Schedule 40 screen, 0.01-in

					SHEET 1 OF 1
CLIENT: EP	A Region 2		WELL NUMBER / PERM	IIT: MA-MW16S	/ 31-62081
PROJECT NUMBER: 164	1453		LOCATION: Martin Aaror	Proper	
PROJECT NAME: EPA-Martin A	Aaron		_ FINISHED WELL DEPTH	l: 16.5 ft bgs	
SURFACE ELEVATION: 7.6	9 feet msl		INNER CASING ELEVA	TION(S): 7.53 ft ms	
DRILLING CONTRACTOR: Un	it-Tech		FOREMAN:	CH2M GEOLOGI	ST: Wojciech Winkler
DRILLING METHOD: Ho	llow Stem Auger		DRILLING EQUIPMENT	CME 85 Rig 4 1/4in I.D./8i	n O.D. H SA
START: 10/29/2001 2:30:00 PI	M FINISH: 1	0/29/2201 5:00:00 PM	NORTHING: 398718.7	127 feet EASTING:	318788.316 feet
GRADE (FT) METT CONS	TRUCTION DIA	AGRAM		DESCRIPTION	
- 1 - 2 - 3 - 4 - 5 - 6 - 7		1 - 2 - 3 - 4 - 5 7 7	 O-0.5 ft bgs: Concrete O-1 ft bgs: Flush mou 0.5-3.5 ft bgs: Annula lbs) 0.5-6.5 ft bgs: 2-in ID 8-In Borehole Diamete 	nt, 6-in steel protectiver Seal, 1/2 bag of bear PVC Schedule 40 ca	ntonite pellets (25

9

10

11

12

13

14

15

16

SHEET 1 OF 1

CLIENT:		EPA Reg	gion 2			WELL NUMB	ER / PERMIT:_	MA-	MW17S	/ 31-6217	2
PROJEC	T NUMBER:	164453				LOCATION:	Corner of Everett	and Broa	adway		
PROJEC	T NAME: EPA-Ma	rtin Aaron				FINISHED WE	LL DEPTH:	18 ft	bgs		<u>.</u>
SURFAC	E ELEVATION:	7.20	feet msl			INNER CASIN	G ELEVATION	I(S):	7.00 ft msl		
DRILLIN	G CONTRACTOR:	Unit-Tec	:h			FOREMAN: _		CH2	M GEOLOGIS	T: Wojciech	Vinkler
DRILLING METHOD: Hollow Stem Auger					DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA						
START:	11/07/2001 7:30:	00 AM	_ FINISH: _	11/01/2001 9:00:00	AM	NORTHING:	398778.192	feet	EASTING:	318422.174	feet
DEPTH BELOW GRADE (FT)	WELL-CC	ONSTRU	JCTION E	DIAGRAM			DE	SCRIF	PTION		

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2	WELL NUMBER / PERMIT: MA-MW17M / 31-62173
PROJECT NUMBER:	164453	LOCATION: Corner of Broadway and Everett Streets
PROJECT NAME: EPA-Ma	rtin Aaron	FINISHED WELL DEPTH: 51.82 ft bgs
SURFACE ELEVATION:	7.33 feet msl	INNER CASING ELEVATION(S): 7.02 ft msl
DRILLING CONTRACTOR:	Unit-Tech	FOREMAN: CH2M GEOLOGIST: Mark Eshbaugh
DRILLING METHOD:	Hollow Stem Auger	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
START: 11/08/2001 7:15:	00 AM FINISH: 11/08/2001 11:30:00	AM NORTHING: 398779.556 feet EASTING: 318434.699 feet
DE (FT)	ONICTOLICTION: DIACDAM	DECODIPTION

50

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

50

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:		EPA Region 2		WELL NUME	BER / PERMIT:	MA-MW18S	/ 31-62177		
PROJEC	T NUMBER:	164453		LOCATION:	Everett Street				
PROJEC	T NAME: EPA-Mar	tin Aaron		FINISHED W	ELL DEPTH:	17.8 ft bgs			
SURFAC	E ELEVATION:	7.44 feet ms		INNER CASII	NG ELEVATION	(S): 7.16 ft msl			
DRILLIN	G CONTRACTOR:	Unit-Tech		FOREMAN:		_CH2M GEOLOGIS	ST: Wojciech Wi	nkler_	
DRILLING METHOD: Hollow Stem Auger				DRILLING E	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA				
START:	11/06/2001 7:35:0	00 AM FINISH:	11/05/2001 10:30:00	AM NORTHING:	398827.975	feet_EASTING:	318590.588	feet	
DEPTH BELOW GRADE (FT)	WELL CO	NSTRUCTION	DIAGRAM		DES	SCRIPTION			

NOTES: Coordinates are New Jersey State Plane-NAD83. Elevation datum is NAVD88. msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

CLIENT:		EPA Reg	ion 2		WELL NUMB	ER / PERMIT:_	MA-	MW18M	/ 31-6217	8
PROJEC	T NUMBER:	164453			LOCATION:	Everett Street				
PROJEC	T NAME: EPA-Mar	rtin Aaron			FINISHED WI	ELL DEPTH:	41.7	7 ft bgs		
SURFAC	E ELEVATION:	7.62	feet msl		INNER CASI	NG ELEVATION	I(S) <u>:</u>	7.40 ft msł		
DRILLIN	G CONTRACTOR:	Unit-Tecl	h		FOREMAN:		CH2	M GEOLOGIS	ST: Wojciech	Vinkler
DRILLING METHOD: Hollow Stem Auger				DRILLING E	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in 1.D./8in O.D. HSA					
START:	11/05/2001 6:30:0	MA 00	FINISH: _	11/09/2001 9:30:00 A	M NORTHING:	398829.866	feet	_EASTING:	318601.912	feet
WELL CONSTRUCTION DIAGRAM WELL CONSTRUCTION DIAGRAM					DE	SCRIP	PTION			

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msi = mean sea level bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83. Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface ags = above ground surface

SHEET 1 OF 1

	3,22 3,
CLIENT: EPA Region 2	WELL NUMBER / PERMIT: MA-MW19R / 31-63457
PROJECT NUMBER: 164453	LOCATION: Intersection of Sixth and Everett Streets
PROJECT NAME: EPA-Martin Aaron	FINISHED WELL DEPTH: 113 ft bgs
SURFACE ELEVATION: 6.66 feet msl	INNER CASING ELEVATION(S): 6.46 ft msl
DRILLING CONTRACTOR:	
DRILLING METHOD:	DRILLING EQUIPMENT:
START: FINISH:	NORTHING: 398847.102 feet EASTING: 318898.361 feet
WELL CONSTRUCTION DIAGE WELL CONSTRUCTION DIAGE	RAM DESCRIPTION
0	
	0-0.5 ft bgs: Concrete Pad, 3ft x 3ft
	
	0-1 ft bgs: Flush mount, 6-in steel protective casing
├- 10 	10
	0.5-98 ft bgs: Annular Backfill, bentonite-cement grout
-	
20	20 - 0.5-103 ft bgs: 2-in ID PVC Schedule 40 casing
├	1
├- 30 	30 —
	1
-	-
40	40 -
	-
	G la Parahala Diameter
	6-In Borehole Diameter
- 50 ₩	50
60	60 -
	+
70	70
	4
- 😸 😸	
80	80 -
├	4
]
-	
⊢ 90	90 —
├	4
t <u> </u>	98-100 ft bgs: Annular Seal, granular bentonite

- 100 -

110

slotted

NOTES: Coordinates are New Jersey State Plane-NAD83.
Elevation datum is NAVD88.

100

110

msl = mean sea level

-100-113 ft bgs: Filter Pack - 7-50 lb bags of #1 sand and 1-50 lb bag of #00 sand

103-113 ft bgs: 2-in ID PVC Schedule 40 screen, 0.01-in

bgs = below ground surface

SHEET 1 OF 1

18

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

18

msl = mean sea level bgs = below ground surface

SHEET 1 OF

										SHEET 1 0	/F 1
CLIENT:		EPA Regi	ion 2			WELL NUMBE	R / PERMIT:	MA-I	WW20M	31-6217	5
PROJEC	T NUMBER:	164453				LOCATION: S	ixth Street and J	ackson			
PROJEC [*]	T NAME: EPA-Mar	tin Aaron				FINISHED WEL	L DEPTH:	48.51	ft bgs		
SURFACI	E ELEVATION:	6.93	feet msl			INNER CASING	G ELEVATION	l(S):	6.67 ft msl		
DRILLING	CONTRACTOR:	Unit-Tech)			FOREMAN:		CH2M	GEOLOGIS	T: Wojciech V	Vinkler
DRILLING	S METHOD:	Hollow St	em Auger			DRILLING EQU	JIPMENT: CM	E 85 Rig	4 1/4in 1.D./8in	O.D. HSA	
START:	11/13/2001 7:00:0	00 AM	FINISH: _	11/13/2001 12:00	0:00 PM	NORTHING:	398174.443	feet	EASTING:	318875.777	feet
DEPTH BELOW GRADE (FT)	WELL CO	NSTRU	CTION D	IAGRAM			DES	SCRIP	TION		
Γο -	<u>[:</u>			Ω	7-	0-0.5 ft bgs:					

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

-108-110 ft bgs: Annular Seal, granular bentonite

-110-123 ft bgs: Filter Pack, 6-50 lb bags of #1 sand

113-123 ft bgs: 2-in ID PVC Schedule 40 screen, 0.01-in

SHEET 1 OF 1

110

120

slotted

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

110

120

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

140

NOTES: Coordinates are New Jersey State Plane-NAD83. Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

		SHEET 1 OF 1
CLIENT:	EPA Region 2	WELL NUMBER / PERMIT: MA-MW21S / 31-62522
	164453	LOCATION: South Jersey Port
PROJECT NAME: EPA-Mari		FINISHED WELL DEPTH: 21 ft bgs
SURFACE ELEVATION:	6.47 feet msl	INNER CASING ELEVATION(S): 5.97 ft msl
DRILLING CONTRACTOR:	Unit-Tech	FOREMAN: CH2M GEOLOGIST: Winkler/Rech
DRILLING METHOD:	Hollow Stem Auger	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
START: 01/02/2002 12:45:	00 PM FINISH:	NORTHING: 398392.191 feet EASTING: 317912.704 feet
GRADE (FT) GRADE (FT) GRADE (FT)	NSTRUCTION DIAGRAM	DESCRIPTION
F 0 -	0	- 0-0.5 ft bgs: Concrete Pad, 3ft x 3ft
F-1		- 0-1 ft bgs: Flush mount, 6-in steel protective casing
	7 =	 0.5-8 ft bgs: Annular Backfill, 3-50 lb bags of cement and 1-50 lb bag of bentonite
- 3 - 4	3 -	- 0.5-11 ft bgs: 2-in ID PVC Schedule 40 casing
5	5 -	
- 6	6 -	6-In Borehole Diameter
7	7 -	
8	8 -	
- 9	9	— 8-9 ft bgs: Annular Seal, 1-50 lb bag of bentonite chips
10	10	 9-21 ft bgs: Filter Pack, 3-50 lb bags of #1 sand and 1-50 lb bag of #00 sand
- - 11	11 -	- 11-21 ft bgs: 2-in ID PVC Schedule 40 screen, 0.01-in slotted
12	12	The English Proposition of Scientific States
- - 13	13	
14	14 -	
15	15 —	
16	16	
17	17	
— 18 -	18 —	
— 19 -	19 —	
20	20	
L ₂₁	21	

NOTES: Coordinates are New Jersey State Plane-NAD83. Elevation datum is NAVD88.

msl = mean sea level

bgs = below ground surface

SHEET 1 OF 1

CLIENT:	EPA Region 2	WELL NUMBER / PERMIT: MA-MW22S / 31-62523				
PROJECT NUMBER:	164453	LOCATION: South Jersey Port				
PROJECT NAME: EPA-M	lartin Aaron	FINISHED WELL DEPTH: 21 ft bgs				
SURFACE ELEVATION:	7.29 feet msl	INNER CASING ELEVATION(S): 6.89 ft msl				
DRILLING CONTRACTOR	: Unit-Tech	FOREMAN: CH2M GEOLOGIST: Winkler/Rech				
DRILLING METHOD:	Hollow Stem Auger	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA				
START:	FINISH:	NORTHING: 398276.023 feet EASTING: 318308.884 feet				
OEPTH BELOW GRADE (FT)	ONSTRUCTION DIAGRAM	DESCRIPTION				

NOTES: Coordinates are New Jersey State Plane-NAD83.

Elevation datum is NAVD88.

msl = mean sea level bgs = below ground surface ags = above ground surface

Appendix D

Tidal Survey Graphs/Slug Test Graphs

Martin Aaron: Tidal Survey Baseline In Delaware River

Martin Aaron: MW-8S Tidal Survey

Martin Aaron: MW-14R Tidal Survey

Martin Aaron: MW-14D Tidal Survey

Martin Aaron: MW-15S Tidal Survey

Martin Aaron: MW18D Tidal Survey

Martin Aaron: MW-19S Tidal Survey

Martin Aaron: MW-19R Tidal Survey

Martin Aaron: MW-20S Tidal Survey

Martin Aaron: MW-20R Tidal Survey

Martin Aaron: MW-20D Tidal Survey

Martin Aaron: MW-21S Tidal Survey

ISOAQX (C) v8.10 FILE C:\HYDRO\Slug Tests\MW20M_F01.bin

302383

~_ï,

Appendix E
Surveyors Form B's

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62085

This number must be permanently affixed to the

well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 09.0"

Latitude (one-tenth of a second):

North 39° 55' 32.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.22

Owners Well Number (As shown on the application

or plans):

MW 12M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Facility:

Name of Permittee: Martin Aaron, Inc. Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62082

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.9"

Latitude (one-tenth of a second):

North 39° 55' 32.3"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.74

Owners Well Number (As shown on the application

or plans):

MW 12S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62086

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.8"

Latitude (one-tenth of a second):

North 39° 55' 32.5"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.33

Owners Well Number (As shown on the application

or plans):

MW 13M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62083

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.9"

Latitude (one-tenth of a second):

North 39° 55' 32.4"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.66

Owners Well Number (As shown on the application

or plans):

MW 13S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION CERTIFICATION

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62521

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.3"

Latitude (one-tenth of a second):

North 39° 55' 31.8"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.15'

Owners Well Number (As shown on the application

or plans):

MW 14D

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc. Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62520

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.4"

Latitude (one-tenth of a second):

North 39° 55' 31.8"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.18

Owners Well Number (As shown on the application

or plans):

MW 14R

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62519

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.7"

Latitude (one-tenth of a second):

North 39° 55' 31.8"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.26'

Owners Well Number (As shown on the application

or plans):

MW 14S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEY OR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62084

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.3"

Latitude (one-tenth of a second):

North 39° 55' 33.1"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.92'

Owners Well Number (As shown on the application

or plans):

MW 15M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

EAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62080

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 08.5"

Latitude (one-tenth of a second):

North 39° 55' 33.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.03

Owners Well Number (As shown on the application

or plans):

MW 15S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Facility:

Name of Permittee: Martin Aaron, Inc. Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62081

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 05.1"

Latitude (one-tenth of a second):

North 39° 55' 35.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.53

Owners Well Number (As shown on the application

or plans):

MW 16S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Facility:

Name of Permittee: Martin Aaron, Inc. Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62173

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 09.7"

Latitude (one-tenth of a second):

North 39° 55' 35.7"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.02

Owners Well Number (As shown on the application

or plans):

MW 17M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62172

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 09.9"

Latitude (one-tenth of a second):

North 39° 55' 35.7"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.00'

Owners Well Number (As shown on the application

or plans):

MW 17S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

PROFESSIONAL LAND SURVEYOR'S LICENSE #

302405

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62179

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 07.9"

Latitude (one-tenth of a second):

North 39° 55' 36.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.17

Owners Well Number (As shown on the application

or plans):

MW 18D

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc. Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62178

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 07.5"

Latitude (one-tenth of a second):

North 39° 55' 36.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.40'

Owners Well Number (As shown on the application

or plans):

MW 18M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62177

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 07.7"

Latitude (one-tenth of a second):

North 39° 55' 36.2"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

7.16'

Owners Well Number (As shown on the application

or plans):

MW 18S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc. Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62181

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 03.7"

Latitude (one-tenth of a second):

North 39° 55' 36.6"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.46

Owners Well Number (As shown on the application

or plans):

MW 19M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-63457

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 03.7"

Latitude (one-tenth of a second):

North 39° 55' 36.4"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.46

Owners Well Number (As shown on the application

or plans):

MW 19R

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62180

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 03.7"

Latitude (one-tenth of a second):

North 39° 55' 36.6"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.37

Owners Well Number (As shown on the application

or plans):

MW 19S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNA

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62176

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.0"

Latitude (one-tenth of a second):

North 39° 55' 30.1"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.61'

Owners Well Number (As shown on the application

or plans):

MW 20D

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc. Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62175

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.0"

Latitude (one-tenth of a second):

North 39° 55' 29.8"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.67

Owners Well Number (As shown on the application

or plans):

MW 20M

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-63458

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.0"

Latitude (one-tenth of a second):

North 39° 55' 29.9"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.47

Owners Well Number (As shown on the application

or plans):

MW 20R

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62174

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 04.0"

Latitude (one-tenth of a second):

North 39° 55' 29.5"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.28

Owners Well Number (As shown on the application

or plans):

MW 20S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION CERTIFICATION

Name of Permittee: Martin Aaron, Inc. Name of Facility: Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62522

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 16.4"

Latitude (one-tenth of a second):

North 39° 55' 31.9"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

5.97

Owners Well Number (As shown on the application

or plans):

MW 21S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

GROUND WATER MONITORING WELL CERTIFICATION - FORM B - LOCATION **CERTIFICATION**

Name of Permittee: Martin Aaron, Inc.

Name of Facility:

Martin Aaron, Inc.

Location:

1542 South Broadway Street

Camden, NJ 08104-1302

LAND SURVEYOR'S CERTIFICATION

Well Permit Number (As assigned by NJDEP's Water

Allocation Section, 609-984-6831):

31-62523

This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second):

NAD 83

West 75° 07' 11.3"

Latitude (one-tenth of a second):

North 39° 55' 30.8"

Elevation of Top of Casing (cap off)

(one-hundredth of a foot):

NAVD 88

6.89'

Owners Well Number (As shown on the application

or plans):

MW 22S

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

EDWARD W WARFEL

SEAL

PROFESSIONAL LAND SURVEYOR'S NAME

(Please print or type)

24GS03116000

Appendix F
Soil Boring Logs

NOTES:

SOIL BORING LOG

SHEET 1 OF 2

CLIENT:	:		E	PA Region 2										
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-MW	128			
PROJEC	T N	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaron	n Proper				
SURFAC	E EI	LEVATION	ON: _	6.91	feet	msl			TOTAL DEPTH:	18.00	fe	et bgs		
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech			·····		FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	/ETHO	D: <u>2</u> -	in Split Spoor	/Han	nmer	/liners		CH2M GEOLOGIST:	Wojciech	Wink	ler		
START:			10	0/30/2001 9:00	0:00	AM			FINISH:	10/30/20	01 11	00:00	<u>AM</u>	
NORTH	NG:		39	98434.287	fee	t			EASTING:	318492.0	002	fee	et	
							7		SOIL DESCRIPTION			ξ	Π	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
0	1	0-2	Soil		T	<u> </u>	0-2	CONCRETE	(NOTE: concrete pad)	Т				
- 1 - 2 - 3	2	2-4	Soit	12-16-10-7	26	1	0-1	Black (N1), m some fine gra	noderately sorted, fine SAND, ivel, dry	some silt,	SP	10		PID(B)=0.7 ppm, (H)=10 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 4	3	4-6	Soil	5-4-3-3	7	1.3	0-1	SAA				2		PID(B)=0.7 ppm, (H)=2 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 5							1-1.4	Pale brown (5 SAND, trace	SYR 5/2), moderately sorted, fi fine gravel, trace silt	ne	SP	2		PID(B)=0.7 ppm, (H)=2 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 6 - 7	4	6-8	Soil	2-2-3-1	5	0	0-2	No Recovery	·			3		PID(B)=0.0 ppm, (H)=3.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 8 - 9	5	8-10	Soil	WH-1-1-2	2	1.5	0-0.5	silt, trace fine Dark gray (N3	ell sorted, subrounded, fine S/ gravel, wet 3), well sorted, subangular, CL plasticity, wet, soft	TIVE dild	SM CL	3		PID(B)=0.0 ppm, (H)=3 ppm; RAD(B)=20 cpm, (H0=20 cpm PID(B)=0.0 ppm, (H)=3 ppm; RAD(B)=20 cpm, (H)=20 cpm

302420

msl = mean sea level bgs = below ground surface

SHEET 2 OF 2

CLIENT:			E	PA Region 2										
PROJEC	T NI	JMBER	: <u>16</u>	64453					BORING NUMBER: _	MA-MV	128	_		
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aa	ron Proper				
									TOTAL DEPTH:			et bgs	;	
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech	·				FOREMAN:			_		
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	uger				DRILLING EQUIPMEN	IT: CME 85	Rig 4 1.	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	/IETHOI	D: <u>2</u> -	in Split Spoor	n/Har	nmer	/liners		CH2M GEOLOGIST:	Wojciec	h Winl	kler		
START:			10	0/30/2001 9:0	0:00	AM			FINISH:	10/30/20	001 11	:00:00	AM	
NORTHI	NG:		39	98434.287	fee	et .			EASTING:	318492.	002	fee	<u>∍t</u>	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTI INT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO IE, PLASTICITY, MINERAL TE, DENSITY/COHESIVEN	PINATE PRTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
— 10 — 11	6	10-12	Soil	1-2-3-3	5	1.5	0-1.5	Dark gray (N3 medium plast	s), well sorted, rounded, CL icity, wet, soft	AY and silt,	CL	35		PID(B)=1.0 ppm, (H)=20-50 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 12 - - 13	7.	12-14	Soil	2-2-4-6	6	2	0-0.5 0.5-1.5	SAA Dark yellowis subrounded, f	h brown (10YR 4/2), well so ine SAND, wet	orted,	SP	40 40		PID(B)=1.0 ppm, (H)=40-60 ppm; RAD(B)=40 cpm, (H)=40 PPD(B)=1.0 ppm, (H)=20-40 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 14 –	8	14-16	Soil	WH-4-22	26	1.5	0-1	Dark gray (N3 wet, soft	s), well sorted, rounded, CL	AY and silt,	CL	40		PID(B)=1.0 ppm, (H)=40 — ppm; RAD(B)=40 cpm, (H)=40 cpm
15 -							1-1.2 1.2-1.5	medium SANI	y (5Y 7/2), well sorted, roun D, wet D, well sorted, rounded, me	1	SP SP	0.5 0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 16 - — 17 -										-				(ri)=4U cpm
18 [⊥]	1		·I	L	1	L.,	L			I				

NOTES:

msl = mean sea level

SHEET 1 OF 5

CLIENT:			E	PA Region 2										
PROJEC									BORING NUMBER:		12M			
									LOCATION: Martin Aaron					
									TOTAL DEPTH:			et bgs		
									FOREMAN:					
									DRILLING EQUIPMENT					
									CH2M GEOLOGIST:					
									FINISH:				PM_	
NORTHI	NG:		39	98423.444	fee	t			EASTING:	318484.	55	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	TYPE	COUNTS 6"	Æ	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALO	IATE TING,	GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
DEPTH	SAMPLI	SAMPLE	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALL	SAMPLI	SAMPLI	I .	TE, DENSITY/COHESIVENES	, .	nscs	PID/FID	OTHER	
16 17 18 19 20	2	18-20	Soil			2	0-2	Yellowish graprominent, de	drill to 18 ft bgs. See boring by (5Y 7/2), mottled (common, ark yellowish orange), well sort	ted,	CL.	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=80 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=40 cpm
22 23	3	22-24	Soil	4-14-11-8	25	2	0-1	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
- 24 - 25	4	24-26	Soil	5-2-1-6	3	.58	1.5-2 0-0.5	subangular, fi medium dens Pale yellowish medium, faint	lowish brown (10YR 5/4), poor ine SAND and clay, non-plastic ie h brown (10YR 6/2), mottled (o , pale olive), very poorly sorted ine to medium SAND and fine	c, wet, common, d,	sc sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 5

CLIENT:			El											
PROJEC									BORING NUMBER:					
									LOCATION: Martin Aaro					·
									TOTAL DEPTH:			et bgs		·
									FOREMAN:					
DRILLIN	G MI	ETHOD	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT	: CME 85 I	Rig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2-</u>	in Split Spoor	/140	LBF	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
					20:00				FINISH:				M	
NORTHI	NG:		39	98423.444	fee	<u>t</u>		·	EASTING:	318484.	55	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	UE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' E, PLASTICITY, MINERALOG	IATE TING, GY),	GROUP SYMBOL	PID/FID READING (PPM)	R TESTING	COMMENTS
EPT	AMP	AMP	AMP	Low -6"-6	\	AMP	AMP	WATER STATE	TE, DENSITY/COHESIVENE	SS,	nscs	70	OTHER.	
- 26 - 27 - 28 - 29	<i>σ</i> 5	26-28		7-4-4-1	8	1	0-1 0-0.1	Moderate yell (common, fine subangular, fi	lowish brown (10YR 5/4), mot e, distinct, pale olive), very we ne SAND, some clay and silt, ry thinly bedded	ell sorted.	SM	0	0	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
30 31 	7	30-32	Soil	7-14-13-9	27	.67	0-1	(common, fine	owish brown (10YR 5/4), mott a, distinct, moderate yellowish subangular, fine GRAVEL an wet, loose	brown),	GM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm -
- 32 - - 33 - - 34	8	32-34	Soil	8-10-12-11	22	1.5	0-0.5 0.5-0.6 0.6-1.5	Pale greenish medium, distir	y (5Y 7/2), interbedded, CLAY st yellow (10Y 8/2), mottled (co nct, pale greenish yellow), we arse GRAVEL and clay, wet	/ mmon,	CH GC	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=6.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

NOTES:

SOIL BORING LOG

SHEET 3 OF 5

OLIFNIT				DA Dagian 2									
PROJEC									BORING NUMBER: MA	84\0/1284			
				Martin Aaron					LOCATION: Martin Aaron Pro				
		_		6.56					TOTAL DEPTH: 54		eet has		
									FOREMAN:				
									DRILLING EQUIPMENT: CM				
									CH2M GEOLOGIST: Ma				
				1/05/2001 11:					FINISH: 11			——. Р М	
				98423.444	fee				EASTING: 31			et	
	_			1			Γ					т—	
		Œ					<u>S</u>		SOIL DESCRIPTION		(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION, ANT GRAIN SIZE, SUBORDINATE WITH DESCRIPTORS, SORTING PE, PLASTICITY, MINERALOGY), TE, DENSITY/COHESIVENESS,	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
	9	34-36	Soil			1	0-0.7	SAA			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
35							0.7-1		inge (10YR 8/2), mottled (few, fine, pale orange), intermixed, SILT and	ML	0		(H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
-								clay, low plas	ticity				
- 36 -	10	36-38	Soil	18-23-26-31	49	2	0-1	Very pale ora subangular, i	inge (10YR 8/2), well sorted, ntermixed, coarse SAND	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cp.
- 37							1-2	distinct, dark	inge (10YR 8/2), mottled (few, fine, yellowish orange), well sorted, ine to medium SAND, trace fine gradense	- 1	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 38	11	38-40	Soil	10-16-28-34	44	1.3	0-2.5	SAA			0		PID(B)=0.0 ppm, (H)=0.0
								0,01					ppm; RAD(B)=40 сpm, (H)=40 сpm
- 39										_			_
F		ļ								1			-
40	12	40-42	Soil	10-10-14-27	24	1	0-1	SAA			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
41													_
- 42	13	42-44	Soit	14-15-23-34	38	2	0-2	SAA (NOTE:	more gravel at bottom of spoon)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
43													_

302424

msl = mean sea level bgs = below ground surface

SHEET 4 OF 5

CLIENT:			E	PA Region 2									
PROJEC	T NI	UMBER	: _1	64453				·	BORING NUMBER: MA	-MW12M			
PROJEC	TN	AME: _E	EPA-I	Martin Aaron					LOCATION: Martin Aaron Pro	per			
SURFAC	E EI	LEVATI	ON:	6.56	feet	msl			TOTAL DEPTH: 54	00	feet bgs	<u> </u>	
DRILLIN	G C	ONTRA	СТО	R: Unit-Tech				· · · · · · · · · · · · · · · · · · ·	FOREMAN:				
DRILLIN	G M	ETHOD	: <u>H</u>	lollow Stem Au	ıger		·····		DRILLING EQUIPMENT: CM	E 85 Rig 4	1/4in I.D	./8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u>	-in Split Spoor	1/140	LBF	lammer		CH2M GEOLOGIST: Ma	k Eshbau	gh		
START:			1	1/05/2001 11:	20:00	MA C			FINISH: 11/	05/2001 2	:30:00	PM_	
NORTHI	NG:		3	98423.444	fee	et	·		EASTING: 318	484.55	fe	et	
× (BER	RVAL (FT)		φ		l E	DESCRIPTION AL (FT)	[COLOR, MC	SOIL DESCRIPTION	GROUP SYMBOL	OING (PPM)	NG	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DES(INTERVAL (FT	GRAIN SIZE GRAIN SHAF	INT GRAIN SIZE, SUBORDINATE WITH DESCRIPTORS, SORTING, IE, PLASTICITY, MINERALOGY), TE, DENSITY/COHESIVENESS,	USCS GROUF	PID/FID READING	OTHER TESTING	
- 44 - 45 - 46	14	44-46		11-14-17-41	31	1.3	0-1.6	SAA, Dark ye	llowish orange (10YR 6/6)		0		PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 47 - 48 - 49	16	48-50	Soil	16-30-34-41	64	1.3	0-1	SAA (NOTE: about 1 in den	layer of 10YR 8/2 colored sant at 4 se)	ft	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 50 -	17	50-52	Soil	WH-33-35-32	68	1.67	0-1	fine, prominer	n orange (10YR 6/6), mottled (man nt, yellowish gray), CLAY and silt, icity, moist, dense, laminated	, CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 51 -							1-1.8	(common, me	n orange (10YR 6/6), mottled dium, distinct, dark yellowish oranq ubangular, coarse SAND, wet	e),	0		PID(B)=0.0 ppm, (H)=0.0 ppm: RAD(B)=40 cpm, (H)=40 cpm
- 52		ļ	l	l	1	l i	F		***************************************	─	1		7

NOTES:

msl = mean sea level

SHEET 5 OF 5

CLIENT	:		El	PA Region 2				······································						
PROJE	CT N	JMBER	: _16	64453				·····	BORING NUMBER:	MA-MW	12M_			
PROJE	CT N	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaro	on Proper				
SURFA	CE E	EVATION	ON: _	6.56	feet	msł	<u>.</u>		TOTAL DEPTH:	54.00	fe	et bgs		
DRILLI	NG C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLII	NG M	ETHOD	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT	r: CME 85	Rig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPL	ING I	иетноі	D: <u>2</u> -	in Split Spoon.	<u> 140</u>	LBH	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START			11	1/05/2001 11:2	0:00	AM.			FINISH:	11/05/20	001 2:3	80:00 F	M	
NORTH	ING:		39	98423.444	fee	t			EASTING:	318484.	55	fee	et	
			r								r 			
		E)					Z O		SOIL DESCRIPTION		ద్ద	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE ITING, IGY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
- 53	18	52-54	Soil			2	0-1.5	SAA		- -		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 54							1.5-2	SAA (NOTE:	fine sand)			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msi = mean sea level

SHEET 1 OF 2

PROJECT NUMBER: 164453 BORING NUMBER: MA.MW13S	CLIENT:			E	PA Region 2										
SURFACE ELEVATION: 7.66 feet msl	PROJEC	TN	JMBER	:10	64453					BORING NUMBER:	MA-MV	/138			
DRILLING CONTRACTOR: Unit-Tech	PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aar	on Proper				
DRILLING CONTRACTOR: Unit-Tech	SURFAC	E EI	EVATIO	ON:	7.86	feet	msi			TOTAL DEPTH:	18.00	fe	et bgs		
START:	DRILLIN	G C	ONTRA	стог	R: Unit-Tech	·				FOREMAN:					
START: 10/30/2001 12/40/00 PM FINISH: 10/30/2001 3/00:00 PM	DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMEN	IT: CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
NORTHING: 338438.594 feet	SAMPLI	NG N	NETHO	D: <u>2</u> .	in Split Spoo	n/Har	nmer	/liners		CH2M GEOLOGIST: _	Wojcied	h Win	kler		
SOIL DESCRIPTION SOIL DESCRI	START:			10	0/30/2001 12:	40:00) PM			FINISH:	10/30/2	001 3:0	00:00 F	PM_	
No. A A A A A A A A A	NORTH	NG:		3	98438.594	fee	et			EASTING:	318808	.35	fee	et	
No. Alignment	<u></u>	<u> </u>		l		Τ	T -	z	T :	SOIL DESCRIPTION		٦	Σ	Π	COMMENTS
		_	[E]					OTT				'MBC	dd) s		
0 1 0-2 Soil 4-4-5-13 9 1.5 0-1 Dark yellowish arrange (10YR 6/6), well sorted, rounded, fine SAND, trace fine gravel, dry SP 0.5 PID(8)=0.5 ppm, (H)=0.	ð F	MBE	ERV/	. ш	SES		E	SCRI T)	1 -				Ž	TING	
0 1 0-2 Soil 4-4-5-13 9 1.5 0-1 Dark yellowish arrange (10YR 6/6), well sorted, rounded, fine SAND, trace fine gravel, dry SP 0.5 PID(8)=0.5 ppm, (H)=0.	BEL(N.	Ę	Σ	,	ш	ĒŘ	E DE				3ROL	RE	TES	
0 1 0-2 Soil 4-4-5-13 9 1.5 0-1 Dark yellowish arrange (10YR 6/6), well sorted, rounded, fine SAND, trace fine gravel, dry SP 0.5 PID(8)=0.5 ppm, (H)=0.	PTH	MPL	MPLE	MPLE	0 W C	ALU	MPLE	MPLI	WATER STA			SS	DI-PI	HER	
Dark yellowish orange (10YR 6/6), well sorted, rounded, fine SAND and sitt, fine SAND and sitt, some fine gravel, dry 1-1.5 Black (N1), well sorted, rounded, fine SAND and sitt, dry 1-2. 2. 2.4 Soil 9-7-8-4 15. 5. 0-0.5 SAA 15. 5. 0-0.5 SAA 0.5 PID(B)=0.5 ppm, (H)=0.5	_ <u>_</u>	Ϋ́	SAI	\ \ \ \ \ \	BL 6.76	Ź	SA R	AS Z	LAYERING			S	ā	Ō	
1-1.5 Black (N1), well sorted, rounded, fine SAND and silt, SM 0.5 PID(B)=0.5 ppm, (H)	[0	1	0-2	Soil	4-4-5-13	9	1.5	0-1	Dark yellowis	h orange (10YR 6/6), well s	orted,	SP	0.5	Γ.	PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=20 ppm,
Black (N1), well sorted, rounded, fine SAND and slit, open fax0(b)=20 cpm, (H)=20 cpm and slit, slit, open fax0(b)=20 cpm, (H)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open f	-							<u> </u>	Tounded, line	SAND, trace line graver, or	y -				(H)=20 ppm
Black (N1), well sorted, rounded, fine SAND and slit, open fax0(b)=20 cpm, (H)=20 cpm and slit, slit, open fax0(b)=20 cpm, (H)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open fax0(b)=20 cpm and slit, open f	_ ,									,			İ	١,	
2 2 24 Soil 9-7-8-4 15 .5 0-0.5 SAA SAA 15 .5 0-0.5 SAA 0.5 PID(B)=0.5 ppm, (H)=0.5 ppm, (H)=0.5 ppm, (RAD(B)=20 cpm. (H)=20 cpm. (H)=20 cpm. (H)=20 cpm. (H)=20 cpm. (H)=20 cpm. (H)=20 cpm. (H)=0.5 ppm, RAD(B)=0.5 ppm,	Γ'							1-1.5		ell sorted, rounded, fine SA	ND and silt,	SM	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=20 cpm,
- 3 3 4-6 Soil 2-2-2-2 4 0.83 0-0.8 Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry SP 0.5 PID(B)=0.5 ppm, (H)=0.5 ppm, RAD(B)=40 cpm, (H)=40 cpm SP SP SP SP SP SP SP S	-										-				(1)-20 QM
- 3	- 2	,	2.4	Soil	9.7.8.4	15	5	0-0.5					0.5		PID(B)=0.5 ppm (H)=0.5
Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), moderately sorted, subangular, fine SP Black (N1), moderately sorted, subangu		-		00					SAA				0.0		ppm; RAD(B)=20 cpm, (H)=20 cpm
Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), moderately sorted, subangular, fine SP Black (N1), moderately sorted, subangu	ſ										_				
Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), moderately sorted, subangular, fine SP 0.5 Ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm	- 3										-				
Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), moderately sorted, subangular, fine SP 0.5 Ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm	ļ.										-				
Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), mottled (many, fine, prominent, dark yellowish orange), moderately sorted, subangular, fine SAND, trace silt, trace fine gravel, dry Black (N1), moderately sorted, subangular, fine SP 0.5 Ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm			·												
- 5 4 6-8 Soil 5-7-7-2 14 .5 0-0.5 Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet SP 0.5 PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm CP CP CP CP CP CP CP C	- 4	3	4-6	Soil	2-2-2-2	4	0.83	0-0.8	Black (N1), m	ottled (many, fine, prominer	nt, dark	SP	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm,
- 6 4 6-8 Soil 5-7-7-2 14 .5 0-0.5 Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet SP 0.5 PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm									fine SAND, tra	ace silt, trace fine gravel, dr	y -				(H)=40 Cpm
- 6 4 6-8 Soil 5-7-7-2 14 .5 0-0.5 Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet SP 0.5 PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm	- 5										_				_
Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet Black (N1), moderately sorted, subangular, fine SP 0.5 Ppm; RAD(B)=40 cpm, (H)=40 cpm															
Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet Black (N1), moderately sorted, subangular, fine SAND, some silt, some fine gravel, wet Black (N1), moderately sorted, subangular, fine SP 0.5 Ppm; RAD(B)=40 cpm, (H)=40 cpm	<u> </u>			1							+		 .		-
SAND, some silt, some fine gravel, wet SAND, some silt, some fine gravel, wet	- 6	4	6-8	Soil	5-7-7-2	14	.5	0-0.5	Black (N1) m	oderately sorted, subangula	r fino	SP	0.5		PID(B)=0.5 ppm, (H)=0.5
									SAND, some	silt, some fine gravel, wet	, 11116				ppm; RAD(B)=40 cpm, (H)=40 cpm
	-7									•	-				-
	}										-				_
	L.						i .								
	[°														
	 										-				-
-9	- 9								.		_				

NOTES:

msl = mean sea level

SHEET 2 OF 2

CLIENT	:		Е												_
PROJEC	T N	JMBER	:: <u>1</u> 0	64453	···				BORING NUMBER:	MA-MW	/13S				
									LOCATION: Martin Aaron						
									TOTAL DEPTH:						
									FOREMAN:						
									DRILLING EQUIPMENT:						_
									CH2M GEOLOGIST:						
					40:00				FINISH:						
NORTH	NG:		3	98438.594	fee	et			EASTING:	318808.	35	fee	et		-
	œ	AL (FT)					PTION		SOIL DESCRIPTION		rmbol	G (PPM)		COMMENTS	7
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAP	TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN, MITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING	OTHER TESTING		
- 10 - 11 - 12 - 13 - 14 - 15	5	10-12 12-14	Soil	WH-WH-1-1	5	1.5	0-1.2 0-0.3	Pale yellowish subangular, fi	ell sorted, rounded, silty CLAY very soft brown (10YR 6/2), well sorted the SAND, wet ell sorted, subangular, fine SAI 3inpetroleum like odor)	d,	CH SP	1		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
17	8	16-18	Soil	6-8-9-12	17	1.5	0-1.3	SAA		-		1		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	

NOTES:

msl = mean sea level

SHEET 1 OF 7

CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-MW	/13M			
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaron	n Proper				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
									TOTAL DEPTH:			et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT	: <u>CME 85</u>	Rig 4 1	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	METHO): <u>2</u> .	in Split Spoon	/140	LB F	lammer		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			1	1/02/2001 8:00	00:00	AM			FINISH:	11/02/20	001 1:0	0:00 F	M	
NORTHI	NG:		39	98446.578	fee	<u>t</u>			EASTING:	318814.	.378	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
T 16					<u> </u>				drill to 18 ft bgs. See log for b	oring				
- 17 - 18 - 19	.1	18-20	Soil	2-4-7-8	11	1.3	0-2	Moderate bro	own (5YR 4/4), mottled (commo green), well sorted, rounded, iLT, trace fine sand, moist	on, fine,	ML	2		PID(B)=1.7 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=60 cpm -
— 20 — 21	2	20-22	Soil	6-6-5-4	11	1	0-1	Moderate yell rounded, SIL ^T	owish brown (10YR 5/4), well r, trace fine sand, slight plastio	sorted, city, wet	ML	1		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 22 - — 23	3	22-24	Soil	8-5-6-6	11	1.5	0-1.5	(common, fine	owish brown (10YR 5/4), mottle, distinct, pale olive), well sor rmixed, fine to coarse SAND a	ted,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 7

CLIENT:			Ε	PA Region 2											
PROJEC	TN	JMBER	:16	64453					BORING NUMBER:	MA-MW	13M_				
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaro					····	
			~			msl			TOTAL DEPTH:						_
									FOREMAN:						_
									DRILLING EQUIPMENT				/8in	O.D. HSA	_
									CH2M GEOLOGIST:						
									FINISH:						
NORTHI	NG:		39	98446.578	fee	<u>t</u>			EASTING:	318814.	378	fee	<u>et</u>		_
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-5"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTIO INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR IE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
— 24 — 25	4	24-26	Soil	2-5-8-8	13	1.25	0-0.5 0.5-1.5	fine, distinct, prounded, CLA Light olive graprominent, mo	h brown (10YR 4/2), mottled pale yellowish green), well so Y and silt, medium plasticity, yy (5Y 5/2), mottled (many, fir oderate brown), well sorted, r line SAND, wet	irted, wet ne,	CL SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
26° 27	5	26-28	Soil	2-6-9-11	15	1.3	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
28 29	6	28-30	Soil	4-10-11-15	21	2	0-2	(common, fine	owish brown (10YR 5/4), mot s, faint, dark yellowish orange ad, fine SAND, wet		SP	0		PID(B)=0.0 ppm, (H)=0.0 ^m ppm; RAD(B)=20 cpm, (H)=20 cpm	
- - 30 - - 31	7	30-32	Soil	6-8-9-11	17	2	0-1.5	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	

NOTES:

msl = mean sea level

SHEET 3 OF 7

CLIENT	:		E	PA Region 2										
PROJE	CT N	JMBER	: 16	64453					BORING NUMBER:	MA-MW	13M			١
PROJE	CT N	AME: _E	EPA-N	Martin Aaron					LOCATION: Martin Aaron	n Proper				
SURFAC	CE EI	LEVATION	ON:	7.59	feet	msl			TOTAL DEPTH:	66.00	fe	eet bgs	<u>. </u>	
DRILLIN	IG C	ONTRA	СТОР	R: Unit-Tech					FOREMAN:		_			· · · · · · · · · · · · · · · · · · ·
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem Au	iger				DRILLING EQUIPMENT	CME 85 I	Rig 4 1	/4in I.D	./8in	O.D. HSA
SAMPL	NG N	AETHO	D: <u>2</u> -	in Split Spoor	/140	LBF	lammer		CH2M GEOLOGIST:	Wojciec	h Winl	kler		
START:			1	1/02/2001 8:0	0:00	AM			FINISH:	11/02/20	01 1:0	00:00 F	PM	
NORTH	ING:		39	98446,578	fee	et		· · · · · · · · · · · · · · · · · · ·	EASTING:	318814.	378	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE: RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	IATE TING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 32	8	32-34	Soil	12-9-13-16	22	1.75	1.5-2 0-1.75	(common, fin rounded, med (2in) on botto clay and silt (Moderate yel (many, fine, f	lowish brown (10YR 5/4), motte, very pale orange), well sort dium SAND, wet (NOTE: thin I m of 10YR 5/4 not mottled, we CL), medium plasticity) lowish brown (10YR 5/4), mottaint, very pale orange), moder unded, medium SAND, trace f	ed, ayer ell sorted, 7 lled ately	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 34	9	34-36	Soil	4-5-6-8	11	2	0-1	Moderate yell rounded, fine	lowish brown (10YR 5/4), well SAND, wet	sorted,	SP	0		
35							1-2	(many, fine, fa	lowish brown (10YR 5/4), mott aint, very pale orange), well so medium SAND, trace fine grav	rted,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 36 -	10	36-38	Soil	7-7-11-14	18	2	0-1.5	fine, faint, dar	h brown (10YR 4/2), mottled (r k yellowish orange), well sorte SAND and silt		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 37							·			-				_
38				7.44.05.55			1.5-2	Grayish red (! medium plast	5R 4/2), well sorted, CLAY and icity	d ,	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
30	11	38-40	Soil	7-14-20-28	34	2	0-0.5	Medium dark CLAY, high p	gray (N4), well sorted, rounde lasticity, wet	d, silty	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 4 OF 7

														,
PROJEC	IN T	UMBER	:10	64453				BORING NUMBER:	MA-MW13	M				
								LOCATION: Martin Aaron						
								TOTAL DEPTH:						
								FOREMAN:						
								DRILLING EQUIPMENT:						
								CH2M GEOLOGIST:						
								FINISH:						
NORTHING: 398446.578 feet EASTING: 318814.378											fee	et		
		E)					NO I	SOIL DESCRIPTION		5	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDIN GRAIN SIZE WITH DESCRIPTORS, SORT GRAIN SHAPE, PLASTICITY, MINERALOG WATER STATE, DENSITY/COHESIVENES LAYERING]	N, IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING	OTHER TESTING		
— 39							0.5-2	Dark yellowish orange (10YR 6/6), mottled fine, prominent, yellowish gray), well sorted rounded, CLAY and silt, medium plasticity,	, 1	L	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
- 40 - 41 - 42 - 43 - 44 - 45	13	42-44		3-6-10-14 20-40-50 7-12-30-50		1.08	0-0.67	Dark yellowish orange (10YR 6/6), well sort rounded, fine SAND, wet Very pale orange (10YR 8/2), mottled (few, prominent, light red), moderately sorted, subrounded, fine SAND, little fine gravel, we Pale yellowish brown (10YR 6/2), mottled (of fine, faint, very pale orange), well sorted, subrounded, fine SAND, little fine gravel, we	fine, SF	>	0		PID(B)=0.0 ppm, (H)=0.0—ppm; RAD(B)=40 cpm. PID(B)=0.0 ppm, (H)=0.0—ppm; RAD(B)=40 cpm. (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0—ppm; RAD(B)=40 cpm. PID(B)=0.0 ppm, (H)=0.0—ppm; RAD(B)=40 cpm.	
- 46			,										_	

NOTES:

msl = mean sea level

SHEET 5 OF 7

CLIENT:			E	PA Region 2								,			
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-MW1	<u>3M</u>				
PROJEC	T N	AME: _E	PA-N	/lartin Aaron					LOCATION: Martin Aaron	n Proper					
										L DEPTH: 66.00 feet bgs					
DRILLIN	IG C	ONTRA	CTO	R: Unit-Tech					FOREMAN:					· · · · · · · · · · · · · · · · · · ·	
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem Au	ger			DRILLING EQUIPMENT:	CME 85 Ri	g 4 1	/4in I.D.	/8in	O.D. HSA		
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoon	/140	LB F	lammer		CH2M GEOLOGIST:	Wojciech	Win	kler		······································	
START:			1	1/02/2001 8:00	00:00	AM			FINISH:	11/02/200	1 1:0	00:00 F	M		
NORTHI	NG:		39	98446.578	fee	t			EASTING:	318814.3	78	fee	et		
	ı		Γ		Γ			Ι ,	CON DECORIDATION			e		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
	15		L	ш б 13-17-21-27	L	1.5		SAA		-	<u> </u>	0	0	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
47														-	
- 48 -	16	48-50	Soil	8-23-32-35	55	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
— 49 -							1-2	Dark yellowis subangular, n	h orange (10YR 6/6), well sort nedium SAND, wet	ed,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
— 50 -	17	50-52	Soil	13-25-37-31	62	1	0-1		fine, prominent, light red), wel medium SAND, little clay, wet	Jones,	SP	o		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
— 51 -															
- 52 - 53	18	52-54	Soil			1	0-0.5 0.5-1	medium SAN	h orange (10YR 6/6), well sort D, some clay ow (5Y 7/6), well sorted, subro D and clay, low plasticity, wet	eu,	SM SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	

NOTES:

msl = mean sea level

SHEET 6 OF 7

CLIENT:	:		E	PA Region 2					•						
PROJEC	T N	UMBER	: <u>1</u>	64453					BORING NUMBER:	MA-MV	/13M				
PROJEC	CT N	AME: _	EPA-N	Martin Aaron					LOCATION: Martin Aaro	n Proper					
SURFAC	E E	LEVATI	ON:	7.59	feet	msl			TOTAL DEPTH:	66.00	fe	eet bgs			
DRILLIN	IG C	ONTRA	стоі	R: Unit-Tech	<u>1</u>				FOREMAN:						
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA						
SAMPLI	NG N	METHO	D: <u>2</u>	-in Split Spoo	n/140	LBF	lammer		CH2M GEOLOGIST: _	Wojcied	h Win	kler		7/37/	
START:			1	1/02/2001 8:0	00:00	AM			FINISH:	11/02/2	001 1:0	00:00 F	PM_	-72	
NORTHI	NG:		3	98446.578	fee	et	-		EASTING:	318814.	378	fee	et		
		(FT)					NOITE		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SY	PID/FID READING	OTHER TESTING		
Δ))		. கூட்	12	ω <u>π</u>	_ σ≥	1		-		<u> </u>			
 54	19	54-56	Soil	20-21-27-23	48	1.5	0-1	Moderate bro fine SAND, w	wn (5YR 4/4), well sorted, rouet	unded,	SP	0		PiD(B)=0.0 ppm, (H)=0. ppm; RAD(B)=20 cpm, (H)=20 cpm	.0
— 55 -				·			1-1.5	Grayish orang	ge (10YR 7/4), well sorted, roo et	unded,	SP	0		PID(B)=0.0 ppm, (H)=0. ppm; RAD(B)=20 cpm, (H)=20 cpm	.0_
56 -	20	56-58	Soil	28-32-50	82	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0. ppm; RAD(B)=20 cpm, (H)=20 cpm	0-
— 57 -										-					
— 58 -	21	58-60	Soil	21-27-39-31	66	1.08	0-0.5 0.5-1	subangular, n	h orange (10YR 6/6), well son nedium SAND, trace silt, wet h orange (10YR 6/6), well son		SP	0		PID(B)=0.0 ppm, (H)=0. ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.	
— 59 -								subangular, n	nedium SAND and silt, little fir	ne gravel,				ppm; ŘAD(B)=20`cpm, (H)=20 cpm	
— 60 -	22	60-62	Soil	18-21-27-24	48	2	0-1	SAA				0 .		PID(B)=0.0 ppm, (H)=0. ppm; RAD(B)=20 cpm, (H)=20 cpm	0
61							1-1.5			· .	CL	0		PID(B)=0.0 ppm, (H)=0.4	<u></u>

NOTES:

msl = mean sea level

SHEET 7 OF 7

				·
BORING NUMBER: MA-	/W13M			
LOCATION: Martin Aaron Prop	er ·			
TOTAL DEPTH: 66.0) f	eet bgs	<u> </u>	
FOREMAN:				· · · · · · · · · · · · · · · · · · ·
DRILLING EQUIPMENT: CME	85 Rig 4 1	/4in I.D.	./8in	O.D. HSA
CH2M GEOLOGIST: Woje	iech Win	kler		
FINISH: 11/0	2/2001 1:	00:00 F	PM_	
EASTING: 3188	14.378	fee	et	
SOIL DESCRIPTION	Т.	Ê		COMMENTS
[COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] Grayish orange (10YR 7/4), well sorted, rounded,	USCS GROUP SYMBOL	PID/FID READING (PPM	OTHER TESTING	COMMENTS ppm; RAD(B)=20 cpm,
CLAY and medium sand, wet Dark yellowish orange (10YR 6/6), well sorted, subrounded, fine SAND, wet	SP	0		(H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
SAA, CLAY and medium sand, thinly bedded	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
Pale yellowish orange (10YR 8/6), well sorted, subrounded, fine SAND, wet	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
er	LOCATION: Martin Aaron Proper TOTAL DEPTH: 66.00 FOREMAN: DRILLING EQUIPMENT: CME OF CH2M GEOLOGIST: Wojc FINISH: 11/02 EASTING: 3188 SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] Grayish orange (10YR 7/4), well sorted, rounded, CLAY and medium sand, wet Dark yellowish orange (10YR 6/6), well sorted, subrounded, fine SAND, wet SAA, CLAY and medium sand, thinly bedded Pale yellowish orange (10YR 8/6), well sorted,	BORING NUMBER: MA-MW13M LOCATION: Martin Aaron Proper TOTAL DEPTH: 66.00 f FOREMAN: DRILLING EQUIPMENT: CME 85 Rig 4 1 er CH2M GEOLOGIST: Wojciech Win FINISH: 11/02/2001 1: EASTING: 318814.378 SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] Grayish orange (10YR 7/4), well sorted, rounded, CLAY and medium sand, wet Dark yellowish orange (10YR 6/6), well sorted, subrounded, fine SAND, wet Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted,	BORING NUMBER: MA-MW13M LOCATION: Martin Aaron Proper TOTAL DEPTH: 66.00 feet bgs FOREMAN: DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D. er CH2M GEOLOGIST: Wojciech Winkler FINISH: 11/02/2001 1:00:00 J EASTING: 318814.378 feet SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] Grayish orange (10YR 7/4), well sorted, rounded, CLAY and medium sand, wet Dark yellowish orange (10YR 7/6)6), well sorted, subrounded, fine SAND, wet SAA, CLAY and medium sand, thinly bedded Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, SP 0	BORING NUMBER: MA-MW13M LOCATION: Martin Aaron Proper TOTAL DEPTH: 66.00 feet bgs FOREMAN: DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in ORILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in ER CH2M GEOLOGIST: Wojciech Winkler FINISH: 11/02/2001 1:00:00 PM EASTING: 318814.378 feet SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] Grayish orange (10YR 7/4), well sorted, rounded, CLAY and medium sand, wet Dark yellowish orange (10YR 6/6), well sorted, subrounded, fine SAND, wet Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted, Pale yellowish orange (10YR 8/6), well sorted,

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2				
PROJEC	T N	JMBER	: <u>16</u>	54453				BORING NUMBER: MA-MW14S
PROJEC	TN	AME: _E	PA-N	Martin Aaron				LOCATION: Martin Aaron Proper
SURFAC	E EI	.EVATI	ON: _	6.60	feet	msl		TOTAL DEPTH: 18.00 feet bgs
DRILLIN	G C	ONTRA	CTOF	R: <u>Unit-Tech</u>	·			FOREMAN:
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	ger			DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoor	/Har	nmer	/liners	CH2M GEOLOGIST: Winkler/Rech
START:			0	1/10/2002 9:1	5:00	AM		FINISH:
NORTH	NG:		39	98382.355	fee	et		EASTING: 318512.705 feet
		(£	Γ		Τ		z	SOIL DESCRIPTION JOE COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING COMMENTS COM
Γ0	1	0-2	Soil	T	T		0-1	CONCRETE (NOTE: 0ft - 1ft - Concrete foundation Oft - 1ft - Concrete foundation sub-base
<u> </u>	2	1-3	Soil	4-6-6-6	12	2	0-0.5 0.5-1	sub-base) Grayish black (N2), well sorted, subangular, fine SAND, little sitt, dry, medium dense
- 2 - 3								Dark yellowish orange (10YR 6/6), well sorted, subangular, fine SAND, little silt, dry, medium dense
- 4	4	3-5	Soil	4-4-5-5	9	1	0-1	SAA, dry, medium dense
- 5 - - 6	5	5-7	Soil	2-3-2-3	5	0.5	0-0.5	Grayish black (N2), moderately sorted, subangular, medium SAND, trace silt, trace fine gravel, dry, loose (NOTE: PID not working, but distinct volitile odor at 8ft - 10ft)
- 7 - 8	6	7-9	Soil	1-1-1-1	2	0.2	0-0.2	Grayish black (N2), moderately sorted, subangular, medium SAND, some fine gravel, trace silt, wet, very loose
9	7	9-11	Soil	1-2-3-5	5	1.3	0-1	SAA; wet, loose
- 10 -							1-1.3	Olive gray (5Y 4/1), well sorted, subrounded, fine SAND, trace silt, wet, loose
- 11	9	11-12	Soil	4-4-5-6	9	1	0-1	SAA, wet, loose
- 12 - - 13	10	12-14	Soil	4-4-4-3	8	1	0-1	Dark yellowish brown (10YR 4/2), well sorted, subrounded, medium SAND, trace silt, wet, loose
- 14 - 15	11	14-16	Soil	4-4-5-6	9	1	0-1	SAA, wet, loose
- 16 - - 17	12	16-18	Soil	wн	NA		0-2	Moderate greenish yellow (10Y 7/4), well sorted, subrounded, fine SAND and clay, low plasticity, moist, very loose
L- 18	Щ_	L	Ь	L	<u> </u>	Щ_	1	

NOTES:

msl = mean sea level

NOTES:

SOIL BORING LOG

SHEET 1 OF 9

CLIENT	:		E	PA Region 2											
PROJEC	T N	UMBER	: _16	64453					BORING NUMBER: MA-MW14R						
PROJEC	T N	AME: _	PA-N	Martin Aaron					LOCATION: Martin Aaron Proper						
SURFAC	E E	LEVATI	ON:	6.60	feet	msl			TOTAL DEPTH: 120.00 feet bgs						
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:						
DRILLIN	IG M	ETHOD	: <u>M</u>	lud Rotary witl	h 6in	DRILLING EQUIPMENT: Failing	1400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit					
SAMPLI	AMPLING METHOD: Down-the-Hole 2-in Split Spoon CH2M GEOLOGIST: Winkle														
START:									FINISH:	·					
NORTH	NG:		39	98382.809	fee	t			EASTING: 318528	28.828 feet					
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION, ANT GRAIN SIZE, SUBORDINATE WITH DESCRIPTORS, SORTING, PE, PLASTICITY, MINERALOGY), TE, DENSITY/COHESIVENESS,	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS		
- 0 - 1	1	0-2	Soil				0.5-1.5	Dark yellowis subangular, i clay, dry	th orange (10YR 6/6), well sorted, ine to medium SAND and silt, little	SM	1		PID(B) = 1.0 ppm, (H) =		
- 2 - - 3	2	2-4	Soil				0-0.1	Dark gray (N medium GRA	3), moderately sorted, angular, fine to VEL, trace silt, trace clay, dry	GP	1		PID(B) = 1.0 ppm, (H) = 1.0 ppm		
- 4 - 5	3	4-6	Soil				0-2	SAA, dry					PID(B)=1.0 ppm, (B)=1.0 ppm _		
- 6 - 7	4	6-8	Soil				0-2	SAA, dry					PID(B)=1.0 ppm, (B)=1.0 ppm		
- - 8 - - 9	5	8-10	Soil				0-0.3	SAA, dry			0.8				
- 10 - 11	6	10-12	Soil	9-9-9-48			0-2		Y 6/2), well sorted, subangular, fine to VEL, trace silt, moist, loose	SP	0.8		PID(B) ≈ 1.9 ppm, (H) = 0.8 ppm		
- - 12 - - 13	7	12-14	Soil	2-3-8-13			0-2	SAA, moist, r	nedium dense		0.8		PID(B) = 4.7, (H) = 0.8 ppm		
14	8	14-16	Soil	14-12-50/5			0-2	SAA, moist			0.8		PID(B) = 7.4 ppm, (H) = 0.8 ppm		

msl = mean sea level bgs = below ground surface

SHEET 2 OF 9

CLIENT	:		Ε	PA Region 2												
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-MV	/14R					
PROJEC	CT N	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaro	n Proper						
									TOTAL DEPTH:							
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:							
DRILLIN	IG M	ETHOD	: <u>M</u>	ud Rotary with	6in	O.D.	Hollow Sand E	3it	DRILLING EQUIPMENT	: Failing 1	400 OS	Rig wi	h 6ii	n O.D. dia. Sand Bit		
SAMPLI	NG N	NETHO	D : _D	own-the-Hole 2	2-in 5	Split S	Spoon		CH2M GEOLOGIST:	Winkler	/Rech			· · · · · · · · · · · · · · · · · · ·		
START:									FINISH:							
NORTH	NG:		39	98382.809	fee	<u> </u>			EASTING:	318528.	828	fee	<u> •t</u>			
		L (FT)					NOITON		SOIL DESCRIPTION		MBOL	(PPM)		COMMENTS		
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAP WATER STA	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDING WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING	OTHER TESTING			
_ <u>B</u>	δ	SA	δ	BL 6"-	z	8 2	S ∑	LAYERING]			ı s	<u>a</u>	5			
_ 15 _										- · -]		
- 16 - - 17	9	16-18	Soil	WH-WH-WH-Wi			0-2	dark yellowist	PY 6/2), mottled (common, find n orange), well sorted, subrou y, wet, very loose		МН	0.8		PID(B) = 6 ppm, (H) = 0.8		
- 18	10	18-20	Soil	10-34-35-37			0-2	Grayish pink (medium to co dense	(5R 8/2), poorly sorted, subar arse SAND, trace clay, wet, v	ngular, very -	sw	0.8		PID(B) = 5.0, (H) =0.8		
19 20	11	20-22		11-35-33-37			0-2	SAA, wet, ver	y dense			1.7		PID(B) = 8.0, (H) = 1.7		
- 21 - 21										-						
22 23	12	22-24		26-24-24-30			0-2	subangular, fi	brown (10R 3/4), well sorted, ne to medium SAND, trace m silt, wet, dense	nedium -	SP	0.9		PID(B) = 8.0, (H) = 0.9		
- 24 - 25	13	24-26	Soil	18-25-20-18			0-2	SAA, wet, der	nse			0.9		PID(B) = 5.0, (H) = 0.9		
25 26 	14	26-28	Soil				0-2	SAA								
- 27 - 28 - 29	15	28-30	Soil	13-14-50/4			0-2		orown (10R 5/4), well sorted, ledium to coarse SAND, trace lilt, wet	e medium -	SP	0		PID(B) = 0.3 ppm, (H) = -0.0 ppm		

NOTES:

msl = mean sea level

SOIL BORING LOG

SHEET 3 OF 9

CLIENT	:		·E	PA Region 2										
PROJEC	TN	UMBER	:16	64453					BORING NUMBER: _	MA-MV	/14R			
									LOCATION: Martin Aar					
SURFAC	E E	LEVATI	ON:	6.60	feet	msl			TOTAL DEPTH:	120.00	fe	et bgs		
									FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>M</u>	lud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMEN	T: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	METHO!	D : _D	own-the-Hole	2-in (Split 9	Spoon		CH2M GEOLOGIST: _	Winkler	/Rech			
									FINISH:					
NORTH	NG:		39	98382.809	fee	<u>t</u>	···		EASTING:	318528	.828	fee	et	
[6			T	1	z	T	SOIL DESCRIPTION		7	Σ̂		COMMENTS
		L (FT)					SAMPLE DESCRIPTION INTERVAL (FT)				SYMBOL	(PPM)		
Ž F	SAMPLE NUMBER	SAMPLE INTERVAL	l w	\$ 1		SAMPLE RECOVERY (FT)	JSC R	1 -	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDI		P SY	PID/FID READING	NG.	
DEPTH BELOW GRADE (FT)	Š	Ĭ.	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	<u></u>	ER.	DES	GRAIN SIZE	WITH DESCRIPTORS, SOF	RTING,	USCS GROUP	₩ ₩	OTHER TESTING	
TH I	Æ	19.	APLE) V C	ALU	에 있 Sol	APLE ERV		PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENI	,	SS	윤	유	
DEF	SA	SAN	SAN	99 09	ź	SAN	SA IN	LAYERING]			Š	黃	5	
23	i		l	1	ı	1		1			l		1	1
 										•	1			-
 30	16	30-32	Soil	49-50/5	1		0-2	Dark yellowis	sh orange (10YR 6/6), well so medium to coarse SAND, littl	orted,	SP	0.7		PID(B) = 0.7 ppm, (H) = 0.0 ppm
31								gravel, wet	nedidii to coaise SAND, iitti	e medium -				_
"														-
32	17	32-34	Soil	35-44-50/5			0-2	Dadevellevi	h (40)(D C(C)II		SP	0		PID(B) = 0.0, (H) = 0.0
}	''		00,,					subangular,	sh orange (10YR 6/6), well so coarse SAND, some fine grav	vel, wet	1			-
33		İ								-				
†										-				-
34	18	34-36	Soil	30-32-34-34			0-2	Very pale ora	inge (10YR 8/2), well sorted, coarse SAND, some fine grav	el wet	SP	0		PID(B) = 6.0 ppm, (H) = 0.0 ppm
- 35								very dense	ouros or was, some ime grav	-				
-											-			_
- 36	19	36-38	Soil	35-39-35-30			0-0.5	SAA, wet, ve	ov dones		ł	0		PID(B) = 6.0 ppm, (H) =
}							0.5-1.1		ubangular, coarse SAND, so	me fine	SP	0		0.0 ppm PID(B) = 6.0 ppm, (H) =
- 37		Ì						gravel, wet, v		-	1			0.0 ppm
<u> </u>					}					-				-
38	20	38-40	Soil	17-50/5			0-2		h brown (10YR 6/2), well sor SILT and clay, some coarse		мн	0		PID(B) = 0.0 ppm, (H) = 0.0 ppm
_ 39								plasticity, we	Sill i and clay, some coarse	sand, iow]			
- 33										-				
– 40	21	40-42	Soil	35-50/5			0-2				SP	0		PID(B) = 7.5 ppm, (H) =
-	21	40-42	3011	33-30/3			02	subangular, i	ge pink (10R 8/2), well sorted medium to coarse SAND, little	l, e fine -	ا	"		0.0 ppm
 41								gravel, trace	Sin, wet	-	}			
F										-				-
- 42	22	42-44	Soil	36-50/5			0-2		inge (10YR 8/2), well sorted,	medium to	sc	0		PID(B) = 4.2 ppm, (H) =
F 42								coarse SANE), some clay, wet	•				pp
43										_				

bgs = below ground surface

msl = mean sea level

SOIL BORING LOG

SHEET 4 OF 9

CLIENT:	:		E	PA Region 2										
PROJEC	T N	JMBER	: _16	54453					BORING NUMBER: _	MA-MV	/14R			
PROJEC	TN	AME: _E	PA-N	1artin Aaron					LOCATION: Martin Aa	ron Proper				
SURFAC	E EI	EVATION	ON: _	6.60	feet	msl			TOTAL DEPTH:	120.00	fe	et bgs		
DRILLIN	IG C	ONTRA	СТОБ	R: Unit-Tech					FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>M</u>	ud Rotary witl	6in	0.D.	Hollow Sa	nd Bit	DRILLING EQUIPMEN	IT: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	NETHO	D : _D	own-the-Hole	2-in 5	Split S	Spoon		CH2M GEOLOGIST: _	Winkler	/Rech			
START:							· · · · · · · · · · · · · · · · · · ·		FINISH:					
NORTHI	NG:		39	98382.809	fee	t			EASTING:	318528	.828	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)		[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTI INT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO IE, PLASTICITY, MINERAL ITE, DENSITY/COHESIVEN	NATE RTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
44 45 46 47	23	44-46 46-48		38-50/5 - 28-50/5			0-2		nge (10YR 8/2), well sorted nedium to coarse SAND, litt		SP	0		PID(B) = 5.1 ppm, PID(H) = 0.0 ppm -
48 - 49	25	48-50	Soil	50/5			0-2	Dark yellowisi subangular, n	n orange (10YR 6/6), well so nedium to coarse SAND, litt	orted, le clay, wet - -	SP	0		PID(B) = 7.5 ppm, (H) =
- 50 - - 51	26	50-52	Soil	41-50/5			0-2		n orange (10YR 6/6), well sine GRAVEL and coarse sai		GP	0		PID(B) = 7.9 ppm, (H) =
— 52 - — 53	27	52-54	Soil	50/5			0-2	SAA, wet				0		PłD(B) = 8.1ppm, (H) = 0.0 ppm
54 55 55	28	54-56	Soil	39-50/5			0-2		n orange (10YR 6/6), well so ne GRAVEL, some coarse el, wet		GP	0		PID(B) = 4.5 ppm, (H) = 0.0 ppm
— 56 - — 57 -	29	56-58	Soil	25-50/5in			0-2	dark yellowish	, (5Y 7/2), mottled (many, fi green), well sorted, subrou light plasticity, wet	ne, distinct, inded, - -	ML	0		PID(B) = 5.1 ppm, (H) = 0.0 ppm

bgs = below ground surface

msl = mean sea level

SOIL BORING LOG

SHEET 5 OF 9

CLIENT:			Е	PA Region 2									
PROJEC	T.NI	JMBER	:16	64453					BORING NUMBER: MA-MV	/14R			
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaron Proper				
SURFAC	EE	EVATIO	ON: _	6.60	feet	msl	···_		TOTAL DEPTH:120.00	fe	eet bgs	<u> </u>	
									FOREMAN:				
DRILLIN	G M	ETHOD	: <u>M</u>	ud Rotary wit	h 6in	0.D.	Hollow Sand	Bit	DRILLING EQUIPMENT: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	/ETHO	D : _D	own-the-Hole	2-in	Split 9	Spoon		CH2M GEOLOGIST: Winkler	/Rech			
							·		FINISH:				
NORTHI	NG:		39	98382.809	fee	<u>t</u>			EASTING: 318528	.828_	fee	et	
·		E)			Τ		Š		SOIL DESCRIPTION	ğ	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION, ANT GRAIN SIZE, SUBORDINATE WITH DESCRIPTORS, SORTING, PE, PLASTICITY, MINERALOGY), TE, DENSITY/COHESIVENESS,	USCS GROUP SYMBOL	PID/FID READING (R	OTHER TESTING	
"	30	58-60	Soil	26-50/6			0-0.5	SAA, wet					
- 59 -							0.5-1.1	dark yellowis	y (5Y 7/2), mottled (many, fine, distinct, h orange), well sorted, subrounded, t, medium plasticity, wet	CL			-
- 60 - - 61	32	60-62	Soil	32-50/5in			0-2	Dark yellowis subangular, r	th orange (10YR 6/6), well sorted, medium to coarse SAND, wet	SP	0		PID(B) = 7.0 ppm, (H) = 0.0 ppm -
- 62 - 63	33	62-64	Soil	50/5			0-2	SAA, wet			0		PID(B) = 7.0 ppm, (H) = 0.0 ppm
- 64 - 65	34	64-66	Soil	50/4			0-2	SAA, wet	-		0.5		PID(B) = 1.8 ppm, (H) = 0.5 ppm -
- 66 67	35	66-68	Soil	100/4			0-2	SAA, wet	-		0.5		PID(B) = 4.5 ppm, (H) = 0.0 ppm
- - 68 - - 69	36	68-70	Soil	50/4			0-2	SAA, wet					
- 70 71	37	70-72	Soil	50/4			0-2	SAA, wet	-		0.6		PID(B) = 2.5 ppm, (H) =
- - 72	38	72-74	Soil	50/6			0-2	SAA, wet					

302441

SHEET 6 OF 9

CLIENT			E	PA Region 2											
PROJEC	T NI	JMBER	: _16	64453					BORING NUMBER: _	MA-MV	V14R				
PROJEC	CT N	AME: _E	PA-N	Martin Aaron				· · · · · · · · · · · · · · · · · · ·	LOCATION: Martin Aar	ron Proper					
SURFAC	E EI	LEVATI	ON:	6.60	feet	msl		·	TOTAL DEPTH:	120.00	fe	et bgs	3		
									FOREMAN:						_
DRILLIN	IG M	ETHOD	: <u>M</u>	ud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMEN	IT: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit	
SAMPLI	NG N	/ETHO	D : _D	own-the-Hole	2-in :	Split S	Spoon		CH2M GEOLOGIST: _	Winkler	/Rech				_
START:				_					FINISH:						_
NORTH	NG:		39	98382.809	fee	t			EASTING:	318528	.828	fe	et		_
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	ALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INTERPRETATION TO THE STATE OF THE STATE OF THE STATE OF THE STATE THE STATE OF THE STATE	PINATE RTING, OGY),	SS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
1	SAN	SAM	SAM	86"	z	SAN	SAN	LAYERING)		, vac	nscs (OP	 E		
73 74 75	39	74-76	Soil	50/3			0-2	SAA, wet		-					
- 76 - 77	40	76-78	Soil	50/4			0-2	Dark yellowisi subangular, fi	h orange (10YR 6/6), well so ne GRAVEL, little medium g	orted, gravel, wet -	GP				
- 78 - 79	41	78-80	Soil	50/3			0-2	SAA, wet		-				·	
- 80 - 81	42	80-82	Soil	24-38-50/3			0-2	Very pale oral subrounded, (nge (10YR 8/2), well sorted, CLAY and silt, medium plas	ticity, wet		0		PID(B) = 11.0 ppm, (H) = 0.0 ppm	
- - 82 - - 83	43	82-84	Soil	75/5			0-2	Grayish orang coarse SAND	ge (10YR 7/4), well sorted, s , trace silt, wet	subangular, -		1		PID(B) = 1.0 ppm, (H) = -1.0 ppm	- - - - - - - -
- 84 - 85	44	84-86	Soil	50/4			0-2	SAA, wet		- -		1		PID(B) = 3.1 ppm, (H) = 1.0 ppm	1
- 86 - 87	45	86-88	Soil	50/4			0-2	SAA, wet		- -		1		PID(B) = 4.1 ppm, (H) = "1.0 ppm -	 - - -

NOTES:

SHEET 7 OF 9

CLIENT:			E	PA Region 2										
PROJEC	TN	JMBER	: 16	54453					BORING NUMBER:	MA-MW	14R			
PROJEC	TN	AME: _E	PA-M	Martin Aaron					LOCATION: Martin Aaron	Proper				
SURFAC	E EI	EVATIO	ON: _	6.60	feet	msl		·	TOTAL DEPTH:	120.00	fe	et bgs		
									FOREMAN:					
DRILLIN	G MI	ETHOD	: <u>M</u>	ud Rotary witl	h 6in	<u>O.D.</u>	Hollow Sand I	Bit	DRILLING EQUIPMENT:	Failing 14	100 OS	Rig wit	h 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	NETHOL	D : _D	own-the-Hole	2-in 9	Split S	Spoon		CH2M GEOLOGIST:	Winkler/	Rech			
START:									FINISH:					
NORTHI	NG:		39	98382.809	fee	<u>t</u>		····	EASTING:	318528.	828	fee	et	
		E			T		z		SOIL DESCRIPTION		۲	(PPM)		COMMENTS
	~	(FT)					SAMPLE DESCRIPTION INTERVAL (FT)				SYMBOL	3 (PF		
	SAMPLE NUMBER	SAMPLE INTERVAL	m	ST.		SAMPLE RECOVERY (FT)	T)) -	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN		P S	PID/FID READING	TESTING	
DEPTH BELOW GRADE (FT)	NO.	Z	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	ш	ERY	E DES	GRAIN SIZE	WITH DESCRIPTORS, SORT	ING,	GROUP	5	TES	,
SRA	APLE	IPLE	AP.LE	W(7, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ALC.	APLE COV	MPLE ERV		PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	/-	uscs G	J E	OTHER.	
0.00	SAI	SAN	SAN	9-,9 01-8	ź	SA	SAI	LAYERING]			Sn	≧	0	
				į	l							l		
												}		_
— 88 _	46	88-90	Soil	50/4			0-2	SAA, wet				1.2		PID(B) = 3.2 ppm, (H) = 1.2 ppm
89										_		l		
-							-			-				_
- 90	47	90-92	Soil	50/3			0-2	SAA, wet				1.2		PID(B) = 5.1 ppm, (H) =
-								O/VI, MCI		4				1.2 ppm
- 91										٦				
- 00														_
— 92 _	48	92-94	Soil	50/3			0-2	SAA, wet				1		PID(B) = 4.1 ppm, (H) = 1.0 ppm
- 93										_				_
-										-				-
94	49	94-96	Soil	50/4			0-2	SAA, wet				0.7		PID(B) = 2.2 ppm, (H) =
-					-			OAA, WEL		-				0.7 ppm
- 95										-				-
-				,			'			1				-
- 96	50	96-98	Soil	50/4			0-2	SAA, wet				0.7		PID(B) = 4.7 ppm, (H) = 0.7 ppm
 97														
- "														-
- 98	51	98-100	Soil	21-50/4	1		0-2	Velloudah ass	(E) (7/2) mattled (semmes f	in a	CL	0.7		PID(B) = 4.1 ppm, (H) =
_	J ,							distinct, dark	y (5Y 7/2), mottled (common, f yellowish orange), well sorted, ntermixed, CLAY and silt, wet	mie,				0.7 ppm
- 99								Subangular, I	mermixed, CLAF and siit, wet	-				
<u> </u>										†				
— 100 	52	100-102	Soil	26-50/5			0-0.8	Yellowish gra	y (5Y 7/2), well sorted, subrour t, medium plasticity, wet	nded,	CL	2.2		PID(B) = 2.7 ppm, (H) = -
— 101							0.8-1.3	Yellowish gra	y (5Y 7/2), well sorted, subrour	nded,	мн	2.2		PID(B) = 2.7 ppm, (H) =
L								clayey SILŤ, I	low plasticity, wet	1				2.2 ppm

NOTES:

SHEET 8 OF 9

CLIENT		-	E	PA Region 2									-		
PROJEC	CT N	JMBER	:	64453					BORING NUMBER:	MA-MV	/14R				
PROJEC	T N	AME: E	PA-N	Martin Aaron					LOCATION: Martin Aar						_
			-			msl			TOTAL DEPTH:			et bgs			_
									FOREMAN:						
									DRILLING EQUIPMEN				th 6i	n O.D. dia. Sand Bit	.
									CH2M GEOLOGIST: _						
									FINISH:						
NORTH	NG:		39	98382.809	fee	<u>:t</u>			EASTING:	318528.	828	fee	et		_
		(FT)					NOI		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE ' GRAIN SHAP	TTLING, SOIL DESCRIPTIC NT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOF E, PLASTICITY, MINERALC IE, DENSITY/COHESIVENI	INATE RTING, DGY),	USCS GROUP SYN	PID/FID READING	OTHER TESTING		
- 102 - 103	54	102-104	Soil	29-50/6			0-2	No Recovery							
- 104 - 105	55	104-106	Soil	46-50/6			0-2		y (5Y 7/2), well sorted, subroome fine sand, wet	ounded,	ML	2.4		PID(B) = 4.7 ppm, (H) = 2.4 ppm	 - - -
- 106 - 107	56	106-108	Soil	38-50/4			0-2	SAA, wet		-		2.4		PID(B) = 5.1 ppm, (H) 2.4 ppm	
- 108 - 109	57	108-110	Soil	50/6			0-2	fine SAND, so layers of 5Y 7.	r (5Y 7/2), well sorted, subrome clay, wet (NOTE: Layere /2, not mottled, well sorted, clay, (CL), and silt, thread dis	ed with 3in -	sc			-	
110 - 111 	58	110-112	Soil	32-50/4			0-0.5 0.5-1.3	CLAY and sift Yellowish gray dark yellowish CLAY, high pl	(5Y 7/2), well sorted, subro, medium plasticity, wet (5Y 7/2), mottled (few, fine orange), well sorted, subro saticity, wet (NOTE: Driller r 112ft from rig behavior)	, distinct, _ unded,	CL CH	1.9 1.9		PID(B) = 5.2 ppm, PID(H) = 1.9 ppm; Driller noted solid clay from 110-112ft from rig behavior PID(B) = 5.2 ppm, (H) = 1.9 ppm	
- 112 - - 113	60	112-114	Soil	23-50-60/6			0-2		(5Y 7/2), well sorted, subro	ounded,	sc	1.9		PtD(B) = 5.7 ppm, (H) = 1.9 ppm	
— 113 _				•]				-	
114 	61	114-116	Soil	29/6			0-2	SAA, wet (NO as 110.5ft - 11	TE: Clay lense 3in at 114ft, 3ft)	same clay		1.9		-	1
— 115										-				-	1
116														-	

NOTES

msi = mean sea level

SHEET 9 OF 9

CLIENT:			E	PA Region 2						,		_		
PROJEC	T N	JMBER	:16	34453			·		BORING NUMBER: _	MA-MW	14R			
PROJEC	T NA	ME: _E	PA-N	Martin Aaron					LOCATION: Martin Aar	on Proper				·
SURFAC	E EL	EVATIO	ON:	6.60	feet	msl			TOTAL DEPTH:	120.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	IG MI	ETHOD	: <u>M</u>	ud Rotary with	6in	O.D.	Hollow Sand E	Bit	DRILLING EQUIPMEN	T: Failing 14	00 OS	Rig wi	th 6in	O.D. dia. Sand Bit
SAMPLI	NG N	/ETHO	D : _D	own-the-Hole	2-in (Split S	Spoon		CH2M GEOLOGIST: _	Winkler/	Rech			
START:									FINISH:					
NORTH	NG:		39	98382.809	fee	t	··		EASTING:	318528.	828	fee	∋t	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-5"-5"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO' PREDOMINA GRAIN SIZE ' GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTIC INT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOF E, PLASTICITY, MINERALC TE, DENSITY/COHESIVENI	INATE RTING, DGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
117 - 118 - 119	62 63	116-118					0-0.2	SAA, wet		-				-

NOTES:

msl = mean sea level

SHEET 1 OF 13

CLIENT:			E	PA Region 2										
PROJEC	T NU	JMBER	:16	64453					BORING NUMBER:	MA-MW14	D			
PROJEC	T N	AME: _E	PA-N	fartin Aaron					LOCATION: Martin Aaron	n Proper				
SURFAC	E EI	EVATIO	ON:	6.55	feet	msl			TOTAL DEPTH:	182.00	fee	et bgs		· · · · · · · · · · · · · · · · · · ·
DRILLIN	G C	ONTRA	CTOF	: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD:	. <u>M</u>	ud Rotary					DRILLING EQUIPMENT	Failing 1400	os	Rig wit	h 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	NETHO	D: _D	own-the-Hole	2-in S	Split S	Spoon		CH2M GEOLOGIST:	Winkler/Re	ch			
START:			0	1/02/2002 7:20	0:00	РМ		•	FINISH:					
NORTH	NG:		39	98382.657	fee	t			EASTING:	318539.01	4	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOT PREDOMINA GRAIN SIZE I GRAIN SHAPI	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	IATE GING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 0 - 1	1	0-2	Soil			1.5	0.5-1.5	Dark yellowish subangular, fii clay, dry	n orange (10YR 6/6), well son ne to medium SAND and silt,	red, SI little -	м	1		PID(B) = 1.0 ppm, (H) = 1.0 ppm
2 3	2	2-4	Soil		NA	0.1	0-0.1	Dark gray (N3 medium GRA\), moderately sorted, angular VEL, trace silt, trace clay, dry	, fine to G	Р	1		PID(B) = 1.0 ppm, (H) = 1.0 ppm
- - 4 - - 5	3	4-6	Soil		NA	0	0-2	SAA, dry	·					PID(B)=1.0 ppm, (B)=1.0 ppm
- 6 - 7	4	6-8	Soil		NA	0	0-2	SAA, dry						PID(B)=1.0 ppm, (B)=1.0 ppm
- - 8 - - 9	5	8-10	Soil		NΑ	0.3	0-0.3	SAA, dry				0.8		PID(B) = 1.0 ppm, (H) = 0.8 ppm
- 10 11	6	10-12	Soil	9-9-9-48	18	0.6	0-2	Pale olive (10) medium SAND	Y 6/2), well sorted, subangula D, trace silt, moist, loose	r, fine to SF	0	8.0		PID(B) = 1.9 ppm, (H) = 0.8 ppm
- 12 - 13	7	12-14	Soil	2-3-8-13	11	0.7	0-2	SAA, moist, m	edium dense		ļ	0.8		PID(B) = 4.7, (H) = 0.8 ppm
- 14	8	14-16	Soil	14-12-50/5	ΝA		0-2	SAA, moist				0.8		PID(B) = 7.4 ppm, (H) = -

NOTES:

msl = mean sea level

SHEET 2 OF 13

CLIENT:			E	PA Region 2										
PROJEC	TN	JMBER	: <u>16</u>	34453				BORING NUMBER:	MA-MW	14D				
PROJEC	TN	AME: _E	PA-M	lartin Aaron				LOCATION: Martin Aaro						
SURFAC	EE	EVATION	ON: _	6.55	feet	msl		TOTAL DEPTH:	182.00	fe	et bgs			
								FOREMAN:						
DRILLIN	G MI	ETHOD	: <u>M</u>	ud Rotary			· · · · · · · · · · · · · · · · · · ·	DRILLING EQUIPMENT	r: Failing 14	100 OS	Rig wit	h 6ir	O.D. dia. Sand Bit	
SAMPLI	NG N	METHO	D : <u>D</u>	own-the-Hole 2	2-in 9	Split !	Spoon	CH2M GEOLOGIST:	Winkler/	Rech				
								FINISH:						
NORTHI	NG:		39	98382.657	fee	t		EASTING:	318539.	014	fee	et		
ELOW E(FT)	JUMBER	VTERVAL (FT)	YPE	STNU		RY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDIN GRAIN SIZE WITH DESCRIPTORS, SOR	NATE	GROUP SYMBOL	READING (PPM)	TESTING	COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DI INTERVAL	GRAIN SHAPE, PLASTICITY, MINERALO WATER STATE, DENSITY/COHESIVENE LAYERING]	GY),	USCS GR	PID/FID R	OTHER TE		
- 15 - 16	9	16-18	Can	WH-WH-WH-WI		2	0-2		_	NAL J	0.8		PID(B) = 6 ppm, (H) = 0.	
- 17	y		2011	*************************************		_	0-2	Pale olive (10Y 6/2), mottled (common, fine dark yellowish orange), well sorted, subrou SILT and clay, wet, very loose		МН	0.8		. (מען ט – ט נווען נייט, (ה) – ט.	
— 18 - — 19	10	18-20	Soil	10-34-35-37	69	1	0-2	Grayish pink (5R 8/2), poorly sorted, suban medium to coarse SAND, trace clay, wet, v dense	ngular, very -	sw	0.8		PID(B) = 5.0, (H) =0.8	1
20 21	11	20-22	Soil	11-35-33-37	68	1.6	0-2	SAA, wet, very dense	-		1.7		PID(B) = 8.0, (H) = 1.7	
- 22 - 23	12	22-24	Soil	26-24-24-30	48	0.9	0-2	Dark reddish brown (10R 3/4), well sorted, subangular, fine to medium SAND, trace in gravel, trace silt, wet, dense	nedium -	SP	0.9		PID(B) = 8.0, (H) = 0.9	
- 24 - 25	13	24-26	Soil	18-25-20-18	45	0.4	0-2	SAA, wet, dense	-		0.9		PID(B) = 5.0, (H) = 0.9	
- 26 - 27	14	26-28	Soil			0	0-2	SAA						
- 28 - 20	15	28-30	Soil	13-14-50/4	NA	0.5	0-2	Pale reddish brown (10R 5/4), well sorted, subangular, medium SAND, trace medium trace silt, wet		SP	0		PID(B) = 0.3 ppm, (H) = 0.0 ppm	<u>_</u>

NOTES:

msl = mean sea level

SHEET 3 OF 13

CLIENT:			El	PA Region 2										
PROJEC	T NI	JMBER:	:16	34453					BORING NUMBER:	MA-MW	14D			
PROJEC	TN	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaro	n Proper				
SURFAC	EEL	EVATIO	ON: _	6.55	feet	msl			TOTAL DEPTH:	182.00	fe	et bgs		···
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD:	_ <u>M</u>	ud Rotary					DRILLING EQUIPMENT	: Failing 14	400 OS	Rig wil	h 6ir	O.D. dia. Sand Bit
SAMPLII	NG N	NETHO	D: <u>D</u>	own-the-Hole	2-in 9	Split S	Spoon		CH2M GEOLOGIST:	Winkler/	Rech			
START:			0	1/02/2002 7:20	0:00	РМ			FINISH:					
NORTHI	NG:		39	98382.657	fee	<u>t</u> _			EASTING:	318539.	014	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	ALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' E, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	S GROUP SYMBOL	PID/FID READING (PPM)	IER TESTING	COMMENTS
PEP	SAM	SAM	SAM	BLO 6"-6"	Z	SAN	SAN	LAYERING]		ŕ	nscs	윤	OTHER	
- - 30 - - 31	16	30-32	Soil	49-50/5		0.7			h orange (10YR 6/6), well sor nedium to coarse SAND, little		SP	0.7		PID(B) = 0.7 ppm, (H) =
- 32 - 33	17	32-34	Soil	35-44-50/5	NA		0-2	Dark yellowis subangular, c	h orange (10YR 6/6), well sor coarse SAND, some fine grave	ted, el, wet -	SP	0		PID(B) = 0.0, (H) = 0.0
34 35	18	34-36	Soil	30-32-34-34	66	1	0-2	Very pale ora subangular, c very dense	nge (10YR 8/2), well sorted, oarse SAND, some fine grave	el, wet, -	SP	0		PID(B) = 6.0 ppm, (H) = 0.0 ppm
- 36 - - 37	19	36-38	Soil	35-39-35-30	74	1.1	0-0.5 0.5-1.1	SAA, wet, ver well sorted, si gravel, wet, ve	ubangular, coarse SAND, sor	ne fine	SP	0		PID(B) = 6.0 ppm, (H) = 0.0 ppm PID(B) = 6.0 ppm, (H) = 0.0 ppm
38 39	20	38-40	Soil	17-50/5	NA	1.0	0-2	Pale yellowish subrounded, s plasticity, wet	n brown (10YR 6/2), well sorte SILT and clay, some coarse s	ed, sand, low -	МН	0		PID(B) = 0.0 ppm, (H) = 0.0 ppm
40 41	21	40-42	Soil	35-50/5	NA	1	0-2	Grayish orang subangular, n gravel, trace s	ge pink (10R 8/2), well sorted, nedium to coarse SAND, little silt, wet	fine -	SP	0		PID(B) = 7.5 ppm, (H) = 0.0 ppm
42 43	22	42-44	Soil	36-50/5	NA	1.0	0-2		nge (10YR 8/2), well sorted, r , some clay, wet	medium to	sc	0		PID(B) = 4.2 ppm, (H) =
- 40 41 42 								subangular, n gravel, trace s Very pale ora	nedium to coarse SAND, little silt, wet nge (10YR 8/2), well sorted, r	fine -		_		0.0 ppm PID(B) = 4.2 p

NOTES:

msl = mean sea level

SHEET 4 OF 13

CLIENT	:		E	PA Region 2										_
PROJEC	CT N	UMBÉR	:1	64453			· ·	BORING NUMBER:	MA-MV	/14D				
								LOCATION: Martin Aaro						-
								TOTAL DEPTH:			et bgs			-
								FOREMAN:						_
DRILLIN	IG M	ETHOD	: <u>M</u>	lud Rotary				DRILLING EQUIPMENT	: Failing 1	400 OS	Rig wi	h 6iı	n O.D. dia, Sand Bit	_
SAMPLI	NG M	METHO	D : _D	own-the-Hole	2-in	Split S	Spoon	CH2M GEOLOGIST:	Winkler	/Rech				_
START:		_	0	1/02/2002 7:20	0:00	PM_		FINISH:						
NORTH	NG:		3	98382.657	fee	et		EASTING:	318539	.014	fee	et		_
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION NTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDIN GRAIN SIZE WITH DESCRIPTORS, SORT GRAIN SHAPE, PLASTICITY, MINERALOG WATER STATE, DENSITY/COHESIVENE	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
	S S	δ, Ay	S,	B.L.	z	AS &	& Z	LAYERING]		5	<u>a</u>	6		
44	23	44-46	Soil	38-50/5	NA	1,1	0-2	Very pale orange (10YR 8/2), well sorted, subangular, medium to coarse SAND, little	clay, wet	SP			- -	1
- 45 - 46	24	46-48	Soil	28-50/5	NA	0.6	0-2	SAA, wet			0		PID(B) = 5.1 ppm, PID(H) = 0.0 ppm	
47 - 48 	25	48-50	Soil	50/5	NA	0.7	0-2	Dark yellowish orange (10YR 6/6), well sort subangular, medium to coarse SAND, little	ted, clay, wet -	SP	0		PID(B) = 7.5 ppm, (H) = 0.0 ppm	
- 49 - - 50	26	50-52	Soil	41-50/5	NA	0.6	0-2	Dark yellowish orange (10YR 6/6), well sort subangular, fine GRAVEL and coarse sand	ied, , wet	GP	0		PID(B) = 7.9 ppm, (H) = 0.0	
— 51 - — 52 -	27	52-54	Soil	50/5	NA	1.5	0-2	SAA, wet			0		PID(B) = 8.1ppm, (H) = 0.0 ppm	
— 53 - — 54 -	28	54-56	Soil	39-50/5	NA	0.4	0-2	Dark yellowish orange (10YR 6/6), well sort subangular, fine GRAVEL, some coarse sa medium gravel, wet	ed, nd, little -	GP	0		PID(B) = 4.5 ppm, (H) =	
55 56 57	29	56-58	Soil	25-50/5in	NA	1.1	0-2	Yellowish gray (5Y 7/2), mottled (many, fine dark yellowish green), well sorted, subround clayey SILT, slight plasticity, wet		ML	0		PID(B) = 5.1 ppm, (H) = 0.0 ppm	
- 5/ - 58									-					

NOTES:

msl = mean sea level

SHEET 5 OF 13

CLIENT:			E	PA Region 2									
PROJEC									BORING NUMBER: MA-MW				
PROJEC	TN	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaron Proper				
SURFAC	E EI	EVATIO	ON:	6.55	feet	msl	·		TOTAL DEPTH: 182.00	fe	et bgs		
									FOREMAN:				
DRILLIN	G M	ETHOD:	: <u>M</u>	ud Rotary					DRILLING EQUIPMENT: Failing 1	400 OS	Rig wi	th 6ii	O.D. dia. Sand Bit
SAMPLI	NG N	METHO	D: _D	own-the-Hole	2-in 9	Split S	Spoon		CH2M GEOLOGIST: Winkler	Rech			
					0:00				FINISH:				
NORTH	NG:		39	98382.657	fee	t			EASTING: 318539.	014	fee	et	····
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TITLING, SOIL DESCRIPTION, INT GRAIN SIZE, SUBORDINATE WITH DESCRIPTORS, SORTING, PE, PLASTICITY, MINERALOGY), TE, DENSITY/COHESIVENESS,	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 59 - 60	30	58-60 60-62		26-50/6 32-50/5in	NA	0.8	0-0.5 0.5-1.1	dark yellowish CLAY and sill Dark yellowis	y (5Y 7/2), mottled (many, fine, distinct, n orange), well sorted, subrounded, —t, medium plasticity, wet h orange (10YR 6/6), well sorted, nedium to coarse SAND, wet	CL	o		PID(B) = 7.0 ppm, (H) = 0.0 ppm
- 61 - 62 - 63	33	62-64	Soil	50/5		0.4	0-2	SAA, wet	- - -		0		PID(B) = 7.0 ppm, (H) = 0.0 ppm
64 65	34	64-66	Soil	50/4		0.4	0-2	SAA, wet	-		0.5		PID(B) = 1.8 ppm, (H) = 0.5 ppm
66 67	35	66-68	Soil	100/4		0.4	0-2	SAA, wet	-		0.5		PID(B) = 4.5 ppm, (H) = 0.0 ppm
68 69	36	68-70	Soil	50/4		0.2	0-2	SAA, wet					
70 71	37	70-72	Soil	50/4		0.3	0-2	SAA, wet			0.6		PID(B) = 2.5 ppm, (H) = 0.6 ppm
- 72	38	72-74	Soil	50/6		0.3	0-2	SAA, wet	_				-

NOTES:

msl = mean sea level

SHEET 6 OF 13

	:		E	PA Region 2									
PROJEC									BORING NUMBER:	MA-MW14D			
				fartin Aaron					LOCATION: Martin Aaron F				
									TOTAL DEPTH:		feet bg	 s	
'.									FOREMAN:				
									DRILLING EQUIPMENT: F				
									CH2M GEOLOGIST:				
					,				FINISH:				
				98382.657	fee				EASTING:3			et	
				г	-,		1					т-	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION, INT GRAIN SIZE, SUBORDINAT WITH DESCRIPTORS, SORTIN IE, PLASTICITY, MINERALOGY, TE, DENSITY/COHESIVENESS	ie, si	PID/FID READING (PPM)	OTHER TESTING	
— 73 - — 74	39	74-76	0.7	50/3		0.2	0-2						
- 75	39	7470		30/3		0.2	0-2	SAA, wet		-			
- 76 - 77	40	76-78	Soil	50/4			0-2	Dark yellowis subangular, f	h orange (10YR 6/6), well sorted ine GRAVEL, little medium grave	GP			
- 78 - 79	41	78-80	Soil	50/3		0	0-2	SAA, wet					
- 80 - 81	42	80-82	Soil	24-38-50/3		0.9	0-2	Very pale ora subrounded,	nge (10YR 8/2), well sorted, CLAY and silt, medium plasticity,	wet	0		PID(B) = 11.0 ppm, (H 0.0 ppm
- 82 - 83	43	82-84	Soil	75/5		0.6	0-2		ge (10YR 7/4), well sorted, suban , trace silt, wet	ogular,	1		PID(B) = 1.0 ppm, (H) 1.0 ppm
- 84 - 85	44	84-86	Soil	50/4		0.3	0-2	SAA, wet			1		PlD(B) = 3.1 ppm, (H) 1.0 ppm
- 86	45	86-88	Soil	50/4		0.4	0-2	SAA, wet			1		PID(B) = 4.1 ppm, (H) 1.0 ppm

SHEET 7 OF 13

CLIENT:			El	PA Region 2						J	-		
PROJEC	T N	JMBER	: _16	34453					BORING NUMBER:	MA-MW14D			
PROJEC	TN	AME: _E	PA-N	fartin Aaron					LOCATION: Martin Aaron	Proper			
SURFAC	E EI	EVATIO	ON:	6.55	feet	msl			TOTAL DEPTH:	182.00 fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	t: <u>Unit-Tech</u>					FOREMAN:				
DRILLIN	G M	ЕТНОР	: <u>M</u>	ud Rotary				·	DRILLING EQUIPMENT:	Failing 1400 OS	Rig wil	h 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	/ETHO	D : _D	own-the-Hole	2-in \$	Split S	Spoon		CH2M GEOLOGIST:	Winkler/Rech			
START:			01	1/02/2002 7:2	0:00	PM_			FINISH:				
NORTH	NG:		39	98382.657	fee	t			EASTING:	318539.014	fee	et	
					T			1	SOIL DESCRIPTION		ŝ	Γ	COMMENTS
		- (FT)					SAMPLE DESCRIPTION INTERVAL (FT)		SOIL DESCRIPTION	SYMBOL	(PPM)		COMMENTS
3 €	SAMPLE NUMBER	SAMPLE INTERVAL	,,,	ည		Œ	CRIP	1 -	OTTLING, SOIL DESCRIPTION,		READING	NG	
DEPTH BELOW GRADE (FT)	NON	RA	SAMPLE TYPE	NO.		RY (DES L (F)		ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTII	1 ~	REAL	OTHER TESTING	
TH B	PLE	PLE	P.E.	, φ , φ	ALC.	PLE	PLE RVA		PE, PLASTICITY, MINERALOGY TE, DENSITY/COHESIVENESS), 5 S. 8	PID/FID R	ER 1	
DEP	SAN	SAM	SAM	BLOW COUNTS 6"-6"-6"	Z	SAMPLE RECOVERY (FT)	SAN	LAYERING]	•	nscs (<u> </u>	P	
<u> </u>		\	· —		1			1		<u> </u>	1		
-										1			_
- 88	.46	88-90	Soil	50/4		0.3	0-2	SAA, wet			1.2		PID(B) = 3.2 ppm, (H) = 1.2 ppm
- - 89		}]			_
_ 69													_
- 90	47	90-92	Soil	50/3		0.3	0-2		·		1.2		PID(B) = 5.1 ppm, (H) =
-] "	30-32	30"	30.0			"	SAA, wet		-	'		1.2 ppm
91			Ì							- 1			
-										-			-
− 92	48	92-94	Soil	50/3		0.3	0-2	SAA, wet			1		PID(B) = 4.1 ppm, (H) = 1.0 ppm
93]			
_ 33										4			-
- 94	49	94-96	Soil	50/4		0.4	0-2	CAAat			0.7		PID(B) = 2.2 ppm, (H) =
-	75	.,	00"					SAA, wet			"		0.7 ppm
— 95										†			_
-										1			-
96	50	96-98	Soil	50/4		0.3	0-2	SAA, wet			0.7		PID(B) = 4.7 ppm, (H) = 0.7 ppm
97]			
_ "										1			
- 98	51	98-100	Soil	21-50/4		0.8	0-2	Valleuriah and	(5)(7(0)	CL CL	0.7		PID(B) = 4.1 ppm, (H) =
-	3,	00 100	00"	270071			0.2	distinct, dark	y (5Y 7/2), mottled (common, fir yellowish orange), well sorted, ntermixed, CLAY and silt, wet	ne,	".,		0.7 ppm
99							:	Subaliguidi, i	memined, CEAT and Silt, Wet	1			-
-										1			-
100	52	100-102	Soil	26-50/5		1.3	0-0.8	Yellowish gra	y (5Y 7/2), well sorted, subround	ded, CL	2.2		PID(B) = 2.7 ppm, (H) = 2.2 ppm
101							0.8-1.3	ļ	t, medium plasticity, wet	ted MH	2.2		PID(B) = 2.7 ppm, (H) =
'0'								clayey SILT,	low plasticity, wet	J			2.2 ppm

NOTES:

msl = mean sea level

SHEET 8 OF 13

CLIENT	:		E	PA Region 2									
PROJEC								BORING NUMBER: MA-MV					
								LOCATION: Martin Aaron Proper					_
			-	6.55				TOTAL DEPTH: 182.00		eet bgs	_		-
								FOREMAN:					_
								DRILLING EQUIPMENT: Failing			h 6i	n O.D. dia. Sand Bit	
								CH2M GEOLOGIST: Winkle					_
								FINISH:					_
NORTH	NG:		3	98382.657	fee	et		EASTING: 318539	.014	fee	<u>≥t</u>		_
		(FT)					NO N	SOIL DESCRIPTION	lg B	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING]	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING		
— 102 - — 103	54	102-104	Soil	29-50/6		0	0-2	No Recovery				-	-
104 105	55	104-106	Soil	46-50/6		0.9	0-2	Yellowish gray (5Y 7/2), well sorted, subrounded, clayey SiLT, some fine sand, wet	ML	2.4		PID(B) = 4.7 ppm, (H) = 2.4 ppm	
- - 106 - - 107	56	106-108	Soil	38-50/4		0.6	0-2	SAA, wet		2.4		PID(B) = 5.1 ppm, (H) 2.4 ppm	7
- 108 - 109	57	108-110	Soil	50/6		0.6	0-2	Yellowish gray (5Y 7/2), well sorted, subrounded, fine SAND, some clay, wet (NOTE: Layered with 3in layers of 5Y 7/2, not mottled, well sorted, subrounded, clay, (CL), and silt, thread dia. 1/16in.)	SC			- - - -	
— 110 - — 111	58	110-112	Soil	32-50/4		1.3	0-0.5 0.5-1.3	Yellowish gray (5Y 7/2), well sorted, subrounded, CLAY and silt, medium plasticity, wet Yellowish gray (5Y 7/2), mottled (few, fine, distinct, dark yellowish orange), well sorted, subrounded, CLAY, high plasticity, wet (NOTE: Driller noted solid clay from 110-112ft from rig behavior)	CL CH	1.9 1.9		PID(B) = 5.2 ppm, PID(H) = 1.9 ppm; Driller noted solid clay from 110-112ft from rig behavior PID(B) = 5.2 ppm, (H) = 1.9 ppm	
— 112 - — 113	60	112-114	Soil	23-50-60/6		1.0	0-2	Yellowish gray (5Y 7/2), well sorted, subrounded, fine SAND, little clay, wet	sc	1.9		PID(B) = 5.7 ppm, (H) = 1.9 ppm	
- 114 115	61	114-116	Soil	29/6	NA	1.0	0-2	SAA, wet (NOTE: Clay lense 3in at 114ft, same clay as 110.5ft - 113ft)		1.9		- - - - -	
<u> </u>		· I	: !		۱ ۱	' '			, ,	· !	,	-	1

NOTES:

msl = mean sea level

SHEET 9 OF 13

CLIENT: _			EF	PA Region 2										
PROJECT	r NU	MBER:	16	34453					BORING NUMBER:	MA-MW1	4D			
PROJECT	ΓNA	ME: <u>E</u>	PA-M	lartin Aaron					LOCATION: Martin Aaron					
				6.55					TOTAL DEPTH:					
DRILLING	s co	NTRA	CTOR	: Unit-Tech					FOREMAN:					
DRILLING	S ME	THOD:	_M	ud Rotary					DRILLING EQUIPMENT:	Failing 140	0 OS	Rig wit	h 6ir	O.D. dia, Sand Bit
SAMPLIN	IG M	ETHO): <u>Do</u>	own-the-Hole	2-in 5	Split S	Spoon		CH2M GEOLOGIST:	Winkler/R	lech			
									FINISH:					
NORTHIN	IG: _		39	98382.657	fee	<u>t_</u> _			EASTING:	318539.0	14	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT IE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 117	62	116-118	Soil	50/5in	NA	0.2	0-0.2	SAA, wet		1				-
- 118 - 119	63	118-120	Soil	50/5in	NA	0.1	0-0.1	SAA, wet						
120	64	120-122	Soil	15-20-50/5in	NA	1.9	0-1.9	Yellowish gra distinct, dark subrounded, sand, medium layer of clayer	y (5Y 7/2), mottled (common, yellowish orange), very well sc intermixed, CLAY and silt, trac n plasticity, wet (NOTE: At 121 y sand.)		CL	1.9		PID(B) = 5.1 ppm, PID(H) = 1.9 ppm
- 122 6 - 123	65	122-124	Soil	36-76-50/1in	NA	1.5	0-0.5 0.5-1.5	silty CLAY, hi	y (5YR 4/1), well sorted, subro gh plasticity, wet (5YR 8/1), well sorted, subrour t, medium plasticity, wet	1	CH CH			-
- - 124 - - 125	67	124-126	Soil	72/6in	NA	0.7	0-0.7		y (5YR 4/1), well sorted, subro	ounded,	SM	1.6		PID(B) = 1.6 ppm, PID(H) = 1.6 ppm
- 126 - - 127	68	126-128	Soil	. 55/6in	NA	0.6	0-0.6	SAA, wet				1.6		PID(B) = 1.6 ppm, PID(H) = 1.6 ppm; 3in layer of burned wood
- - 128 - - 129	69	128-130	Soil	35-50/2in	NA	0.6	0-0.6	SAA, wet				1.6		PID(B) = 1.6 ppm, PID(H) = 1.6 ppm
130 NOTES:	70	130-132	Soil	50/6in	NA	0.4	0-0.4	SAA, wet				2		PID(B) = 2.0 ppm, PID(H) = 2.0 ppm

SHEET 10 OF 13

i	CLIENT	:		E	PA Region 2								<u> </u>
	PROJEC	CT N	UMBER	: _1	64453				BORING NUMBER: MA	MW14D		·	
	PROJEC	CT N	AME: _E	<u> PA-N</u>	Martin Aaron				LOCATION: Martin Aaron Pro	oer			
	SURFAC	CE EI	LEVATION	ON:	6.55	feet	msl		TOTAL DEPTH:182	.00	feet bg:	5	
	DRILLIN	IG C	ONTRA	стог	R: Unit-Tech	<u> </u>			FOREMAN:				
	DRILLIN	IG M	ETHOD	: _M	lud Rotary				DRILLING EQUIPMENT: Fail	ng 1400 O	S Rig w	ith 6ii	n O.D. dia. Sand Bit
	SAMPLI	NG N	NETHO	D : _D	own-the-Hole	2-in	Split	Spoon	CH2M GEOLOGIST: Wir	kler/Rech	1		
	START:			0	1/02/2002 7:2	0:00	PM		FINISH:				
	NORTH	ING:		3	98382.657	fee	et		EASTING: 318	539.014	fe	<u>et</u>	
	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING]	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
)	- 131 - 132 - 133	71	132-134	Soil	32-50/5in	NA	1.1	0-1.1	SAA, wet		2.1		PID(B) = 3.0 ppm, PID(H) = 2.1 ppm
/	- 134 - 135	72	134-136	Soil	42-50/5in	NA	1.1	0-0.9	Brownish gray (5YR 4/1), well sorted, subrounder SILT, slight plasticity, wet Brownish gray (5YR 4/1), well sorted, subrounder		1.9		PID(B) = 3.0 ppm, PID(H) = 1.9 ppm
	- - 136	74	136-138	Soil	50/6in	NA	0.8	0-0.8	sity CLAY, high plasticity, wet				-
	- 137 - 138 - 139	75	138-140	Soil	20-30-50/6in	NA	1.7	0-1.7	Very pale orange (10YR 8/2), well sorted, subrounded, CLAY and silt, medium plasticity, we laminated (NOTE: Laminated every 2in - 3in with fine sand and silt)	CL	2		PID(B) = 2.0 ppm, PID(H) = 2.0 ppm
	- - 140 - - 141	76	140-142	Soil	50/6in	NA	0.5	0-0.5	Very pale orange (10YR 8/2), mottled (common, fine, moderate orange pink), well sorted, subrounded, SILT, some fine sand, non-plastic, w	ML et	2		PID(B) = 2.0 ppm, PID(H) = 2.0 ppm
	- - 142 - - 143	77	142-144	Soil	70/5in	NA	0.3	0-0.3	Very pale orange (10YR 8/2), well sorted, subrounded, fine SAND, some silt, trace clay, we	SM	2		PID(B) = 2.0 ppm, PID(H) = 2.0 ppm
J	- 144 - 145	78	144-146	Soil	48-50/6in	NA	1.0	0-1	Very pale orange (10YR 8/2), mottled (common, fine, distinct, dark yellowish orange), well sorted, subrounded, intermixed, CLAY and silt, medium	CL			
	NOTES:										msi	≈ me	ean sea level

SHEET 11 OF 13

CLIENT			E	PA Region 2								
PROJEC	T NI	UMBER	:16	64453				BORING NUMBER: MA-M	W14D			
PROJEC	T N	AME: _E	PA-N	fartin Aaron				LOCATION: Martin Aaron Proper	 -			·····
SURFAC	E EI	LEVATIO	ON: .	6.55	feet	msl		TOTAL DEPTH: 182.00	fe	eet bgs	<u> </u>	
DRILLIN	IG C	ONTRA	стог	R: Unit-Tech				FOREMAN:				
DRILLIN	IG M	ETHOD:	: <u>M</u>	ud Rotary				DRILLING EQUIPMENT: Failing	1400 OS	Rig wi	th 6i	n O.D. dia, Sand Bit
SAMPLI	NG N	NETHO	D: _D	own-the-Hole	2-in	Split (Spoon	CH2M GEOLOGIST: Winkle	r/Rech			
START:			0	1/02/2002 7:20	0:00	РМ		FINISH:				
NORTH	NG:		39	98382.657	fee	ŧ		EASTING: 318539	9.014	fee	et	
		(L)				<u> </u>	Z	SOIL DESCRIPTION	7	(PPM)	Τ	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING]	USCS GROUP SYMBOL	PID/FID READING (PI	OTHER TESTING	
L			ł		1		1	plasticity, wet	1			_
146	79	146-148	Soil	70/6in	NA	0.4	0-0.4	Dark yellowish orange (10YR 6/6), well sorted, subangular, coarse SAND, little silt, some fine gravel, wet	SP	2		PID(B) = 2.0 ppm, PID(H) = 2.0 ppm
147		t						graver, wet	-			
148	80	148-150	Soil	70/6in	NA		0-2	SAA, wet	-			PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
149									-			
150	81	150-152	Soil	50/3in	NA	2.8	0-2	Yellowish gray (5Y 8/1), well sorted, subrounded, fine GRAVEL and silt, wet, very dense	GM	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
— 151 -												_
152	82	152-154	Soil	50/4in	NA	0.3	0-0.3	SAA, wet, very dense	1	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
- 153 -									-			_
- 154 -	83	154-156	Soil	50/4in		0.7	0-0.7	White (N9), very well sorted, rounded, fine SAND, trace silt, wet, very loose	SP	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
— 155 -												
156	84	156-158	Soil	50/3in		0.3	0-0.3	Yellowish gray (5Y 8/1), well sorted, subrounded, coarse SAND, trace silt, wet, very dense	SM	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
- 157 - 158 - 159	85	·158-160	Soil	50/4in		0.3	0-0.3	Yellowish gray (5Y 8/1), well sorted, subrounded, coarse SAND, trace silt, trace fine gravel, wet, very dense	SM	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm

NOTES:

msl = mean sea level

SHEET 12 OF 13

CLIENT:			E	PA Region 2					
PROJEC	T NI	JMBER	: _16	64453				BORING NUMBER: MA-MW14D	
PROJEC	T N	AME: _E	PA-N	Martin Aaron			·	LOCATION: Martin Aaron Proper	
SURFAC	EE	EVATION	ON:	6.55	feet	msl		TOTAL DEPTH: 182.00 feet bgs	
DRILLIN	G C	ONTRA	СТОР	R: Unit-Tech				FOREMAN:	
DRILLIN	G M	ETHOD	: <u>M</u>	ud Rotary				DRILLING EQUIPMENT: Failing 1400 OS Rig with 6in O.D. dia. Sand Bit	
SAMPLI	NG N	летноі	D : _D	own-the-Hole	2-in (Split :	Spoon	CH2M GEOLOGIST: Winkler/Rech	
START:			0	1/02/2002 7:20	0:00	PM_	···	FINISH:	
NORTH	NG:		39	98382.657	fee	t		EASTING: 318539.014 feet	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] COMMENTS COMMENTS ON ON ON ON ON ON ON ON ON O	
- 160 -	86	160-162	Soil			l	0-0.3	SAA 0 PID(B) = 0.0 ppm, PID(H) = 0.0 ppm	
- 161 - 162	87	162-164	Soil	50/5ìn		0.3	0-0.3	SAA 0 PID(B) = 0.0 ppm, PID(H) = 0.0 ppm	
- 163 - 164 - 165	88	164-166	Soil	50/5in		0.3	0-0.3	Dark yellowish orange (10YR 6/6), well sorted, subrounded, coarse SAND, little fine gravel, trace silt, wet, very dense	
- 166 - 167	89	166-168	Soil	50/3in	NA	0	0-0	No Recovery	
- - 168 - - 169	90	168-170	Soil	50/2in	NA	0.2	0-0.2	Yellowish gray (5Y 8/1), moderately sorted, subrounded, medium GRAVEL, some coarse sand, trace coarse gravel, wet, very dense	
- - 170 - - 171	91	170-172	Soil	50/2in	NA	0.2	0-0.2	Very light grey (N8), very poorty sorted, subrounded, silty CLAY, some medium gravel, low plasticity, wet, very dense	
- - 172 - - 173	92	172-174	Soil	50/5in	NA	0.3	0-0.3	Yellowish gray (5Y 8/1), well sorted, subrounded, coarse SAND, some fine to medium gravel, trace silt, wet, very dense	4
174									

NOTES:

SHEET 13 OF 13

														
CLIENT	:		Ε	PA Region 2					-					
PROJEC	CT NU	JMBER	: _10	64453					BORING NUMBER:	MA-MW	14D			
PROJEC	CT N	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaron	Proper				
SURFAC	E EL	EVATIO	ON:	6.55	feet	msl			TOTAL DEPTH:	182.00	fe	et bgs		
DRILLIN	IG C	ONTRA	стог	R: Unit-Tech			·		FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>M</u>	lud Rotary					DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wit	h 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	NETHO	D: _D	own-the-Hole	2-in :	Split 9	Spoon		CH2M GEOLOGIST:	Winkler/I	Rech			
START:			0	1/02/2002 7:20	:00	PM_			FINISH:					
NORTH	NG:		3	98382.657	fee	t			EASTING:	318539.0	014	fee	et	1461
		(FT)					Z Ö		SOIL DESCRIPTION		30L	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION, ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI PE, PLASTICITY, MINERALOG' ITE, DENSITY/COHESIVENES	ATE NG, Y),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
F	93	174-176	Soil	50/2in	NA	0	0-0	No Recovery	•	4				No recovery
- 175 - 176 - 177 - 178	94	176-178 178-180				0.2	0-0.2	subrounded, silt, wet, very Yellowish gra	ay (5Y 8/1), moderately sorted, medium SAND, some fine grave dense	Jm -	SM GM	0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm
- 179 - 180 - 181	96	180-182	Soil	50/5in	NA	0.2	0-0.2	SAA	g. 2. 3., 2. 3., 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	, -		0		PID(B) = 0.0 ppm, PID(H) = 0.0 ppm

NOTES:

msl = mean sea level

SHEET 1 OF 2

CLIENT:			E	PA Region 2										
PROJEC	TN	JMBER	16	64453					BORING NUMBER:	MA-MW	/15S			
PROJEC	TN	AME: E	PA-N	fartin Aaron					LOCATION: Martin Aaro	n Proper				
SURFAC	E El	EVATIO	DN: _	7.67	feet	msl			TOTAL DEPTH:	19.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD:	<u> H</u>	ollow Stem Au	ger	,			DRILLING EQUIPMENT	: CME 85	Rig 4 1	4in I.D.	/8in	O.D. HSA
SAMPLII	NG N	METHO	D: <u>2</u> -	in Split Spoon	/Han	nmer	/liners		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			10	0/29/2001 11:0	00:00	AM			FINISH:	10/29/20	001 12	:00:00	РМ	
NORTHI	NG:		39	98518.442	fee	t			EASTING:	318524.	696	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-5"-5"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION OTT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR JE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
0	1	0-2	Soil	5-8-12-8	20	1	0-2	Moderate yell	lowish brown (10YR 5/4), poor	rly sorted,	sw	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 1 - 2 - 3 - 4 - 5	2	2-4 4-6	Soil	9-10-9-9	19	.75	0-2	SAA SAA	fine SAND and fine gravel, dr	y		1.2		PID(B)≈0.5 ppm, (H)=1.2 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)≈0.5 ppm, (H)=1.2 ppm; RAD(B)=20 cpm, (H)=40 cpm
- 6 - 7 - 8	4 5	6-8 8-10	Soil	6-8-7-6 8-20-12-3	32	.33	0-2	Pale yellowish subangular, m	n brown (10YR 6/2), poorly so nedium SAND and fine gravel	rted, , dry -	sw	1.2		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.5 ppm, (H)=1.2 ppm; RAD(B)=40 cpm, (H)=40 cpm
- -										-				_

NOTES:

msl = mean sea level

CH2MHILL

SOIL BORING LOG

SHEET 2 OF 2

CLIENT	:		Е	PA Region 2										
PROJEC	CT N	JMBER	: 10	64453					BORING NUMBER:	MA-MW	15S			
PROJEC	T N	AME: _E	EPA-N	Martin Aaron		ļ.			LOCATION: Martin Aaron	Proper				
SURFAC	E E	EVATI	ON:	7.67	feet	msl			TOTAL DEPTH:	19.00	fe	eet bgs	<u> </u>	
DRILLIN	IG C	ONTRA	стог	R: Unit-Tech	<u> </u>	_			FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem A	uger	_			DRILLING EQUIPMENT:	CME 85	Rig 4 1	/4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoor	n/Han	nme	er/liners		CH2M GEOLOGIST:	Wojciec	h Winl	kler		
START:			10	0/29/2001 11:	00:00	<u>AM</u>	1		FINISH:	10/29/20	01 12	:00:00	PM	
NORTH	NG:		39	98518.442	fee	et			EASTING:	318524.	696	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORTI E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, Y),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
10	6	10-12	 	1-1-0-1	1	1	0-2		7 3/2), well sorted, rounded, CL lasticity, wet (NOTE: 10 - 12ft wood)		CL	1.2		PID(B)=0.5 ppm, (H)=1.2 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 12	7	12-14	Soil			2	0-1	Olive gray (5) wet	′ 4/1), well sorted, rounded, fin	e SAND,	SP	1		PID(B)=0.5 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 13		,					1-1.5		ell sorted, rounded, SILT, non- oots and other organic materia		ML	1		PID(B)=0.5 ppm, (H)=1.0 ppm; RAD(B)=40 cpm,
- - 14		14-16	C-11	2124		2.5	1.5-2	Black (N1), w medium plast	ell sorted, rounded, CLAY and city	silt,	СН	1		(H)=40 cpm / PID(B)=0.5 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	8	14-16	Soil	2-1-2-4	3	2.3	0-0.6	Light olive gra SAND, wet	y (5Y 5/2), well sorted, rounde	d, fine	SP	2		PID(B)=1.0 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 15 -							0.6-2	Black (N1), we plasticity, wet	ell sorted, rounded, clayey SIL	Γ, slight	мн	2		PID(B)=1.0 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
16 17	9	16-18	Soil	4-2-2-4	4		0-0.5	SAND, wet Moderate yelle	N5), well sorted, subangular, rowish brown (10YR 5/4), well s		SP ML	2		PID(B)=1.0 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 18 — 19	10	18-19	Soil				0-1	SAA			·	2		PID(B)=1.0 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 9

CLIENT:			E	PA Region 2					-					-
PROJEC	T NU	JMBER	:16	64453					BORING NUMBER:	MA-MW	15M			
PROJEC	T NA	AME: _E	PA-N	Martin Aaron				· · · · · · · · · · · · · · · · · · ·	LOCATION: Martin Aaron	Proper				
SURFAC	E EL	EVATION	ON:	7.15	feet	msl			TOTAL DEPTH:	74.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	t: Unit-Tech	1				FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1	/4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	TETHO	D: <u>2</u> .	in Split Spoo	n/140	LBF	lammer		CH2M GEOLOGIST:	Wojciech	n Win	kler		
START:			10	0/31/2001 7:4	5:00	АМ	<u> </u>		FINISH:	11/01/20	01 1:	34:00 F	M	
NORTHI	NG:		39	98510.341	fee	et			EASTING:	318537.6	3 9	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
16 17								NOTE: Blind MA-MW15S.	drill to 18 ft bgs. See boring	-				
— 18 -	1	18-20	Soil	2-3-2-4	5	2	0-1	Dark yellowis rounded, clay bedded (NO	sh brown (10YR 4/2), well sorter yey SILT, low plasticity, wet, thin IE: 3in of 10YR 4/2 find sand (S	d, nly SP))	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 19 -							1-2		5YR 5/2), well sorted, rounded, ium plasticity, wet	CLAY	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 20 - - 21	2	20-22	Soil	2-2-2-2	4	1	0-0.5	rounded, inte plasticity, we Light olive grand silt, med	llowish brown (10YR 5/4), well semixed, CLAY and silt, medium t, soft (NOTE: intermixed with 5 ay (5Y 5/2), well sorted, rounderium plasticity, thinly bedded (Not with fine silty sand)	d, CLAY	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 22	3	22-24	Soil	2-4-5-8	9	1.3	0-1	distinct, dark	ay (5Y 5/2), mottled (many, fine yellowish orange), well sorted, fine SAND, wet		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 9

									···						ע∟
CLIENT:	:		E	PA Region 2											
PROJEC	T NI	JMBER:	:10	64453				······································	BORING NUMBER:	MA-MW	/15M				_
PROJEC	T NA	ME: E	PA-N	Martin Aaron					LOCATION: Martin Aaror	n Proper					_
SURFAC	E EI	EVATIO	ON:	.7.15	feet	msl			TOTAL DEPTH:	74.00	fe	et bgs	;		_
DRILLIN	G C	ONTRAC	CTOR	R: Unit-Tech)				FOREMAN:						_
DRILLIN	G MI	ETHOD:	<u> </u>	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85	Rig 4 1/	/4in I.D.	/8in	O.D. HSA	_
SAMPLI	NG N	TETHO): <u>2</u> .	in Split Spoor	1/14 0	LBF	łammer		CH2M GEOLOGIST:	Wojciec	h Winl	der		·	
START:			1(0/31/2001 7:4	5:00	AM			FINISH:	11/01/20	001 1:3	34:00 F	M		_
NORTHI	NG:		39	98510.341	fee	et			EASTING:	318537.	69	fee	et		_
· · · · · · · · · · · · · · · · · · ·		E)					NO.		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS]
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYM	PID/FID READING (OTHER TESTING		
<u></u>	ı	Ì	ı	l	1	ı	l 1-1.3	Dolo vellovio	h h (40)/D ((0)		l sw	l o	ı	PID(B)=0.0 ppm, (H)=0.0	7
_								fine, very pale	h brown (10YR 6/2), mottled (n e orange), moderately sorted, ine SAND, wet	nany,	0,,,			ppm; RAD(B)=20 cpm, (H)=20 cpm	-
24 	4	24-26	Soil	6-10-12-13	22	2	0-1	Grayish brow wet, thinly be silty sand (SM	n (5YR 3/2), well sorted, CLAY dded (NOTE: 24ft 8in-25ft 10Y //)	and silt, R 5/2	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	-
25							1-1.5	Moderate bro	own (5YR 4/4), well sorted, rour t, wet	nded,	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
	5	26-28	Soil	14-13-10-9	23	1.75	-0.5-0	fine, faint, da	h orange (10YR 6/6), mottled (rk yellowish orange), poorly so nedium SAND, some fine grav	rted.	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	1
 26							0-1.75	Moderate yel (many, fine, f	lowish brown (10YR 5/4), mottl aint, pale yellowish orange), we agular, fine SAND, wet	led	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
27										_				_	-
-										-				-	
28		an 20	0.7	2227			0.1					•		DID(D)=0.0 (H)=0.0	
_	6	28-30	Soil	2-3-3-7	6	1	0-1	SAA, trace m meduim grave	edium gravel (NOTE: with trac el)	e		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
— 29								į							
- 29			,												
_														-	
30	'	,	•	•	•	. '					,	'	. 1	_	· 1

NOTES:

SHEET 3 OF 9

CLIENT:	·		E	PA Region 2					-	•				
PROJEC	T NI	JMBER	: _1	64453					BORING NUMBER:	MA-MW	15M			
PROJEC	T N	AME: _E	EPA-N	Martin Aaron					LOCATION: Martin Aaror	Proper				
SURFAC	E EI	EVATI	ON:	7.15	feet	msl			TOTAL DEPTH:	74.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	СТОБ	≀: <u>Unit-Tech</u>	<u> </u>				FOREMAN:					v
DRILLIN	G MI	ETHOD	: <u>H</u>	ollow Stem Ar	uger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1.	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u>	-in Split Spoor	n/140	LBF	lammer		CH2M GEOLOGIST:	Wojciech	ı Winl	kler		
START:			10	0/31/2001 7:4	5:00	AM			FINISH:	11/01/20	01 1:0	34:00 F	M	
NORTHI	NG:		3	98510.341	fee	et			EASTING:	318537.6	69	fee	et	
			1	1	Ť		T _	T	SOIL DESCRIPTION			\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	<u> </u>	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHA	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
J 30	7	30-32	Soil	3-8-14-16	22	2	0-0.5	Brownish gra	ay (5YR 4/1), well sorted, round lt, medium plasticity	led,	CL	0		PiD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
							0.5-1	(many, fine,	flowish brown (10YR 5/4), mott faint, moderate yellowish brown ngular, fine SAND, wet	ieu [SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
31							1-1.5	rounded, into	llowish brown (10YR 5/4), well ermixed, CLAY and silt, mediun tt, thinly bedded (NOTE: mixed	n	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
32							1.5-2	Dark yellowis	sh orange (10YR 6/6), mottled (ry pale orange), poorly sorted, medium SAND, some fine gra	vel wet	SW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 52	8	32-34	Soil	21-20-21-6	41		0-1	distinct, dark	ay (5Y 5/2), mottled (many, fine yellowish orange), well sorted, fine SAND, wet	∍,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 33							1-1.5	Pale vellowis	h brown (10YR 6/2), mottled (n	nany.	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
		<u> </u>						fine, very pal	e orange), moderately sorted, fine SAND, some fine gravel, w	et				(H)=20 cpm
24							1.5-2	Moderate ye medium SAN	llow (5Y 7/6), well sorted, subar ID, wet	rigular,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
34	9	34-36	Soil	9-12-15-20	27	2	0-1.5	distinct, dark	ay (5Y 5/2), mottled (many, fine yellowish orange), well sorted, fine SAND, wet	-,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
35														
26							1.5-2	fine, distinct,	h gray (5GY 8/1), mottled (corr light red), well sorted, subroun ID, some clay, wet	ded,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 36 _	10	36-38	Soil	20-24-39-32	63	2	0-1	fine, faint, ve	th brown (10YR 6/2), mottled (c ry pale orange), moderately sor ID, some coarse sand, wet	, on	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
27														

NOTES:

msl = mean sea level

SHEET 4 OF 9

										_				
CLIENT	:		E	PA Region 2					•					
PROJE	CT N	UMBER	: <u>_1</u> 6	64453					BORING NUMBER:	MA-MW	15M			
PROJE	CT N	AME: E	PA-N	fartin Aaron					LOCATION: Martin Aaron	Proper				· · · · · · · · · · · · · · · · · · ·
SURFA	CE E	LEVATI	ON: _	7.15	feet	msl			TOTAL DEPTH:	74.00	f	eet bgs		
									FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>_</u> H	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoo	n/140	LBI	lammer		CH2M GEOLOGIST:	Wojciech	n Win	kler		
START:			1(0/31/2001 7:4	5:00	AM_			FINISH:	11/01/20	01 1:	34:00 F	PM	
NORTH	NG:		39	98510.341	fee	et		v	EASTING:	318537.6	69	fee	et	
	T	E			1		z		SOIL DESCRIPTION		~~~	Σ		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
٠, ٥,							1-1.5	distinct, dark	ay (5Y 5/2), mottled (many, fine yellowish orange), well sorted, fine SAND, wet	e,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
-							1.5-2	Light greenis	h gray (5GY 8/1), mottled (com light red), well sorted, subroun ID, some clay, wet	1111011,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 38	11	38-40	Soil	14-22-29-38	51		0-0.5	SAA	D, dollie didy, wet			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 39							0.5-1	fine, faint, ve	h brown (10YR 6/2), mottled (c ry pale orange), moderately sor D, some coarse sand, wet	common, ted,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
-							1.5-2	faint, dark ye	y (5Y 7/2), mottled (common, f llowish orange), well sorted, fine SAND, wet	fine,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 40 -	12	40-42	Soil	12-17-50	67	2	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
41							1-1.5	SAA, fine SA	ND		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
_							1.5-2	Dark yellowis rounded, fine	h orange (10YR 6/6), well sorte SAND, wet	ed,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 42 _	13	42-44	Soil	22-27-33-21	60	1.5	0-1.5	faint, dark yel	y (5Y 7/2), mottled (common, f lowish orange), well sorted, fine SAND, wet	ine,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
43										-				
L										1				_
														-
11]		1]				

NOTES:

msl = mean sea level

SHEET 5 OF 9

CLIENT	:		El	PA Region 2										
PROJEC									BORING NUMBER:	MA-MW15	5 M			
PROJEC	T NA	AME: _E	EPA-N						LOCATION: Martin Aaror					
									TOTAL DEPTH:			et bgs		
DRILLIN	G C	ONTRA	CTOR	t: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD	: <u>H</u>	ollow Stem Au					DRILLING EQUIPMENT:					
									CH2M GEOLOGIST:					
				0/31/2001 7:4					FINISH:				M	
				98510.341	fee				EASTING:	318537.69)	fee	et	
	1	г	1	r	Т		Τ	1			—т			
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
-	14	44-46	Soil			2	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 45 -														
- 46 -	15	46-48	Soil	13-17-21-27	38	2	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 47										-				_
-														_
- 48 -	16	48-50	Soil	10-22-50	72	2	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 49							1-2	Dark yellowis subrounded,	sh orange (10YR 6/6), well sort fine SAND, wet	ed, S	iP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 50 -	17	50-52	Soil	10-22-33-34	55	1.7	0-2	SAA	`			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 51														

NOTES:

msl = mean sea level

SHEET 6 OF 9

DRILLING CONTRACTOR: Unit-Tech															_	
COATION: Martin Aaron Proper							-						E			CLIENT
SURFACE ELEVATION: 7.15 feet msl TOTAL DEPTH: 74.00 feet bgs DRILLING CONTRACTOR: Unit-Tech FOREMAN: DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer CH2M GEOLOGIST: Wojciech Winkler START: 10/31/2001 7:45:00 AM FINISH: 11/01/2001 1:34:00 PM NORTHING: 398510.341 feet EASTING: 318537.69 feet SOIL DESCRIPTION ON WARD FOR STAND ON												64453	:	JMBER:	T N	PROJEC
DRILLING CONTRACTOR: Unit-Tech FOREMAN:						on Proper	LOCATION: Martin Aa					Martin Aaron	PA-N	AME: _E	TN	PROJEC
DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA				X_												
SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer																
NORTHING: 398510.341 feet EASTING: 318537.69 feet																
NORTHING: 398510.341 feet EASTING: 318537.69 feet SOIL DESCRIPTION							_				n/140	in Split Spoor): <u>2</u> .	METHOD	NG N	SAMPL
SOIL DESCRIPTION SOIL DESCRIPTION FREDOMINANT GRAIN SIZE, SUBGRDINATE GRAIN SIZE, SUBGRDINATE GRAIN SIZE, SUBGRDINATE GRAIN SIZE, PLASTICITY, MINERALOGY), WATCH GRAIN SIZE, PLASTICITY, MINERALOGY), WATCH GRAIN SIZE, SUBGRDINATE GRAIN SIZE, PLASTICITY, MINERALOGY), WATCH GRAIN SIZE, PLASTICITY, MINERALOGY, WATCH GRAIN SIZE, PLASTICITY, MINERALOGY), WATCH GRAIN SIZE, PLASTICITY, MINERALOGY, WATCH GRAIN SIZE, PLASTICITY, MINERALOGY, WATCH GRAIN SIZE, P			² M								5:00					
The state of the s			<u>∍t</u>	fee	.69	318537	EASTING:			<u>t </u>	fee	98510.341	3		NG:	NORTH
The state of the s	MENTS	COMMENT	Π	PPM)	lg lg		SOIL DESCRIPTION		N O					(FT)		
- 52 18 52-54 Soil 39-41-50 91 1.25 0-2 SAA 0 PID(B)=0.0 p ppm; RAD(B) (H)=20 cpm - 53 -			OTHER TESTING	READING	USCS GROUP SYM	INATE RTING, OGY),	ANT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO PE, PLASTICITY, MINERALI TE, DENSITY/COHESIVEN	PREDOMIN GRAIN SIZI GRAIN SHA WATER ST	SAMPLE DESCRIPT INTERVAL (FT)	SAMPLE RECOVERY (FT)	N VALUE	BLOW COUNTS 6"-6"-6"-6"	SAMPLE TYPE	SAMPLE INTERVAL	SAMPLE NUMBER	DEPTH BELOW GRADE (FT)
54 40 54 56 Coll 10 22 50 72 1 25 0 2	pm, (H)=0.0 =20 cpm,	PID(B)=0.0 ppm, (H) ppm; RAD(B)=20 cpi (H)=20 cpm		0		-		SAA	0-2	1.25	91	39-41-50	Soil	52-54	18	- 52
- 55	om, (H)=0.0 =20 cpm,	PID(B)=0.0 ppm, (H)- ppm; RAD(B)=20 cpr (H)=20 cpm	F t (0		-		SAA	0-2	1.25	72	10-22-50	Soil	54-56	19	
- 56 20 56-58 Soil 48-50 75 0-0.5 SAA	im. (H)=0.0 =20 cpm.	PID(B)=0.0 ppm, (H)= ppm; RAD(B)=20 cpr (H)=20 cpm	[p	0		-		SAA	0-0.5	.75		48-50	Soil	56-58	20	- - 56
58																5g

NOTES:

SHEET 7 OF 9

CLIENT			E	PA Region 2					_					
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-MV	/15M			
									LOCATION: Martin Aaror					
SURFAC	E EI	EVATIO	ON:	7.15	feet	msl			TOTAL DEPTH:	74.00	fe	eet bgs		
									FOREMAN:					
DRILLIN	G MI	ETHOD:	<u>н</u>	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85	Rig 4 1	/4in I.D.	./8in	O.D. HSA
									CH2M GEOLOGIST:					
									FINISH:					
NORTHI	NG:		39	98510.341	fee	<u>et</u>			EASTING:	318537	.69	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ATE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
J.	21	58-60	Soil	10-14-38-50	52	1.7	0-1.7	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 59 - 60 - 61	22	60-62	Soil	25-38-35-43	73	2	0-0.5 0.5-1 1-2	saa, fine sa			SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm
63	23	64-66	Soil	21-26-32-38	58		0-2	SAA		-		o		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES:

msl = mean sea level

SHEET 8 OF 9

CLIENT	:		E	PA Region 2					<u> </u>				
PROJEC	T NI	UMBER	:16	64453	,				BORING NUMBER:	MA-MW15	М		<u> </u>
PROJEC	T N	AME: E	PA-N	Martin Aaron					LOCATION: Martin Aaro	n Proper			· · · · · · · · · · · · · · · · · · ·
SURFAC	E EI	LEVATIO	ON:	7.15	feet	msl			TOTAL DEPTH:	74.00	feet bg:	<u>.</u>	
DRILLIN	IG C	ONTRA	CTOR	R: Unit-Tecl	h				FOREMAN:				
DRILLIN	IG M	ETHOD:	: <u>н</u>	ollow Stem A	uger				DRILLING EQUIPMENT	: CME 85 Rig	4 1/4in l.D	./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoo	n/140	LB	Hammer		CH2M GEOLOGIST:	Wojciech V	Vinkler		
START:			10	0/31/2001 7:4	<u>45:00</u>	AM			FINISH:	11/01/2001	1:34:00	PM	
NORTHI	NG:		39	98510.341	fee	et			EASTING:	318537.69	fe	et	
_OW (FT)	JMBER	TERVAL (FT)	PE	NTS		Y (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN	NATE .	ADING (PPM)	STING	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DI INTERVAL	GRAIN SHAF	WITH DESCRIPTORS, SOR' E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENE		PID/FID READING	OTHER TESTING	
,	ı	ı	ı	ı		ı	ı	1		1	i	ł	1 1
66 -	24	66-68	Soil	3-9-14-40	23	2	0-1	SAA, medium	SAND		0		PtD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 67							1-1.5	SAA, fine SAf	ND		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
		<u> </u>					1.5-2	SAA, medium	SAND		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
 68	25	68-70	Soil	14-18-26-31	44		0-2	SAA		-	0		(H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 69										_			_
- 70	26	70-72	Soil	17-33-43-50	76		0-2	SAA		-	0		PID(B)=0.0 ppm, (H)=0.0
													ppm; RAD(B)=20 cpm, (H)=20 cpm -
71 							·			-			_
72													

NOTES:

msl = mean sea level

SHEET 9 OF 9

CLIENT:	EPA Region 2		·
PROJECT NUMBER: _	164453	BORING NUMBER:	MA-MW15M
		LOCATION: Martin Aaro	n Proper
SURFACE ELEVATION:	: 7.15 feet msl	TOTAL DEPTH:	74.00 feet bgs
DRILLING CONTRACTO	OR: Unit-Tech	FOREMAN:	
DRILLING METHOD:	Hollow Stem Auger	DRILLING EQUIPMENT:	CME 85 Rig 4 1/4in I.D./8in O.D. HSA
		CH2M GEOLOGIST:	
START:	10/31/2001 7:45:00 AM	FINISH:	11/01/2001 1:34:00 PM
NORTHING:	398510.341 feet	EASTING:	318537.69 feet
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT)	SAMPLE TYPE BLOW COUNTS 6"-6"-6" N VALUE SAMPLE RECOVERY (FT) SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDIN GRAIN SIZE WITH DESCRIPTORS, SOR GRAIN SHAPE, PLASTICITY, MINERALOW WATER STATE, DENSITY/COHESIVENE LAYERING]	LING' CROUP A DI TREADILI OF THE STATE OF TH
- 73	oji 27-50 0-2	SAA	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES:

SHEET 1 OF 2

CLIENT:			Е	PA Region 2										
PROJEC	T NI	JMBER	:16	64453				· .	BORING NUMBER:	MA-MW	16S			
PROJEC	T N	AME: _E	EPA-N	fartin Aaron					LOCATION: Martin Aaron	Proper		···		
SURFAC	E EI	EVATION	ON:	7.69	feet	msl			TOTAL DEPTH:	18.00	f€	eet bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G M	ETHOD:	: <u>Н</u>	ollow Stem Au	iger				DRILLING EQUIPMENT:	CME 85 I	Rig 4 1.	/4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u> -	in Split Spoor	/Har	nmer	/liners		CH2M GEOLOGIST:	Wojcieci	h Winl	kler		
									FINISH:					
NORTHI	NG:		39	98718.727	fee	et			EASTING:	318788.	316	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
0	1	0-2	Soil	7-16-13-11	29	.5	0-0.5	Grayish brow SAND and si	rn (5YR 3/2), well sorted, round It, dry	ded, fine	SM	0.2		PID(B)=0.2 ppm, (H)=0.2 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 2	2	2-4	Soil	6-4-3-2	7	1.3	0-0.5	Black (N1), n gray), poorly and fine grav	nottled (many, fine, prominent, sorted, subrounded, fine SAND el, dry	light D and silt	SM	0.2		PID(B)=0.2 ppm, (H)=0.2 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 4	3	4-6	Soil	5-5-3-3	8	1.3	0-1.5	rounded, fine	h orange (10YR 6/6), well sort SAND, moist (NOTE: layered well sorted sand (SP) moist)	ed, (3in)	SP	0.2		PID(B)=0.2 ppm, (H)=0.2 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6 - 7	4	6-8	Soil	3-2-3-3	5	1	0-0.5	silt, trace fine	3), well sorted, rounded, fine S/gravel, moist noderately sorted, coarse SANI et		SM SW	1.2		PID(B)=0.2 ppm, (H)=1.2 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.2 ppm, (H)=1.2 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 8														
L 9										_				

NOTES:

msl = mean sea level

SHEET 2 OF 2

													,	
CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	: _1	64453					BORING NUMBER:	MA-MW	168			<u> </u>
									LOCATION: Martin Aaror					
SURFAC	E El	EVATI	ON:	7.69	feet	msl			TOTAL DEPTH:	18.00	f	eet bgs	<u> </u>	<u> </u>
DRILLIN	G C	ONTRA	СТОР	R: <u>Unit-Tech</u>	1				FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>H</u>	Iollow Stem A	uger				DRILLING EQUIPMENT:	CME 85	Rig 4 1	I/4in I.D	./8in	O.D. HSA
SAMPLI	NG N	METHO	D: _2	-in Split Spoo	n/Har	nmer	/liners		CH2M GEOLOGIST:	Wojciec	h Win	kler		
START:			1	0/29/2001 2:3					FINISH:				PM	
NORTHI	NG:		3	98718.727	fee	et			EASTING:	318788.	316	fee	et	
	ER	VAL (FT)				(NOLL AND THE NAME OF THE NAME		SOIL DESCRIPTION	J.	SYMBOL	VG (PPM)	U	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	:
- 10 - 11 - 12 - 13	5	10-12 12-14	Soil			1.08	0-1	(NOTE: petro material from	3), well sorted, rounded, CLAY	anic like	ML CH	0.5		PID(B)=0.5 ppm, (H)=10 ppm; RAD(B)=40 cpm, (H)=40 cpm
14	7	14-16	Soil	wн	wн	1.75	0-1.6	SAA				2		PID(B)0.5 ppm, (H)=2.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 15 - 16 - 17	8	16-18	Soil	0-0-0-2	0	1.5	0-1.5	SAA				0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm (H)=40 cpm
- 18														-

NOTES:

msl = mean sea level

SHEET 1 OF 8

CLIENT: EPA Region 2	2	
PROJECT NUMBER: 164453		BORING NUMBER: MA-MW17M
PROJECT NAME: EPA-Martin Aaron		LOCATION: Corner of Broadway and Everett Streets
SURFACE ELEVATION: 7.33	feet msl	TOTAL DEPTH: 58.00 feet bgs
DRILLING CONTRACTOR: Unit-Tech	ch	FOREMAN:
DRILLING METHOD: Hollow Stem A	Auger	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
SAMPLING METHOD: 2-in Split Spoot	on/140 LB Hammer	CH2M GEOLOGIST: Mark Eshbaugh
START: 11/08/2001 7:1	:15:00 AM	FINISH: 11/08/2001 11:30:00 AM
NORTHING: 398779.556	feet	EASTING: 318434.699 feet
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT) SAMPLE TYPE BLOW COUNTS 6"-6"-6"-6"	PREDC	SOIL DESCRIPTION R, MOTTLING, SOIL DESCRIPTION, DMINANT GRAIN SIZE, SUBORDINATE SIZE WITH DESCRIPTORS, SORTING, SHAPE, PLASTICITY, MINERALOGY), R STATE, DENSITY/COHESIVENESS, ING] COMMENTS COMMENTS ON DESCRIPTION
GRADE (FT) SAMPLE NUME SAMPLE INTER SAMPLE TYPE BLOW COUNTS	N VALUE SAMPLE SAMPLE SAMPLE TAKEN TERVAL	SHAPE, PLASTICITY, MINERALOGY), R STATE, DENSITY/COHESIVENESS, SING]
- 17 - 18	18 1.67 0-0.75 Black (N coarse : 0.25-0.8 BRICK (O.8-1.6 Yellowis promine)	Blind drill to 18 ft bgs. See boring v17S. SW O PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm SP O PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm O PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm O PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm O PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 8

)	CLIENT	:		E	PA Region 2										
	PROJE	CT N	UMBER	: _1	64453				·	BORING NUMBER:	MA-MW	17M			
	PROJE	CT N	AME: _	EPA-N	Martin Aaron					LOCATION: Corner of B	roadway a	nd Ev	erett S	treet	S
	SURFA	CE E	LEVATI	ON:	7.33	feet	msl			TOTAL DEPTH:	58.00	f	eet bgs	3	
	DRILLI	NG C	ONTRA	стоі	R: Unit-Tech					FOREMAN:					
	DRILLI	NG M	ETHOD	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT	: CME 85 F	Rig 4 1	/4in 1.D	./8in	O.D. HSA
	SAMPL	ING I	METHO	D: _2	in Split Spoor	1/140	LBI	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	ıh		
	START:			1	1/08/2001 7:1	5:00	AM			FINISH:	11/08/20	001 11	:30:00	AM	
	NORTH	ING:		3	98779.556	fee	et			EASTING:	318434.	699	fe	et	
			(F)					NOIF		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	IATE TING, GY),	USCS GROUP SYI	PID/FID READING (PPM)	OTHER TESTING	
	ä	S	δ	A.	BL 6"-	z	S E	ΩZ	LATERING			Š	<u>a</u>	5	
	— 22	3	22-24	Soil	2-3-6-11	9	2	0-0.8	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
)	_ 23							0.8-1.6	distinct, gray	y (5Y 7/2), mottled (common, sh olive), well sorted, rounded It, moist, loose		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	_							1.6-2		y (5Y 7/2), mottled (common, ellowish gray), well sorted, rour et		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	- 24	4	24-26	Soil	2-3-2-4	5	.33	0-0.3	SAA, modera loose	tely graded, well rounded, gra	vel, wet,	GP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	ſ.]]
	- 25										-				_
															_
	- 26 -	5	26-28	Soil	11-14-21-22	35	1	0-0.3	prominent, ye medium SAN Dark yellowis (common, coorange), well	y (5Y 7/2), mottled (common, illowish gray), well sorted, sub D, wet h orange (10YR 6/6), mottled arse, prominent, dark yellowis sorted, subrounded, fine SAN	h	SP SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
, ,	_ 27								dense		-	. 1			_
1	NOTES:												msl	= me	ean sea level

SOIL BORING LOG

SHEET 3 OF 8

CLIENT	-		E	PA Region 2										
PROJEC	T N	JMBER	: <u> </u>	64453					BORING NUMBER:					
		_		Martin Aaron_					LOCATION: Comer of Bro			erett St	reet	S
									TOTAL DEPTH:			et bgs		
									FOREMAN:					
DRILLIN	IG M	ETHOD	: <u> </u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 R	kig 4 1/	4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoon	/140	LBF	lammer		CH2M GEOLOGIST:	Mark Esh	nbaug	<u>h</u>		
START:			1	1/08/2001 7:15	5:00	AM			FINISH:	11/08/200	01 11	30:00	AM	
NORTH	NG:		39	98779.556	fee	t			EASTING:	318434.6	99_	fee	et	
	Ţ		Γ_	<u> </u>	.	<u> </u>	7	[SOIL DESCRIPTION		ــــــــــــــــــــــــــــــــــــــ	ŝ		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
L]				_
28														·
20	6	28-30	Soil	14-23-20-18	43	0.67	0-0.6	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 29														_
														_
30		30.00		0.40.44.47			0.05							
	7	30-32	Soil	8-10-14-17	24	1.3	0-0.5	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	} } }													
— 31										1				
										1				_
- 32	8	32-34	Soil	14-23-33-38	56	1.3	0-1.5	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
-														

SHEET 4 OF 8

CLIENT	:		Е	PA Region 2										
PROJEC									BORING NUMBER:					
		_		Martin Aaron					LOCATION: Corner of Br					ts
									TOTAL DEPTH:			et bgs		
									FOREMAN:					
									DRILLING EQUIPMENT:				./8in	O.D. HSA
									CH2M GEOLOGIST:					
									FINISH:					1
NORTH	NG:		3	98779.556	fee	∋ t		 	EASTING:	318434.	699	fe	et	
		E.					- Z		SOIL DESCRIPTION		ي ا	(PPM)	Γ	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION NAT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
- 34 - 35	9	34-36	Soit	21-30-30-23	60	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=40 cpm, (H)=40 cpm
- 36 - 37	10	36-38	Soil	8-14-27-34	41	1.83	O-1.8	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 38	11	38-40	Soil	8-33-40-50	73	1.25	0-1.5	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 5 OF 8

CLIENT:			E	PA Region 2									
PROJEC									BORING NUMBER:				
PROJEC	TNA	AME: _E	PA-N	fartin Aaron			· · · · · · · · · · · · · · · · · · ·	····	LOCATION: Corner of B	roadway and E	verett S	treet	s
SURFAC	E EL	EVATION	ON:	7.33	feet	msl			TOTAL DEPTH:	58.00	feet bg	s	······································
									FOREMAN:				
DRILLIN	G MI	ETHOD	: <u>H</u>	ollow Stem Au	ıger				DRILLING EQUIPMENT	: CME 85 Rig 4	1/4in I.D)./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoor	/140	LBF	lammer		CH2M GEOLOGIST:	Mark Eshba	ugh		
									FINISH:) AM	
NORTHI	NG:		39	98779.556	fee	t		· · · · · · · · · · · · · · · · · · ·	EASTING:	318434.699	fe	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR E, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE SING, OY),	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 39										_			_
40	12	: 40-42 :	Soil	20-23-50-50	73	1.33	0-1.5	SAA			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
41 42	13	42-44	Soil	48-50		1.3	0-1.5	SAA	········		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 43													_
44	14	44-46	Soil	20-50		0.5	0-0.5	SAA, Modera	te brown (5YR 4/4)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
NOTES:											msl	= m	ean sea level

msl = mean sea level

SHEET 6 OF 8

,	CLIENT	:		E	PA Region 2											_ `
	PROJE	CT N	UMBER	: _10	64453				····	BORING NUMBER:	MA-MW17	M				_
	PROJE	CT N	AME: _E	EPA-N	Martin Aaron					LOCATION: Corner of Br	oadway and	Eve	rett St	reet	S .	
	SURFA	CE E	LEVATI	ON:	7.33	feet	msl			TOTAL DEPTH:	58.00	fe	et bgs			_
	DRILLI	NG C	ONTRA	стог	R: Unit-Tech					FOREMAN:						
	DRILLI	IG M	ETHOD	: <u>H</u>	ollow Stem Au	uger				DRILLING EQUIPMENT	: CME 85 Rig	4 1/	4in I.D.	/8in	O.D. HSA	_
	SAMPL	ING I	METHO	D: <u>2</u> -	in Split Spoor	1/140	LBF	lammer		CH2M GEOLOGIST:	Mark Eshb	augl	1			
	START:			1	1/08/2001 7:1	5:00	AM			FINISH:			30:00	AM		_
	NORTH	ING:			98779.556	fee	ŧ	 		EASTING:	318434.69	9	fee	et		
			(FT)	T				Z O		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS	
	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF WATER STA	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING		
	閚	δ	SAI	NA S	BL(ź	S B	AS E	LAYERING]			Sh	₫	6		
									<u>}</u>		1				(H)=40 cpm	-
	45														_	
)	"															
	-										-					
	- 46	15	46-48	Soil	7-49-50	99	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
	_									·	-					
	47										-				-	-
											-		•			
					,											
	— 48	16	48-50	Soil	34-50-50	100	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
	-										1					
	 49										-					
	-															
)] .			1							1	1				1
. '	NOTES:							1							ean sea level	-

bgs = below ground surface

SHEET 7 OF 8

CLIENT	·		E	PA Region 2										
PROJEC	T N	UMBER	:10	64453					BORING NUMBER:	MA-MW	17M			
PROJEC	T N	AME: _E	PA-N	Martin Aaron			·		LOCATION: Comer of B	roadway a	nd Eve	erett St	reet	s
SURFAC	E EI	LEVATION	ON:	7.33	feet	msl			TOTAL DEPTH:	58.00	fe	et bgs		
DRILLIN	IG C	ONTRA	стоі	R: Unit-Tech					FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>H</u>	Iollow Stem Au	ger		***************************************		DRILLING EQUIPMENT	: CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	NETHO	D: _2	-in Split Spoon	/140	LBF	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START:			1	1/08/2001 7:15	5:00	AM_			FINISH:	11/08/20	01 11	:30:00	АМ	· · · · · · · · · · · · · · · · · · ·
NORTH	NG:		3	98779.556	fee	et			EASTING:	318434.	699	fee	et	
Γ			Γ	· ·		Ε-	Γ	Τ	OO! DECODINE			T 🚓	1	001115150
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
50 	17	50-52	Soil	26-38-50	88	2	0-2	(common, co	th orange (10YR 6/6), mottled arse, prominent, dark yellowi sorted, subrounded, fine SAN	sh	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
51 52	18	52-54	Soil	25-35-34-28	69	2	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 53														
54 55	19	54-56	Soil	9-12-18-20	30	1.67	0-1.75	(common, co	h orange (10YR 6/6), mottled arse, distinct, dark yellowish o punded, fine to coarse SAND, e	orange),		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 8 OF 8

CLIENT:	E	PA Region 2										
PROJECT NUM	MBER:10	64453					BORING NUMBER:	MA-MW	/17M			
PROJECT NAM	NE: EPA-N	Martin Aaron					LOCATION: Comer of B	roadway a	nd Eve	erett St	reet	ds
SURFACE ELE	VATION:	7.33	feet n	nsl			TOTAL DEPTH:	58.00	fe	eet bgs	;	
DRILLING CON	ITRACTO	R: Unit-Tech					FOREMAN:		_			
DRILLING MET	но D: <u>Н</u>	ollow Stem Au	ger				DRILLING EQUIPMENT	r: CME 85	Rig 4 1/	/4in l.D.	./8in	O.D. HSA
SAMPLING ME	THOD: <u>2</u> -	in Split Spoon	/140 L	В На	ammer		CH2M GEOLOGIST: _	Mark Es	hbaug	h		
START:	1:	1/08/2001 7:15	:00 A	M			FINISH:	11/08/20	001 11	:30:00	AM	
NORTHING: _		98779.556	feet				EASTING:	318434.	699_	fee	et	
	Ê.		Π		z Z		SOIL DESCRIPTION	······································	٦		1	COMMENTS
DEPTH BELOW GRADE (FT) SAMPLE NUMBER	SAMPLE INTERVAL (F	BLOW COUNTS 6"-6"-6"	N VALUE	RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIE WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE ITING, IGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
— 56 ₂₀ 56	6-58 Soil	20-30-50	80	1	1.75-2 0-0.3 0.3-1	prominent, da rounded, SIL SAA Yellowish gra distinct, mode	by (5Y 7/2), mottled (common ark greenish yellow), well sort T and clay, moist, stiff, lamina by (5Y 7/2), mottled (common erate yellow), well sorted, rou ILT, trace fine to coarse sand	ed, ated / , fine, nded, -	ML ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PlD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PlD(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm
-												-

NOTES:

msi = mean sea level

SHEET 1 OF 2

CLIENT:			El	PA Region 2										
PROJEC	T NI	JMBER	:16	34453					BORING NUMBER:	MA-MW	18S_			·
PROJEC	TN	AME: _E	PA-M	lartin Aaron					LOCATION: Everett Street	et				····
SURFAC	EEL	EVATIO	ON: _	7.44	feet	msl			TOTAL DEPTH:	20.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	: Unit-Tech			·	· · · · · · · · · · · · · · · · · · ·	FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1/	4in I.D.	/8in	O.D. HSA
									CH2M GEOLOGIST:					
START:			11	1/06/2001 7:35	5:00	АМ			FINISH:	11/05/20	01 10	:30:00	AM	
NORTH	NG:		39	98827.975	fee	t			EASTING:	318590.5	588	fee	<u>et</u>	
Γ					Т				DOU DECODIOTION				г	001115
		(FI				'	NO!		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
	R.	SAMPLE INTERVAL		<i>(</i> 0	1	F	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO	TTLING, SOIL DESCRIPTION	ا.	SYM	NG (<u>0</u>	
PTH BELOW GRADE (FT)	UMB	ITER	YPE	L X		 - -	ESC (FT)		ANT GRAIN SIZE, SUBORDIN. WITH DESCRIPTORS, SORT		GROUP	EAD	TESTING	
H BE	LEN	=	LET	Ö	当	LE VEF	LE D	GRAIN SHAF	E, PLASTICITY, MINERALOG	SY),	GR.	5 %	RTE	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	AMP	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	AMP	WATER STATE LAYERING]	TE, DENSITY/COHESIVENES	SS,	nscs	PID/FID READING	OTHER	
	S											L	10	
	1	0-2	Soil	14-22-12-10	34	1	0-1	Black (N1), m SAND and si	noderately sorted, subangular, lt. drv	medium	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
-									.,,	-				(n)-20 cpm
- 1					İ					-		j		
-							,			4				_
- 2					_									
-	2	2-4	Soil	5-6-1-2	7	.8	0-0.8	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
Γ,			l E							1				(1) 13 Gp
<u></u> 3									•	-				_
-										4		1		-
- 4	3	4-6	Soil	4-2-2-3	4	1.58	0-0.5	SAA				0		P(D(B)=0.0 ppm (H)=0.0
	,	. 0	0011	,				SAA				-		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
]							0.5-1.5	Dark gray (No well sorted, a	3), mottled (many, fine, faint, da ngular, SILT, trace medium sa		ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
5										7				(H)=20 cpm
-			j							1				-
6	4	6-8	Soil	3-21-2	23	1	0-1	Dusky vellow	green (5GY 5/2), well sorted, r	rounded	SM	0		PID(B)=0.0 ppm, (H)=0.0
-								medium SAN	D and silt, non-plastic, wet	ounded,				ppm; RAD(B)=20 cpm, (H)=20 cpm
7								-		j				
[′														
-										1				-
- 8	5	8-10	Soil	WH-1-1-1	2	.3	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0
-										4				ppm; RAD(B)=20 cpm, (H)=20 cpm
⊢ 9										1				
ſ										1				-
10	6	10-12	Soil	WH-1-0-1	1	1	0-2		3), poorly sorted, subangular, fi	ine	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
-								SAND, some	clay, some fine gravel, wet	4				(H)=20 cpm

NOTES: Driller augered to 20 feet bgs, set well from 8 feet to 18 feet bgs. Bottom of boring at 20 feet bgs.

msl = mean sea level bgs = below ground surface

SHEET 2 OF 2

CLIENT	:		E	PA Region 2					-					
PROJE	CT N	JMBER	:16	64453					BORING NUMBER:	MA-MW	18S			
PROJE	CT N	AME: _E	<u> ΕΡΑ-Ν</u>	Martin Aaron					LOCATION: Everett Street	et				
SURFAC	E EI	EVATION	ON:	7.44	feet	msl			TOTAL DEPTH:	20.00	fe	et bgs		
DRILLIN	IG C	ONTRA	стоя	R: Unit-Tech					FOREMAN:	 				
DRILLIN	IG M	ETHOD	: <u>Н</u>	ollow Stem Au	ıger				DRILLING EQUIPMENT:	CME 85 I	Rig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	/ETHO	D: <u>2</u> -	in Split Spoor	/Har	nmer	/liners		CH2M GEOLOGIST:	Wojciec	h Wink	ler		
START:			1	1/06/2001 7:3	5:00	AM_			FINISH:	11/05/20	01 10	30:00	AM	
NORTH	ING:		39	98827.975	fee	et			EASTING:	318590.	588	fee	et	
	1	<u> </u>	Ι	T	Ι-	_	I _		SOIL DESCRIPTION			€		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
— 11 — 12 — 13	7	12-14	Soil	1-1-1-1	2	2	0-2	Dark gray (N low plasticity	3), well sorted, rounded, SILT a, wet	and clay,	мн	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 14 - 15	8	14-16	Soil	WH-WH-1-2		1.3	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 16 -	9	16-18	Soil	3-4-5-5	9	1.6	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 1 7							1-1.5	Yellowish gra SAND, wet	y (5Y 7/2), well sorted, rounded	d, fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
18 -	10	18-20	Soil	3-1-2-2	3	.3	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 19 -										-				_
— 20					<u></u>				<u>.</u>	1				

NOTES: Driller augered to 20 feet bgs, set well from 8 feet to 18 feet bgs. Bottom of boring at 20 feet bgs.

msl = mean sea level bgs = below ground surface

SHEET 1 OF 5

CLIENT	·		E	PA Region 2										
PROJEC	T NU	JMBER:	16	54453					BORING NUMBER:	MA-MW	18M			
									LOCATION: Everett Street			-		
									TOTAL DEPTH:					
									FOREMAN:					
									DRILLING EQUIPMENT:					
SAMPLI	NG N	AETHOE	D: <u>2</u> -	in Split Spoor	n/140	LB F	lammer		CH2M GEOLOGIST:	Wojciec	h Win	kler		
									FINISH:					
NORTH	NG:	-	39	98829.866	fee	1			EASTING:	318601.	912	fee	et	
		F	<u> </u>		T		Ž		SOIL DESCRIPTION	. :	걱	Σ		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
r 18							<u> </u>							
16								NOTE: Blind MA-MW18S.	drill to 20 ft bgs. See boring					
_					'					-				-
- 19														_
									•					
-						<u> </u>		1		-				
			ĺ											
— 20 	1	20-22	Soil	2-2-1-2	3	2	0-0.6	Black (N1), m	noderately sorted, subrounded, ne gravel, wet, very loose	fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
-									io grandi, mod nony loose	-				(H)=20 cpm
							0.6-1.1	Black (N1), w	rell sorted, rounded, SILT, mois : high organic content)	st, very	мн	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
- 21								100SE (NOTE	. nigh organic content)					(H)=20 cpm /
							1.1-2	Medium dark rounded, fine	gray (N4), no mottling, well so to coarse SAND and silt, wet,	rted, very	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
_								loose						-
 22	2	22-24	Soil	3-3-14-15	17	1.08	0-1.1	SAA (NOTE:	gravel in very bottom of spoon))		0		PID(B)=0.0 ppm (H)=0.0 ppm; RAD(B)=20 cpm,
														(H)=20 cpm
										į				
– 23										_				_
	!									į				
										-				_
— 24 -	3	24-26	Soil	5-19-15-25	34	.83	0-0.9	(common, co brown), poort	lowish brown (10YR 5/4), mottle arse, distinct, moderate yellow y sorted, medium to coarse SA m gravel, wet, medium dense	ish	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 5

															, -
CLIENT:			Е	PA Region 2											
PROJECT	ΓNU	MBER:	16	64453					BORING NUMBER:	MA-MW	18M_				
PROJECT	F NA	ME: E	PA-N	Martin Aaron					LOCATION: Everett Street	et					
SURFACI	EEL	EVATIO	ON:	7.62	fee	msi			TOTAL DEPTH:	48.00	fe	et bgs	•		
									FOREMAN:						
DRILLING	S ME	THOD:	<u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1.	/4in I.D.	./8in	O.D. HSA	
SAMPLIN	G M	ETHOD): <u>2</u> -	in Split Spoor	1/140	LBF	lammer		CH2M GEOLOGIST:	Wojciech	n Winl	kler			
START:_			1	1/0 <u>5/2001</u> 6:3	0:00	AM			FINISH:	11/09/20	01 9:3	30:00 <i>F</i>	<u>M</u>		
NORTHIN	IG:		39	98829.866	fee	et			EASTING:	318601.9	912	fee	et		
		F					Z O	,	SOIL DESCRIPTION		<u>م</u>	DM.		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION NAT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, Y),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING		
27	4	26-28 28-30	Soil	30-25-21-25 10-10-10-12	46	.75	0-1.5 0-0.5		gray (N4), well sorted, rounded arse SAND and silt, wet, very l	•,	SP	0		PID(B)=0.0 ppm, (H)=0.0—ppm; RAD(B)=20 cpm, (H)=20 cpm	
29 30 31	6	30-32	Soil	7-7-6-5	13	1	0-0.3 0.3-2	prominent, me subangular, n coarse sand.	gray (N4), mottled (common, cedium dark gray), poorly sorted nedium to coarse GRAVEL and wet, medium dense (73/2), very well sorted, rounded nedium dense	I fine to	GW SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	1

NOTES:

msl = mean sea level

SHEET 3 OF 5

				<u>_</u>										
CLIENT	:		.El	PA Region 2					-					
PROJEC	T NU	JMBER:	:16	64453	···-				BORING NUMBER:	MA-MW	18M			
PROJEC	T NA	AME: _E	PA-N	Martin Aaron					LOCATION: Everett Street	et				
SURFAC	E E	EVATIO	ON: _	7.62	feet	msl		<u> </u>	TOTAL DEPTH:	48.00	fe	eet bgs	<u> </u>	
									FOREMAN:					
DRILLIN	IG MI	ETHOD:	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 I	Rig 4 1	/4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	ETHO	D: <u>2</u> -	in Split Spoon	/140	LB F	lammer		CH2M GEOLOGIST:	Wojciec	h Winl	kler		
									FINISH:					
NORTH	NG:		39	98829.866	fee	t			EASTING:	318601.	912	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	UE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG	ATE ING,	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
EPT.	AMP	IMPI	MP	%°,9	N VALUE	ECC ECC	AMP	WATER STA	ATE, DENSITY/COHESIVENES	SS,	SCS	Ą	[문	
- 32 - 33	7	32-34	Soil	6-5-5-3	10	1	0-1	SAA (30.3 -	32.0ft bgs)			0		PiD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 34 — 35	8	34-36	Soil	4-8-10-11	18	1.2	0-0.3 0.3-0.8 0.8-1.1	fine, promine rounded, SIL	32.0ft bgs) sh brown (10YR 6/2), mottled (cent, dark yellowish orange), wellowish orange), wellow and clay, moist, very stiff, land clay, moist, very stiff, land coarser grained, see 30.3 - 3	I sorted, ninated	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm; RAD(B)=20 cpm, (H)=20 cpm
- 36 - 37	9	36-38	Soil	8-18-20-50	38	1.3	0-0.5	Yellowish graprominent, d	Y 3/2), very well sorted, rounde medium dense ay (5Y 7/2), mottled (common, ark yellowish orange), very well s SAND, wet, dense	fine,	SP SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
}	j l		ŀ		ļ	1	ļ	I				l	1	

NOTES:

msl = mean sea level

SHEET 4 OF 5

															•
CLIENT:	:		Е	PA Region 2					-						
PROJEC	T N	UMBER	: <u>1</u>	64453					BORING NUMBER:	MA-MV	/18M				
PROJEC	T N	AME: _E	EPA-N	Martin Aaron					LOCATION: Everett Street	et					
SURFAC	E El	LEVATI	ON:	7.62	feet	msl			TOTAL DEPTH:	48.00	fe	et bgs			
DRILLIN	G C	ONTRA	CTOF	R: <u>Unit-Tech</u>					FOREMAN:						
DRILLIN	IG MI	ETHOD:	: <u>H</u>	ollow Stem Au	iger				DRILLING EQUIPMENT:	CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA	
SAMPLI	NG N	NETHO	D: <u>2</u>	in Split Spoor	/140	LBF	Hammer		CH2M GEOLOGIST:	Wojcied	:h Winl	kler		· · · · · · · · · · · · · · · · · · ·	
START:			1	1/05/2001 6:30	0:00	AM			FINISH:	11/09/2	001 9:3	30:00 A	M		
NORTHI	NG:		3	98829.866	fee	et			EASTING:	318601	912	fee	et		
		E				Γ	z		SOIL DESCRIPTION		۲	(X		COMMENTS	İ
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING		
1		ı	ì	ı	1	ı	i	1			ı	ı	1 :	i 1	!
38	10	38-40	Soil	50-50		1	0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
- - 39										-				- -	
_										-				_	
40	11	40-42	Soil	50		0.5	0-0.5	SAA		···		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	
										-				-	
<u> </u>															
42	12	42-44	Soil	37-50-6	56	.75	0-0.75					0		PID(B)=0.0 ppm, (H)=0.0	
-	12	72-11	30#	0.000		., 0	0 0.10	SAA		-		J		ppm; RAD(B)=20 cpm, (H)=20 cpm	
43										-					
-										-				-	
- 44	13	44-46	Soil	4-9-9-9	18	2	0-2		y (5Y 7/2), mottled (common, irk yellowish orange), well sort		CL	0		P!D(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	4

NOTES:

msl = mean sea level

SHEET 5 OF 5

CLIENT: EPA Region 2			
PROJECT NUMBER: 164453		BORING NUMBER: MA-MW	/18M
		LOCATION: Everett Street	
SURFACE ELEVATION: 7.62	feet msl	TOTAL DEPTH: 48.00	feet bgs
DRILLING CONTRACTOR: Unit-Tech	1	FOREMAN:	
DRILLING METHOD: Hollow Stem At	uger	DRILLING EQUIPMENT: CME 85 F	Rig 4 1/4in I.D./8in O.D. HSA
SAMPLING METHOD: 2-in Split Spoor	n/140 LB Hammer	CH2M GEOLOGIST: Wojciec	h Winkler
START: 11/05/2001 6:3	0:00 AM	FINISH: 11/09/20	01 9:30:00 AM
NORTHING: 398829.866		EASTING: 318601.	912 feet
E	Z	SOIL DESCRIPTION	OB COMMENTS
OEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT) SAMPLE TYPE A 46-48 SOUNTS BLOW COUNTS 48	PREDGRAIN N VALUE SAMPLE BECOVERY RECOVERY SAMPLE CHAPTER CHAPTER SAMPLE CHAPTER CHAPTER CHAPTER CHAPTER PREDGRAIN WATER LAYER TOUNDE	, MOTTLING, SOIL DESCRIPTION, MINANT GRAIN SIZE, SUBORDINATE SIZE WITH DESCRIPTORS, SORTING, SHAPE, PLASTICITY, MINERALOGY), STATE, DENSITY/COHESIVENESS, NG] , CLAY and silt, some fine sand, moist, stiff, added (NOTE: thinly bedded sand (SC) and h gray (5Y 7/2), mottled (common, fine, nt, dark yellowish orange), very well sorted, fine SAND, wet, dense	USCS GROUP SYA PID/FID READING OTHER TESTING

NOTES:

msl = mean sea level

SHEET 1 OF 11

CLIENT:			E	PA Region 2										
PROJEC							_		BORING NUMBER:	MA-MV	/18D			
PROJEC	TN	ME: E	EPA-N	Martin Aaron					LOCATION: Everett St	, between E	Broadw	ay and	Sixt	th
SURFAC	E EL	EVATIO	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	fe	eet bgs	3	
DRILLIN	G C	ONTRA	CTOR	R: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>M</u>	lud Rotary with	n 6in	O.D.	Hollow Sand I	Bit	DRILLING EQUIPMEN	IT: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	METHO	D : _D	own-the-Hole	2-in	Split	Spoon		CH2M GEOLOGIST:	Wojcied	ch Win	kler		
START:			1	1/27/2001 7:3	0:00	AM	_		FINISH:	11/28/2	001 4:0	00:00	ΡМ	
NORTHI	NG:		39	98827.203	fee	et			EASTING:	318575	.427	fe	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTI ANT GRAIN SIZE, SUBORE WITH DESCRIPTORS, SO PE, PLASTICITY, MINERAL TE, DENSITY/COHESIVEN	DINATE PRTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
43								NOTE: Blind MA-MW18M.	drill to 45 ft bgs. See boring	g -				_
- 45 - 46	1	45-47	Soit	23-32-50	82	0.2	0-2	Pale yellowis subangular, f	h brown (10YR 6/2), poorly ine to medium GRAVEL, litt	sorted, le clay, wet	GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 47 - 48	2	47-49	Soil	21-37-50	87	1	0-2		h brown (10YR 6/2), modera ium to coarse GRAVEL, tra		GP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
49	3	49-51	Soil	31-50			0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msi = mean sea level

SHEET 2 OF 11

						_								
CLIENT:			E	PA Region 2										
PROJEC	TN	UMBER	: _10	64453			<u> </u>	· · · · · · · · · · · · · · · · · · ·	BORING NUMBER:	MA-MW	18D			
PROJEC	TN	AME: _	EPA-N	Martin Aaron					LOCATION: Everett St, be	etween Br	oadw	ay and	Six	th :
SURFAC	E E	LEVATI	ON:	7.60	feet	msl		···	TOTAL DEPTH:	152.00	fe	eet bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:			····		······································
DRILLIN	G M	ETHOD:	: <u>M</u>	lud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wit	h 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	/ETHO	D : _D	own-the-Hole	2-in	Split :	Spoon	.,	CH2M GEOLOGIST:	Wojciech	Win	kler		
START:			1	1/27/2001 7:3	0:00	AM			FINISH:	11/28/20	01 4:0	00:00 F	M	
NORTHI	NG:		3	98827.203	fee	et			EASTING:	318575.4	127	fee	et	
		Γ			T	1	T	T	SOIL DESCRIPTION			₹	1	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NAT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 51 - 52	4	51-53	Soil	23-29-27-29	56	2	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 53 - 54	5	53-55	Soil	33-31-25-28	56	1.1	0-0.7	1	ow (5Y 7/6), well sorted, suban , some fine gravel	ngular,	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
55 - 56	6	55-57	Soil	42-50		1	0-2		n brown (10YR 6/2), moderately ne to medium GRAVEL, some ay	y Sorteu, 1	GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
57														

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 3 OF 11

		_										51	IEE	1 3 OF 11
CLIENT:			E	PA Region 2					-				-	
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-MW	18D			
PROJEC	T NA	AME: E	EPA-N	Martin Aaron					LOCATION: Everett St, be	etween B	roadwa	ay and	Sixt	<u>h</u>
SURFAC	E El	EVATIO	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	R: <u>Unit-Tech</u>					FOREMAN:	_				
DRILLIN	G MI	ETHOD:	: <u>M</u>	lud Rotary with	n 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	400 OS	Rig wit	h 6ii	O.D. dia. Sand Bit
SAMPLI	NG N	NETHO	D : _D	own-the-Hole	2-in	Split :	Spoon		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			1	1/27/2001 7:30	0:00	АМ			FINISH:	11/28/20	001 4:0	00:00 F	M	
NORTHI	NG:		39	98827.203	fee	et			EASTING:	318575.	427	fee	<u>et</u>	
		(F)					Z O		SOIL DESCRIPTION		ರ್ಷ	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ATE, DENSITY/COHESIVENES	ATE ING, Y),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	
<u></u> "	7	57-59	Soil	7-14-17-19	31	1.3	0-2	dark yellowis	ey (N8), mottled (many, fine, pro sh orange), well sorted, subroun lt, medium plasticity		СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 58 —	-									-				
- 59 - 60	8	59-61	Soil	7-10-13-14	23	1.1	0-2		ay (5Y 8/1), well sorted, subroui lt, medium plasticity	nded,	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- - 61	9	61-63	Soil				0-2	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 62 - 63	10	63-65	Soil	15-26-25-26	51	1.3	0-2	dark yellowis fine SAND a	ay (5Y 8/1), mottled (many, fine, h orange), well sorted, subroun nd clay, wet (NOTE: 2in clay lay	ded,	SC	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
								top)	, , , , , , , , , , , , , , , , , , ,	1				

NOTES:

msl = mean sea level

SHEET 4 OF 11

CLIENT:	EPA Region 2			—		
PROJECT NUMBER:	164453		BORING NUMBER:	MA-MW18D		
PROJECT NAME: EF	PA-Martin Aaron		LOCATION: Everett St,	between Broadw	ay and Sixtl	n
SURFACE ELEVATION	N: 7.60	feet msl	TOTAL DEPTH:	152.00 f	eet bgs	
			FOREMAN:			
ORILLING METHOD:	Mud Rotary with	h 6in O.D. Hollow Sand	Bit DRILLING EQUIPMENT	r: Failing 1400 OS	Rig with 6ir	O.D. dia. Sand Bit
SAMPLING METHOD:	: Down-the-Hole	2-in Split Spoon	CH2M GEOLOGIST: _	Wojciech Win	kler	
START:	11/27/2001 7:30		FINISH:			
NORTHING:	398827.203	feet	EASTING:	318575.427	feet	
		N _O	SOIL DESCRIPTION	Ĭ.	(PPM)	COMMENTS
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT)	SAMPLE TYPE BLOW COUNTS 6'-6'-6'-8"	N VALUE SAMPLE RECOVERY (FT) SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDINGRAIN SIZE WITH DESCRIPTORS, SORE GRAIN SHAPE, PLASTICITY, MINERALOWATER STATE, DENSITY/COHESIVENE LAYERING]	NATE DO ON OF OF OF OF OF OF OF OF OF OF OF OF OF	PID/FID READING (FOTHER TESTING	
V+ 1 1 1	1		ı	,		· .
- 65	Soil	1.4 0-2	SAA		o	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 67 12 67-69 5 - 68	Soil 24-25-25-18	50 0.4 0-2	Light Brown (5YR 5/6), well sorted, subant coarse SAND, wet	gular, SP	0	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
-	Soil 7-10-11-16	21 1.9 0-2	Yellowish gray (5Y 8/1), mottled (many, fin dark yellowish orange), well sorted, suban CLAY and silt, medium plasticity		0	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 70				-		

NOTES:

msi = mean sea level bgs = below ground surface

						_						Sr_	155	1 5 OF 11
CLIENT	:		Е	PA Region 2					_					
PROJEC	CT NI	JMBER	:10	64453					BORING NUMBER:	MA-MV	/18D			
PROJEC	CT N	AME: _E	EPA-N	Martin Aaron					LOCATION: Everett St, b	etween B	roadw	ay and	Six	th
SURFAC	CE E	LEVATION	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	fe	et bgs		
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	IG M	ETHOD:	: <u>M</u>	lud Rotary witl	n 6in	O.D.	Hollow Sand I	Bit	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wit	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	NETHO	D: _D	own-the-Hole	2-in	Split :	Spoon		CH2M GEOLOGIST:	Wojcied	h Win	kler		
START:			1	1/27/2001 7:3	0:00	AM_			FINISH:	11/28/20	001 4:0	00:00 F	PM	
NORTH	NG:		39	98827.203	fee	t			EASTING:	318575.	427	fee	et	
		(FT)			T		Z		SOIL DESCRIPTION	,	٦ ا	(PPM)	T	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PI	OTHER TESTING	
''	14	71-73	Soil	8-9-12-15	21	1.9	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 72										-				_
- - 73	15	73-75	Soil	7-10-25-23	35	1.7	0-0.4	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
74							-1.6-0.3	dark yellowis	ny (5Y 8/1), mottled (many, fine h orange), well sorted, subrour layey SILT, trace fine sand, slig	ided.	МН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ — 75	17	75-77	Soil	9-13-18-23	31	1.4	0-2	dark yellowis	ay (5Y 8/1), mottled (many, fine h orange), well sorted, subroun ilty CLAY, medium plasticity		СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- - 76									,	_				-
77	18	77-79	Soil	8-24-27-33	51	1.2	0-2	dark yellowisi intermixed, cl	ny (5Y 8/1), mottled (many, fine h orange), well sorted, subroun layey SiLT, slight plasticity, lam	ded,	мн	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
70								(NOTE: with	0.25in of fine sand layers)	_				

NOTES:

msl = mean sea level

SHEET 6 OF 1

												٠,			٠,١
CLIENT	:		E	PA Region 2					-			-			_
PROJEC	יא דכ	JMBER	: _1	64453					BORING NUMBER:	MA-MW	/18D		_	· · · · · · · · · · · · · · · · · · ·	
PROJEC	T N	AME: _!	EPA-N	Martin Aaron					LOCATION: Everett St, b	etween B	roadw	ay and	Six	th	
SURFAC	E E	LEVATI	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	f	eet bgs	;		_
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech)				FOREMAN:				_		_
DRILLIN	G M	ETHOD	: <u>N</u>	lud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit	
SAMPLI	NG N	METHO	D: <u>D</u>	own-the-Hole	2-in	Split	Spoon		CH2M GEOLOGIST:	Wojciec	h Win	kler			
START:			1	1/27/2001 7:3	0:00	AM			FINISH:	11/28/2	001 4:	00:00	<u>M</u> _		
NORTHI	NG:		3	98827.203	fee	et			EASTING:	318575.	427	fee	et		_
	Γ_		7	1	T	T	7	1	SOIL DESCRIPTION			Σ	Т	COMMENTS	7
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF	DITLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
- 79 80	19	79-81	Soil	12-20-27-32	47	1.8	0-1.6	dark yellowis thinly bedded	ny (5Y 8/1), mottled (many, fine h orange), intermixed, silty CLJ I (NOTE: bedded with fine san	AY, very d) -	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	-
- 81 - 82	20	81-83	Soil	17-44-33-30	77	1.1	0-2	Pinkish gray fine GRAVEL	h orange (10YR 6/6), well sort ine to medium SAND (5YR 8/1), poorly sorted, subar and coarse sand, trace clay, v (NOTE: clay (~2in) 2 layers)	ngular,	GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
— 83 - - 84	21	83-85	Soil	17-33-50	83	0.4	0-2	SAA						PID malfunctioning; RAD(B)=40 cpm, (H)=40 cpm	
_ <u>85</u>															_

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 7 OF 11

CLIENT:			E	PA Region 2										
PROJEC	T NU	JMBER:		64453					BORING NUMBER:	MA-MW	/18D			
PROJEC	T NA	AME: E	PA-N	lartin Aaron					LOCATION: Everett St, b	etween B	roadwa	ay and	Sixt	h
SURFAC	E El	EVATIO	ON: _	7.60	feet	msl		 	TOTAL DEPTH:	152.00	fe	et bgs		
DRILLIN	G CC	ONTRAC	CTOR	: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G ME	ETHOD:	_ <u>M</u>	ud Rotary with	6in	O.D.	Hollow Sand E	3it	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wit	h 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	METHO): <u>D</u>	own-the-Hole 2	2-in 9	Split 9	Spoon		CH2M GEOLOGIST:	Wojcied	h Winl	der		
START:			1	1/27/2001 7:30	:00	AM			FINISH:	11/28/20	001 4:0	00:00 F	M	
NORTHI	NG:		39	98827.203	fee	<u>t</u>			EASTING:	318575.	427	fee	<u>et</u>	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- - - 86	22	85-87	Soil	21-50		0.4	0-2	Grayish oran fine SAND, li	ge (10YR 7/4), well sorted, sub title clay, low plasticity, wet	oangular, -	мн			PID malfunctioning; RAD(B)=40 cpm, (H)=40 cpm
- 87 - 88	23	87-89	Soil	50		0.4	0-0.3 0.3-0.4	SAA CLAY						PID malfunctioning; RAD(B)=40 cpm, (H)=40 cpm — PID malfunctioning; RAD(B)=40 cpm, (H)=40 cpm
- - - - - - 90	24	89-91	Soil	50		0.3	0-2	Yellowish gra	ay (5Y 7/2), well sorted, subrou y, low plasticity	nded, -	мн			PID malfunctioning; RAD(B)=40 cpm, (H)=40 cpm
91	25	91-93	Soil	28-38-50	88	0.6	0-2		sh orange (10YR 6/6), well sort coarse SAND, some fine grave		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 8 OF 11

	_													
PROJEC	TNU	JMBER	:10	64453					BORING NUMBER:	MA-MW	/18D			
									LOCATION: Everett St, b			ay and	Six	th
SURFAC	EEL	EVATIO	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	fe	et bgs	<u> </u>	
DRILLIN	G CC	ONTRA	CTOR	R: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD:	. <u>M</u>	lud Rotary wit	n 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	METHO	D: <u>D</u>	own-the-Hole	2-in	Split	Spoon	•	CH2M GEOLOGIST:	Wojcied	h Winl	kler		
									FINISH:					
NORTHI	NG:		39	98827.203	fee	et			EASTING:	3185 <u>7</u> 5.	427	fee	et	
		L (FT)					NOIF	,	SOIL DESCRIPTION		MBOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	IATE TING, SY),	USCS GROUP SYMBOL	PID/FID READING	OTHER TESTING	
- 93 - 94 - 95 - 96 - 97 - 98	27 28	93-95 95-97		22-25-50 50-50		0.6	0-1.2	prominent, de subangular, in plasticity Grayish yello	y (5Y 7/2), mottled (many, fine ark yellowish orange), well sort ntermixed, CLAY and silt, med	ted, lium -	CH	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ 00	1]			<u> </u>						

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 9 OF 11

												<u> </u>	, L. L.	, 5 01 11
CLIENT:			E	PA Region 2					-					
PROJECT	r nu	MBER:	16	64453					BORING NUMBER:	MA-MW	18D			
PROJECT	r na	ME: E	PA-N	Nartin Aaron					LOCATION: Everett St, be	etween B	oadw	ay and	Sixt	h
SURFACE	E EL	EVATIO	ON: _	7.60	feet	msi			TOTAL DEPTH:	152.00	fe	et bgs		
DRILLING	s co	NTRAC	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLING	ME	THOD:	_M	ud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	100 OS	Rig wi	th 6ir	n O.D. dia. Sand Bit
									CH2M GEOLOGIST:					
START:_			1	1/27/2001 7:3	0:00	AM			FINISH:	11/28/20	001 4:0	00:00 F	PM_	
NORTHIN	IG: _		39	98827.203	fee	ŧ			EASTING:	318575.	427	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHA WATER STA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, IY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
9	8	SAN	SAI	BL(ź	SAI	AS F	LAYERING			S	ā	0	
- 100		99-101		8-16-17 12-13-14-33		1.7	0-0.5 0.5-1.7	prominent, d subangular, plasticity	ay (5Y 7/2), mottled (many, fine ark yellowish orange), well sort intermixed, fine SAND and clay are sorted, fine sand clay ge pink (5YR 7/2), well sorted, it, medium plasticity, wet	ed, , slight _ _	sc CH	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm
103 104 105	31	103-105	Soil	13-44-42-50	86	1	0-2	faint, dark ye	ge pink (5YR 7/2), mottled (mai ilowish orange), well sorted, fine SAND, little clay	ny, fine,	SC	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ 106														

NOTES:

msl = mean sea level

SHEET 10 OF 11

			<u></u>										, , .,
CLIENT:		E	PA Region 2										
PROJECT N	UMBER	:1	64453			····		BORING NUMBER: _	MA-MV	/18D			
PROJECT N	AME: _E	PA-N	Martin Aaron					LOCATION: Everett St,	between B	roadw	ay and	Six	th
SURFACE E	LEVATIO	ON:	7.60	feet	msl			TOTAL DEPTH:	152.00	fe	eet bgs		
DRILLING C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLING M	ETHOD:	M	lud Rotary wit	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT	: Failing 1	400 OS	Rig wi	h 6i	n O.D. dia. Sand Bit
SAMPLING	METHO	D : _D	own-the-Hole	2-in	Split 9	Spoon		CH2M GEOLOGIST: _	Wojcied	h Winl	kler		
START:	·····	1	1/27/2001 7:3	0:00	AM			FINISH:	11/28/2	001 4:0	00:00 F	M	
NORTHING:		39	98827.203	fee	et			EASTING:	318575	427	fee	et	·
	Τ _			T-	Τ	7	1	SOIL DESCRIPTION			\ \frac{1}{5}	1	COMMENTS
DEPTH BELOW GRADE (FT) SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTIC ANT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALC TE, DENSITY/COHESIVENE	NATE RTING, PGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 107 ₃₂ - 108	107-109	Soil	13-14-13-17	27	1.4	0-2	subangular, o	sh orange (10YR 6/6), well so coarse SAND, trace fine grav increasing outside temperatu le for the increase in PID read	el, trace ires may	SP	2.5		PID(B)=2.5 ppm, (H)=2.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 109 ₃₃	109-111	Soil	7-15-17-21	32	1.1	0-0.9	SAA (NOTE:	mottling layered ~0.5in)	· .		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 111 ₃₄ - 112	111-113	Soil	15-19-21-23	40	1.7	0-1	subrounded, Moderate red	nge (10YR 8/2), well sorted, CLAY and silt, wet dish orange (10R 6/6), well s CLAY and silt, wet	orted,	сн	0.9	-	PID(B)=0.9 ppm, (H)=0.9 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.9 ppm, (H)=0.9 ppm; RAD(B)=40 cpm, (H)=40 cpm
113													

NOTES:

msi = mean sea level bgs = below ground surface

SHEET 11 OF 11-

	<u></u>								
CLIENT:	EPA Region 2								
PROJECT NUMB	ER: <u>164453</u>				BORING NUMBER:	MA-MW18D		·	
PROJECT NAME	EPA-Martin Aaron				LOCATION: Everett St, b	etween Broadv	vay and	Sixt	<u>h</u>
SURFACE ELEVA	TION: 7.60	feet msl			TOTAL DEPTH:	152.00	feet bgs	i	
DRILLING CONTI	RACTOR: Unit-Tech	1			FOREMAN:				
DRILLING METHO	OD: Mud Rotary wi	th 6in O.D. H	iollow Sand E	3it	DRILLING EQUIPMENT:	Failing 1400 O	S Rig wit	th 6ir	O.D. dia. Sand Bit
SAMPLING METH	IOD: Down-the-Hole	2-in Split Sp	ooon		CH2M GEOLOGIST:	Wojciech Wir	kler		
START:	11/27/2001 7:3	80:00 AM		· · · · · · · · · · · · · · · · · · ·	FINISH:	11/28/2001 4	:00:00 F	М	
NORTHING:	398827.203	feet			EASTING:	318575.427	fee	et	
Í	=		z		SOIL DESCRIPTION	3	₩ W		COMMENTS
			SAMPLE DESCRIPTION INTERVAL (FT)			SYMBOL	PID/FID READING (PPM)		
(FT) UMBE	M P N N N N N N N N N N N N N N N N N N		SCR FT)		OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN		ADIN	TESTING	
BEL OE (1 H H H H H H H H H H H H H H H H H H H	ERY E	E DE		WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG	TING, O) RE	TES	
GRADE (FT) SAMPLE NUMBER	SAMPLE TYPE BLOW COUNTS 6"-6"-6"-6"	N VALUE SAMPLE RECOVERY (FT)	MPL	WATER STA	TE, DENSITY/COHESIVENES		D/FIL	OTHER.	
SA	SA SA 6.46	Z & B	AS Z	LAYERING]		Sn Sn	ā	þ	
35 113-	115 Soil)-2	SAA			0.9		PID(B)=0.9 ppm, (H)=0.9 ppm; RAD(B)=40 cpm, (H)=40 cpm
-			ļ			+			
<u> 114 </u>						1			_
						1			4
				l					,
— 115				Boring contin	nued to 152 ft bgs.				
				Downg contin	rueu to 192 it bys.				
-						1			_
_ 116									
— 116									
_						-			_
— 117						-			\dashv
-						1			-
- 118						_			
-						+			-
	1 1								

NOTES:

msl = mean sea level

SHEET 1 OF 6

CLIENT:			El	PA Region 2										
PROJEC	T N	JMBER	:16	54453					BORING NUMBER:	MA-MW	19M			
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: Intersection	of Sixth a	nd Eve	erett St	reets	\$
									TOTAL DEPTH:			et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT	: CME 85	Rig 4 1	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	/ETHO	D: <u>2</u> -	in Split Spoor	/140	LB F	łammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START:			1^	1/12/2001 7:0	0:00	AM_			FINISH:	11/12/2	001 1:2	20:00 F	PM	
NORTHI	NG:		39	98858.905	fee	et			EASTING:	318899.	027	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	ALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	S GROUP SYMBOL	PID/FID READING (PPM)	IER TESTING	COMMENTS
DEP	SAN	SAM	SAM	8LO 6"-6"	z	SAN	SAN	LAYERING]	·		SOSO	OI4	OTHER	
- 14 - - 15								NOTE: Blind MA-MW19S.	drill to 16 ft bgs. See boring	-				_
— 16 —	1	16-18	Soil	2-2-7-9	9	2	0-1.75	Black (N1), w gravel, moist	rell sorted, rounded, SILT, trac stiff	ce fine	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
18 19	2	18-20	Soil	8-4-2-4	6	.83	1.75-2 0-0.8	medium SAN Medium light distinct, dark subrounded, fine to medium	gray (N6), well sorted, rounded D, moist, loose gray (N6), mottled (common, yellowish orange), moderately intermixed, fine to coarse SAF m gravel, moist, loose (NOTE and and gravel)	medium, y sorted, ND and	SP SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 20 - 21	3	20-22	Soil	1-2-1-1	3	1	0-1	Black (N1), w gravel, moist,	ell sorted, rounded, SILT, trac stiff	ce fine	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm: RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msi = mean sea level

SHEET 2 OF 6

CLIENT:	:		E	PA Region 2										•
PROJEC	T N	UMBER	: _1	64453				BORING NUMBER:	MA-M\	V19M				_
PROJEC	T N	AME: _E	EPA-N	Martin Aaron_				LOCATION: Interse	ction of Sixth	and Eve	erett St	ree	s	_
SURFAC	E EI	LEVATIO	ON:	6.66	feet	msl		TOTAL DEPTH:	56.00	fe	eet bgs			
DRILLIN	IG C	ONTRA	стог	R: Unit-Tech				FOREMAN:	·					_
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	ger			DRILLING EQUIPM	ENT: CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA	_
SAMPLI	NG N	METHO	D: <u>2</u>	in Split Spoon	/140	LB F	Hammer	CH2M GEOLOGIST	r: <u>Mark E</u>	shbauc	h			
START:			1	<u>1/12/2001 7:00</u>	0:00	AM		FINISH:	11/12/2	2001 1::	20:00 F	PM		_
NORTHI	NG:		3	98858.905	fee	et	····	EASTING:	318899	9.027	fee	et		_
		(FT)					Z O	SOIL DESCRIPTION] Ä	(PPM)	Ī	COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLETYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOTTLING, SOIL DESCRIF PREDOMINANT GRAIN SIZE, SUBO GRAIN SIZE WITH DESCRIPTORS, GRAIN SHAPE, PLASTICITY, MINER WATER STATE, DENSITY/COHESIV LAYERING]	RDINATE SORTING, ALOGY),	USCS GROUP SYMBOL	PID/FID READING (R	OTHER TESTING		
- 22	4	22-24	Soil	3-3-3-2	6	1.3	0-1.3	Medium light gray (N6), mottled (com	mon, fine,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,	
_ — 23								distinct, dark yellowish orange), well s rounded, fine SAND, some silt and fin moist, loose	orted, e gravel,				(H)=40 cpm -	
— 24 —	5	24-26	Soil	2-5-9-11	14	1.3	0-1.3	SAA, (NOTE: more gravel in bottom 2 spoon)	inches of		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
25 														
— 26 -	6	26-28	Soil	5-5-9-11	14	1.8	0-1.9	SAA (NOTE: with coarse sands)			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
— 27 -									-	-			-	
28	7 .	28-30	Soil	7-15-20-27	35	2	0-2	SAA			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	

NOTES:

msl = mean sea level

SHEET 3 OF 6

CLIENT:	EPA Region 2								
PROJECT NUMBER	t: <u>164453</u>				BORING NUMBER:	MA-MW19M			
PROJECT NAME: _	PA-Martin Aaron				LOCATION: Intersection of	of Sixth and Eve	erett Str	reets	<u> </u>
SURFACE ELEVATI	ON: 6.66	feet msl			TOTAL DEPTH:	56.00 fe	et bgs		
DRILLING CONTRA	CTOR: Unit-Tech	1			FOREMAN:				
DRILLING METHOD	: Hollow Stem A	uger			DRILLING EQUIPMENT:	CME 85 Rig 4 1	/4in I.D.	/Bin (O.D. HSA
SAMPLING METHO	D: 2-in Split Spoo	n/140 LB H	ammer		CH2M GEOLOGIST:	Mark Eshbaug	h		
START:	11/12/2001 7:0	00:00 AM			FINISH:	11/12/2001 1::	20:00 F	PM_	
NORTHING:	398858.905	feet			EASTING:	318899.027	fee	et	
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT)	SAMPLE TYPE BLOW COUNTS 6"-6"-6"-6"	N VALUE SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, OYO	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 29	Soil 7-15-20-25 Soil 8-12-27-34	35 1.25 39 1.5	0-1.5	SAA			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 cpm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 cpm; RAD(B)=40 cpm, (H)=40 cpm

msl = mean sea level bgs = below ground surface

SHEET 4 OF 6

													
CLIENT	:		E	PA Region 2					-				
PROJE	CT N	UMBER	: _16	64453					BORING NUMBER:	MA-MW19M	<u> </u>		
PROJE	CT N	AME: _E	PA-N	Martin Aaron					LOCATION: Intersection	of Sixth and E	verett S	tree	S
SURFA	CE EI	LEVATION	ON:	6.66	feet	msl			TOTAL DEPTH:	56.00	feet bg	s	
DRILLIN	IG C	ONTRA	CTOF	R: <u>Unit-Tech</u>			······································	·	FOREMAN:				
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT	: CME 85 Rig 4	1/4in I.E)./8in	O.D. HSA
SAMPL	NG I	VETHO	D: <u>2</u> -	in Split Spoor	1/140	LBF	lammer		CH2M GEOLOGIST:	Mark Eshba	ugh		· · · · · · · · · · · · · · · · · · ·
START:			1	1/12/2001 7:0	0:00	AM			FINISH:	11/12/2001	1:20:00	PM	
NORTH	ING:		39	98858.905	fee	et			EASTING:	318899.027	fe	et	
	Τ_	Γ.	Γ		Τ_				SOIL DESCRIPTION	1.	T 🗧	Т	COMMENTS
		Ē					NO F		SOIL DESCRIPTION	ABOL	(PPM)		COMMENTS
> -	BER	SAMPLE INTERVAL (FT)		φ		F	SAMPLE DESCRIPTION INTERVAL (FT)		OTTLING, SOIL DESCRIPTION	1	PID/FID READING	S S	
PTH BELOW GRADE (FT)	Ş	N F	YPE	N N		X	DES(i	ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT	ING,	EAC	EST	
H B	밀]	LE.	C C 6	=	양	RVA		PE, PLASTICITY, MINERALO	3Y), 5	E	l H	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	AMF	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMI	LAYERING]	TE, DENSITY/COHESIVENES	ss, son	PID/F	OTHER TESTING	
L	L <u></u>	L		1		<u> </u>		1				1	1
											Ì		
- 36	11	36-38	Soil	37-34-50	84	.92	0-1	SAA			0		PID(B)=0.0 ppm, (H)=0.0 cpm; RAD(B)=40 cpm,
													(H)=40 cpm
Ī										1			-
- 37													
5,	}												
		İ			1					-			-
— 38	12	38-40	Soit	27-34-47-50	81	.5	0-0.5	SAA			0		PID(B)=0.0 ppm, (H)=0.0
	-							JAA.					cpm; RAD(B)=40 cpm, (H)=40 cpm
-										1			
39										1			_
L													
Γ]			_
- 40				10.07.50.50									DID (D) 44
1	13	40-42	Soil	18-27-50-50	777	.67	0-0.6	SAA, but med	dium to fine sand		0		PID(B)=0.0 ppm, (H)=0.0 cpm; RAD(B)=40 cpm, (H)=40 cpm
L	ĺ									4			4-7 10 opin
41										-			
F										4			-
- 42	14	42-44	Soil	44-50	100	0.5	0-0.5	SAA, Modera	te yellow (5Y 7/6)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
L													(H)=40 cpm
Γ										1			
NOTES:			·	·····		. '	·		NAT		· · · · · · · · ·		ean sea level

NOTES:

SOIL BORING LOG

SHEET 5 OF 6

CLIENT:			Е	PA Region 2					-					
PROJEC	T NI	JMBER	:16	34453					BORING NUMBER:	MA-MW	19M_			
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: Intersection	of Sixth ar	nd Eve	erett St	reets	S
SURFAC	E EI	EVATION	ON:	6.66	feet	msl		 -	TOTAL DEPTH:	56.00	fe	et bgs		
DRILLIN	G C	ONTRA	стог	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem A	ıger		 		DRILLING EQUIPMENT	: CME 85	Rig 4 1.	/4in I.D	/8in	O.D. HSA
SAMPLI	NG N	/ETHO	D: <u>2</u> -	in Split Spoor	1/140	LB F	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START:			1	1/12/2001 7:0	0:00	AM_			FINISH:	11/12/20	001 1:2	20:00 F	PM_	
NORTH	NG:		39	98858.905	fee	et			EASTING:	318899.	027	fee	et	
			Γ-				z		SOIL DESCRIPTION		ر	Σ	Π	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	ALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' PE, PLASTICITY, MINERALOGITE, DENSITY/COHESIVENE	NATE TING, GY),	S GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
DEP	SAM	SAMI	SAM	BLO 6"-6"	Z	SAM	SAM	LAYERING]	(12, DENOTING TO THE	00,	nscs	<u>8</u>	ОТН	
- 43 - 44 - 45 - 46 - 47	15	44-46 46-48		25-27-25-27 12-34-47-50	52		0-1	coarse, distil sorted, suba coarse grave	h yellow (10Y 8/2), mottled (co not, pale greenish yellow), poo ngular, fine to coarse SAND and I, wet, very dense	rty nd fine to	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 49 - 50	17	48-50	Soil	24-33-34-50	67	1	0-2	SAA, Yellowi gravel)	sh gray (5Y 7/2) (NOTE: very l	little		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

msi = mean sea level bgs = below ground surface

SHEET 6 OF 6

CLIENT:			E	PA Region 2					-					
PROJEC	TN	UMBER	t: <u>1</u>	64453					BORING NUMBER:	MA-MW	/19M			
PROJEC	TN	AME: _	EPA-N	Martin Aaron					LOCATION: Intersection	of Sixth a	nd Ev	erett St	tree	ls
SURFAC	E EI	LEVATI	ON:	6.66	feet	msl			TOTAL DEPTH:	56.00	f	eet bgs	3	- 1
DRILLIN	G C	ONTRA	стог	R: Unit-Tech)				FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	lollow Stem A	uger				DRILLING EQUIPMENT	CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u>	-in Split Spoor	n/140	LB F	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	<u>ah</u>		
START:			1	1/12/2001 7:0	00:00	AM			FINISH:	11/12/20	001 1:	20:00 F	PM	· · · · · · · · · · · · · · · · · · ·
NORTHI	NG:		3	98858,905	fee	et	······································		EASTING:	318899.	027	fee	et	
S GRADE (FT)	SAMPLE NUMBER	S SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6'-6'-6"	N VALUE	b SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES no gravel)	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
51 52	19	52-54	Soil	11-14-17-12	31	2	0-2	Yellowish gradistinct, dark	ay (5Y 7/2), mottled (few, coars yellowish orange), well sorted,	.]	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm
53 54	20	54-56	Soil	25-30-37-42	67	1.5	0-0.1 0.1-0.6 0.6-1.5	SAA Very pale ora prominent, de low plasticity,		fine,	CL	8		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
55 · - - 56								distinct, dark	y (57 7/2), mottled (few, coars yellowish orange), well sorted, coarse SAND, trace silt, wet, d	!				ррт; RAD(B)=40 cpm, (H)=40 cpm ———————————————————————————————————

NOTES:

msl = mean sea level

SHEET 1 OF 4

CLIENT:			E	PA Region 2										
PROJEC	T NU	MBER:	16	54453			·	·	BORING NUMBER:	MA-MW19	R			
PROJEC	T NA	ME: _E	PA-N	Martin Aaron					LOCATION: Intersection of	of Sixth and	Evere	tt Stre	ets	
SURFAC	E EL	EVATIO	ON:	6.66	feet	msł			TOTAL DEPTH:	116.00	feet	bgs		
									FOREMAN:					
DRILLIN	G MI	THOD:	<u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 Rig	4 1/4ir	1.D./8	in O	.D. HSA
SAMPLII	NG N	ETHO): <u>2</u> -	in Split Spoon	/140	LB H	lammer		CH2M GEOLOGIST:	Mark Eshb	augh			
START:		·	0	5/30/2002					FINISH:					
NORTHI	VG:		39	98847.102	fee	t			EASTING:	318898.36	1	feet		
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION, ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI PE, PLASTICITY, MINERALOG' TE, DENSITY/COHESIVENES	NG,	COCO GROOT STANDOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 64 - 65								NOTE: Blind MA-MW19M.	drill to 66 ft bgs. See boring	-				_
- 66 - 67	1	66-68	Soil			0.33	0-0.33	sand, mediu	nnge (10YR 8/2), CLAY, some n n plasticity, dry, very stiff (NOTE and with depth)	nedium C	L 0			- - -
- 68 - 69	2	68-70	Soil	28-50/4in		0.25	0-0.25	Dark yellowis subangular, dense (NOTI specs on sar	ch orange (10YR 6/6), very well nedium SAND, trace clay, mois E: soil may have fallen in; small d grains)	sorted, Sit, black	и о	.2		-
- 70 - 71	3	70-72	Soil			0.67	0-0.67	SAA (NOTE	increasing fine to medium grav	vel)				
- 72 - 73	4	72-74	Soil	27-48-48-60	96	0.67	0-0.67	sorted, subro	th orange (10YR 6/6), moderate unded, fine to medium GRAVEL d, moist, dense		м о			- - - -
74 75	5	74-76	Soil			0.5	0-0.5	SAA (NOTE:	decreasing gravel)					
- 76 - 77	6	76-78	Soil			0.5	0-0.5	Very pale ora subangular, silt, moist, de	inge (10YR 8/2), well sorted, nedium SAND, trace fine gravel inse	I, trace	Л			- - - - -

NOTES:

msl = mean sea level

SHEET 2 OF 4

CLIENT:			El	PA Region 2										`
PROJEC	T N	JMBER	: _16	54453					BORING NUMBER:	MA-MV	V19R			
PROJEC	TN	AME: E	EPA-N	fartin Aaron					LOCATION: Intersection	of Sixth a	and Eve	erett St	treet	s
SURFAC	E El	EVATIO	ON: _	6.66	feet	msl			TOTAL DEPTH:	116.00	fe	et bgs	3	
DRILLIN	G C	ONTRA	CTOR	: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD:	<u>н</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
SAMPLI	NG N	ETHO	D: <u>2</u> -	in Split Spoor	/140	LB F	lammer		CH2M GEOLOGIST:	Mark Es	shbaug	h		
START:			05	5/30/2002					FINISH:					
NORTHI	NG:		39	98847.102	fee	<u>t</u>			EASTING:	318898	.361	fee	et	····
					Τ	Γ	 		ON DECODIDATION		Т.	l 🚖	Г	COMPLETE
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO' PREDOMINA GRAIN SIZE I GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 78 - - 79	7	78-80	Soil	43-49-50-48	99	0.5	0-0.5	SAA (NOTE: 0	decreasing gravel)			0		-
- 80 - 81	8	80-82	Soil			0.33	0-0.33		ow (5Y 7/6), moderately sorte nedium SAND, trace silt, little dense		SM			
- - 82 - - 83	9	82-84	Soil	50/5in		0.4	0-0.4		ow (5Y 7/6), very well sorted, nedium SAND, trace silt, mois		SM	0		1
- 84 - 85	10	84-86	Soil			0.5	0-0.5	SAA		- - -				- - - -
- 86 - 87	11	86-88	Soil			0.67	0-0.67	SAA						- - - -
- - 88 - - 89	12	88-90	Soil	40-50/4in		0.5	0-0.5	Moderate yello subrounded, fi dense	ow (5Y 7/6), very well sorted, ine to medium SAND, trace si	ilt, moist, -	SM	0		- - - -
- 90 - 91	13	90-92	Soil			0.5	0-0.5	SAA		-		0		- - - -

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 3 OF 4

CLIENT:			E	PA Region 2										
PROJEC	T NL	JMBER:	16	54453					BORING NUMBER:	MA-MW	19R_			
PROJEC	TNA	ME: E	PA-N	fartin Aaron					LOCATION: Intersection	of Sixth a	nd Eve	erett St	reets	
SURFAC	EEL	EVATIO	ON: _	6.66	feet	msl			TOTAL DEPTH:	116.00	fe	et bgs		
									FOREMAN:					
DRILLIN	G ME	THOD:	H	ollow Stem Au	ger		·		DRILLING EQUIPMENT:	CME 85 I	Rig 4 1/	4in I.D.	/8in (D.D. HSA
SAMPLI	NG N	ETHOD): <u>2</u> -	in Split Spoor	/140	LB H	lammer		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START:			0;	5/30/2002					FINISH:					
NORTHI	NG:	- 	39	98847.102	fee	t			EASTING:	318898.	361	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	IATE TING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- - - - - 93	14	92-94	Soil	32-50/4in		0.5	0-0.5	fine sand, dry	ange (10YR 8/2), CLAY, trace s , hard (NOTE: clay has low to anged over to medium sand wi	medium -	CL	0		- - -
- 94 - - 95	15	94-96	Soil			0.5	0-0.5	Grayish oran subrounded, dense	ge (10YR 7/4), very well sorted fine to medium SAND, trace s	l, ilt, moist, -	SM	0		_ - -
- 96 - 97	16	96-98	Soil			0.5	0-0.5	SAA		-		0		- - - -
- 98 - 99	17	98-100	Soil			0.5 0.5	0-0.25 0.25-0.5	SAA Very pale ora subrounded,	nge (10YR 8/2), very well sorte fine SAND, trace silt, moist, de	ed, ense	SM	0		- - -
— 100 - — 101	18	100-102	Soil	45-50/4in		0.5	0-0.5	SAA		-				-
- - 102 - - 103	19	102-104	Soil	45-50/4in		0.5	0-0.5	SAA		-		0		-
- 104 105	20	104-106	Soil	45-50/4in			0-2	SAA		-				

NOTES:

msl = mean sea level

SHEET 4 OF 4

														· · · · · · · · · · · · · · · · · · ·
CLIENT	:		E	PA Region 2										
PROJEC	CT N	JMBER	: _1	64453					BORING NUMBER:	MA-MW1	9R			
PROJEC	CT N	AME: _E	EPA-N	Martin Aaron					LOCATION: Intersection	of Sixth and	d Eve	erett St	treet	S
SURFAC	CEE	EVATI	ON:	6.66	feet	msl			TOTAL DEPTH:	116.00	fe	eet bgs	3	
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					·····
DRILLIN	IG MI	ETHOD	: <u>H</u>	Iollow Stem Au	ıger				DRILLING EQUIPMENT:	CME 85 Ri	g 4 1	/4in I.D	./8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u>	-in Split Spoon	/140	LBF	lammer		CH2M GEOLOGIST:	Mark Esh	baug	ıh		
START:			0	5/30/2002					FINISH:					* * * * * * * * * * * * * * * * * * *
NORTH	NG:		3	98847.102	fee	et			EASTING:	318898.3	61	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN. GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- - 106 - - 107	21	106-108	Soil	43-50/4in			0-2	SAA (NOTE:	increasing medium-coarse sar	nd)				-
- 108 - 109	22	108-110	Soil	50/4in		0.83	0-0.83		ge (10YR 7/4), very well sorted medium to coarse SAND, trace	•	6 M			- - - - -
- 110 - - 111	23	110-112	Soil	: 50/4in		0.67	0-0.67	SAA						- - -
- - 112 - - 113	24	112-114	Soil			0.83	0-0.42 0.42-0.83	SAA Very light gre	ry (N8), CLAY, medium plasticit	ly, dry	CL .	0		- - -
- - 114 - - 115	25	114-116	Soil	16-24-34-40	58	0.83	0-0.83	Very light gre dry, very stiff	y (N8), CLAY, trace silt, high pl	lasticity,	ЭН	0		- - - -
116	L		1	L	1	L		1				l		

NOTES:

msi = mean sea level bgs = below ground surface

SHEET 1 OF 4

CLIENT:			E	PA Region 2			·							
PROJEC	TN	JMBER	:16	64453					BORING NUMBER:	MA-MW	208			
PROJEC	T NA	AME: _E	EPA-N	Martin Aaron					LOCATION: Comer of Ja	ckson an	d S. Si	xth Str	eet	
SURFAC	E El	EVATION	ON:	6.67	feet	msl			TOTAL DEPTH:	20.00	fe	et bgs		·
DRILLIN	G C	ONTRA	CTOR	R: Unit-Tech					FOREMAN:					···
DRILLIN	G MI	ETHOD:	: <u>H</u>	ollow Stem Au	iger				DRILLING EQUIPMENT:	CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u> -	in Split Spoon	/Har	nmer	/liners		CH2M GEOLOGIST:	Mark Es	hbaug	h		
START:			. 1	1/07/2001 10:	30:00	AM (FINISH:	11/07/20	001 11	:45:00	AM	
NORTHI	NG:	_	3	98149.781	fee	et			EASTING:	318872.	603	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
L	I	!		<u> </u>	—		<u> </u>					.	·	L
- 1	1	0-2	Soil	15-6-5	11	.5	0-0.2 0.2-0.5 0.5-1	ASPHALT Belgin Block Moderate ye rounded, me	llowish brown (10YR 5/4), well dium SAND, moist, medium de	sorted,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=20 cpm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=0.0 ppm; RAD(B)=0.0 cpm, (H)=0.0 ppm; RAD(B)=0.0 cpm
- 2	2	2-4	Soil			1.6	0-1.7	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 3										-				-
- 4	3	4-6	Soil	3-2-3-4	5	1	0-1	SAA, some s	iit	-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
5 -														-

NOTES:

msl = mean sea level

SHEET 2 OF 4

				L_										
				PA Region 2										
PROJEC									BORING NUMBER:	MA-MW				
		_		Martin Aaron					LOCATION: Corner of Ja					
									TOTAL DEPTH:			eet bgs		*
									FOREMAN:					
				ollow Stem A					DRILLING EQUIPMENT:					
									CH2M GEOLOGIST:					
				1/07/2001 10:					FINISH:					
NORTHI	NG:		3:	98149.781	fee	et	···		EASTING:	318872.	603	tee	et	
		E			Τ	T	z		SOIL DESCRIPTION		۲	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PF	OTHER TESTING	
6	4	6-8	Soil	3-3-3-2	6	1.75	0-1.8	Dark yellowis rounded, fine	h orange (10YR 6/6), very well SAND, moist, loose	sorted,		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 7										-				· <u>-</u>
— 8 -	5	8-10	Soil	9-7-8-8	15	1.3	0-1.5	SAA, Modera dense	te yellowish brown (10YR 5/4),	, medium		0		PID(B)=0.0 ppm, (H)=0.0 [—] ppm; RAD(B)=20 cpm, (H)=20 cpm
— 9		-												_
— 10 	6	10-12	Soil			1.2	0-0.2 0.2-1.4	pale brown), i	5YR 5/6), mottled (common, fi very well sorted, well rounded, plasticity, moist		ML	0 0.5		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.5 ppm; RAD(B)=60 cpm, (H)=60 cpm
— 11 -										-				-

NOTES:

msi = mean sea level

SHEET 3 OF 4

								······································						
CLIENT:			E	PA Region 2					-					
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-MV	/20S			
									LOCATION: Corner of Ja			ixth Str	eet	
SURFAC	E EL	EVATION.	DN:	6.67	feet	msl			TOTAL DEPTH:	20.00	fe	eet bgs	<u> </u>	
									FOREMAN:					
DRILLIN	G ME	THOD:	<u> </u>	ollow Stem A	uger				DRILLING EQUIPMENT	: CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
									CH2M GEOLOGIST:	Mark Es	hbaug	h		
				1/07/2001 10:					FINISH:				AM	
NORTHI	NG:		39	98149.781	fee	t			EASTING:	318872.	603	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO ATE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 12 - 13	7	12-14	Soil	7-8-8-9	16	2	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 14 — 15	8	14-16	Soil	3-3-2-6	5	2	0-0.5		sh brown (10YR 4/2), very well e SAND, moist, loose	sorted,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 16 - 17	9	16-18	Soil	6-4-7-6	11	2	0.0.5 0.5-0.75 0.75-1 1-1.5	Dark yellowi rounded, fin Moderate ye	llowish brown (10YR 5/4), very ded, fine SAND, moist, loose sh brown (10YR 4/2), very well e SAND, moist, loose llowish brown (10YR 5/4), very ded, fine SAND, moist, loose	sorted,	SP SP SP	0 0 0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES:

msl = mean sea level

SHEET 4 OF 4

CLIENT:			E	PA Region 2					-					
PROJEC	T NL	JMBER:	: _16	64453					BORING NUMBER: _	MA-MV	/20S			
PROJEC	TNA	ME: E	PA-N	Martin Aaron					LOCATION: Corner of	Jackson an	dS.S	ixth St	reet	
SURFAC	E EL	EVATIO	ON:	6.67	feet	msl			TOTAL DEPTH:	20.00	fe	eet bg:	3	
DRILLIN	G CC	NTRAC	CTOR	R: Unit-Tech					FOREMAN:					
DRILLIN	G ME	ETHOD:	<u>н</u>	ollow Stem Au	ger				DRILLING EQUIPMEN	T: CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
SAMPLI	NG M	ETHOD): <u>2</u> -	in Split Spoon	/Har	nmer	/liners		CH2M GEOLOGIST: _	Mark Es	shbauc	<u>ih</u>		
START:			11	1/07/2001 10:3	30:00) AM			FINISH:	11/07/2	001 11	:45:00	AM	1
NORTHI	NG:		39	98149.781	fee	t			EASTING:	318872	.603	fe	et	
G GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	"9",9",9",9 SLNNOO MOTB	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN GRAIN SIZE GRAIN SHAI WATER STA LAYERING]	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SOIPE, PLASTICITY, MINERALO ATE, DENSITY/COHESIVEN Sh brown (10YR 4/2), very we SAND, wet, loose	INATE RTING, DGY), ESS,	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
L 20 1								<u> </u>			<u> </u>	L	L	

NOTES:

SHEET 1 OF 8

CLIENT:			E	PA Region 2										
PROJEC	TN	JMBER	:16	64453			····		BORING NUMBER:	MA-MW	20M			
									LOCATION: Sixth Street					
									TOTAL DEPTH:					
									FOREMAN:					
									DRILLING EQUIPMENT:				/8in	O.D. HSA
									CH2M GEOLOGIST:					
					0:00				FINISH:		,		РМ	
NORTHI	NG:		39	98174.443	fee	et			EASTING:	318875.	777	fee	et	
		. (FT)			T		NOIT		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYA	PID/FID READING	OTHER TESTING	
L	Ŝ	SS	8	8 6	\Z	SΩ	છે ≧	Brizinio			Š		O	
13 14								NOTE: Blind MA-MW20S.	drill to 15 ft bgs. See boring	-				_
15 16	1	15-17	Soil	5-4-6-5	10	1	0-2	Pale reddish silty CLAY, h	brown (10R 5/4), well sorted, r igh plasticity	ounded,	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
_														
— 17 - — 18	2	17-19	Soil	3-3-5-6	8	1.67	0-0.5 0.5-1.67		brown (10R 5/4), well sorted, r lty CLAY and fine sand, high p		сн	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
-										-				4
— 19										4				-
		;								1				_
20	3	20-21	Soil	WH-1-1-3	2	1	0-1	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,

NOTES:

msl = mean sea level

SHEET 2 OF 8

PROJECT NAME: EPA-Martin Aaron LOCATION: Sixth Street and Jackson SURFACE ELEVATION: 6.93 feet msl TOTAL DEPTH: 70.00 feet bgs DRILLING CONTRACTOR: Unit-Tech FOREMAN: DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer CH2M GEOLOGIST: Wojciech Winkler START: 11/13/2001 7:00:00 AM FINISH: 11/13/2001 12:00:00 PN NORTHING: 398174.443 feet EASTING: 318875.777 feet	
SURFACE ELEVATION: 6.93 feet msl TOTAL DEPTH: 70.00 feet bgs DRILLING CONTRACTOR: Unit-Tech FOREMAN: DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer CH2M GEOLOGIST: Wojciech Winkler START: 11/13/2001 7:00:00 AM FINISH: 11/13/2001 12:00:00 PM NORTHING: 398174.443 feet EASTING: 318875.777 feet	
DRILLING CONTRACTOR: Unit-Tech FOREMAN: DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer CH2M GEOLOGIST: Wojciech Winkler START: 11/13/2001 7:00:00 AM FINISH: 11/13/2001 12:00:00 PN NORTHING: 398174.443 feet EASTING: 318875.777 feet	
SAMPLING METHOD: 2-in Split Spoon/140 LB Hammer CH2M GEOLOGIST: Wojciech Winkler START: 11/13/2001 7:00:00 AM FINISH: 11/13/2001 12:00:00 PN NORTHING: 398174.443 feet EASTING: 318875.777 feet	
START: 11/13/2001 7:00:00 AM FINISH: 11/13/2001 12:00:00 PM NORTHING: 398174.443 feet EASTING: 318875.777 feet	n O.D. HSA
NORTHING: 398174.443 feet EASTING: 318875.777 feet	· ··
	M
SOIL DESCRIPTION (E) War (Color, Mottling, soil description,	COMMENTS
SAMPLE NUMBER (FT) SAMPLE INTERVAL (FT) SAMPLE SA	סוושב ובסווס
	(H)=40 cpm
21 4 21-24 Soil 5-7-18-20 25 1.5 0-0.83 Light olive gray (5Y 5/2), well sorted, rounded, medium SAND, wet	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
Yellowish gray (5Y 7/2), mottled (common, medium, faint, yellowish gray), poorly sorted, subrounded, fine SAND and fine gravel, medium plasticity, wet	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 23 5 23-25 Soil 12-15-18-20 33 1.16 0-1 SAA	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
24	
- 25 6 25-27 Soil 17-20-14-12 34 1 0-1 SAA	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- - 26	
- 27 7 27-29 Soil 8-8-11-14 19 0-1 SAA	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 3 OF 8

								·····						
CLIENT	:		E	PA Region 2										
PROJEC	CT NI	UMBER	:1						BORING NUMBER:			<u> </u>		
PROJEC	CT N	AME: _	EPA-N	Martin Aaron					LOCATION: Sixth Street	and Jack	son	. 		
SURFAC	E E	LEVATI	ON:	6.93	feet	msl			TOTAL DEPTH:	70.00	fe	et bgs		
				R: Unit-Tech					FOREMAN:					
DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem Au	ıger				DRILLING EQUIPMENT	CME 85	Rig 4 1	/4in I.D	J8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u>	in Split Spoor	<u>1/140</u>	LB F	lammer	·	CH2M GEOLOGIST:	Wojcied	h Winl	kler		
START:			1	1/13/2001 7:0	0:00	AM			FINISH:	11/13/2	001 12	:00:00	РМ	
NORTH	NG:		3	98174.443	fee	et			EASTING:	318875	777	fe	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	8LOW COUNTS 6"-6"-6"	NVALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	IATE FING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 29 - 30	8	29-31	Soil .	14-14-18-20	32		0-2	SAA, some s	ilt .	- - -		О		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 32 — 33	9	32-34 33-35	Soil	14-15-19-15 14-14-22-18	34		0-1	distinct, dark	nge (10YR 8/2), mottled (few, yellowish orange), moderately ne to medium GRAVEL and fi moist, dense	sorted,	GP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
34 	11	33-35	Soil	11-12-15-16	27	1.16	1-2.2		layered, no mottling)			0		ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 4 OF 8

CLIENT:			E	PA Region 2									
PROJEC	TN	JMBER	: <u>16</u>	64453					BORING NUMBER:	MA-MW20	M		
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: Sixth Street	and Jackson			
SURFAC			_						TOTAL DEPTH:				
									FOREMAN:				
DRILLIN	G MI	ETHOD	: <u>H</u>	ollow Stem Au	ger		- · · · · · · · · · · · · · · · · · · ·	<u>.</u>	DRILLING EQUIPMENT:	CME 85 Rig	4 1/4in I.C	./8in	O.D. HSA
									CH2M GEOLOGIST:				
									FINISH:) PM	<u> </u>
NORTH	NG:		39	98174.443	fee	ŧ			EASTING:	318875.777	' fe	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, GY),	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 35 - 36 - 37 - 38 - 39	12	35-37		14-17-15-12	32		1-2	SAA (NOTE:	no layering)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 41 - 42	13	40-42	Soil	15-17-23-27	40	1.3	0-0.8	SAA		-	0		PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm

NOTES:

SHEET 5 OF 8

CLIENT:			E	PA Region 2										
PROJEC	TN	JMBER	:16	64453					BORING NUMBER:	MA-MW	20M			
PROJEC	T N	AME: _E	PA-N	Martin Aaron		_			LOCATION: Sixth Street	and Jacks	son			
SURFAC	E El	EVATIO	ON:	6.93	feet	msl			TOTAL DEPTH:	70.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	iger			· · · · · · · · · · · · · · · · · · ·	DRILLING EQUIPMENT	: CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLH	NG N	METHO	D: <u>2</u> -	in Split Spoor	/140	<u>LB</u> F	lammer		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			11	1/13/2001 7:0	0:00	<u>AM</u>			FINISH:	11/13/20	01 12	:00:00	РМ	
NORTHI	NG:		39	98174.443	fee	et			EASTING:	318875.	777	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 43	14	42-44	Soil			1.3	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 44 - 45	15	44-46	Soil	15-17-50	67	1	0-0.5 0.5-1	distinct, dark rounded, SIL Very pale ora distinct, dark	inge (10YR 8/2), mottled (few, yellowish orange), well sorted T and clay, trace fine sand, minge (10YR 8/2), mottled (comyellowish orange), well sorted SAND, trace fine gravel, mois	i, oist, hard imon, i,	ML SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 46 - 47	16	46-48	Soil	36-37-47-48	84	2	0-2	SAA, trace fin	re gravel			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- - 48 - - 49	17	48-50	Soil	15-48-50	98	.67	0-0.7	SAA (NOTE:	no gravel)			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 6 OF 8

	CLIENT:	:		E	PA Region 2	<i>'</i>				_					
	PROJEC	T N	UMBER	: _16	64453				· · · · · · · · · · · · · · · · · · ·	BORING NUMBER:	MA-MV	/20M			
	PROJEC	CT N	AME: _E	EPA-N	Martin Aaron					LOCATION: Sixth Street	and Jack	son	<u></u>		· · · · · · · · · · · · · · · · · · ·
	SURFAC	E E	LEVATI	ON:	6.93	feet	msł			TOTAL DEPTH:	70.00	f	eet bgs	3	
	DRILLIN	IG C	ONTRA	СТОР	R: Unit-Tech	1				FOREMAN:					· · · · · · · · · · · · · · · · · · ·
	DRILLIN	IG M	ETHOD	: <u>H</u>	ollow Stem A	uger				DRILLING EQUIPMENT	: CME 85	Rig 4 1	/4in I.D	./8in	O.D. HSA
	SAMPLI	NG N	/ETHO	D: <u>2</u> -	in Split Spoo	n/140	LB	lammer		CH2M GEOLOGIST:	Wojcied	h Win	kler		
	START:			1	1/13/2001 7:0	0:00	AM			FINISH:	11/13/20	001 12	2:00:00	РМ	
	NORTHI	NG:		39	98174.443	fee	et			EASTING:	318875.	.777	fee	et	
			(FT)					N O		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	DTTLING, SOIL DESCRIPTIOI ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' PE, PLASTICITY, MINERALO ITE, DENSITY/COHESIVENE:	NATE TING, GY),	GROUP	PID/FID READING (OTHER TESTING	
	DEP	SAM	SAM	SAM	31.0	×	SAM	SAM	LAYERING]	TIE, DENOTIFICATION EN	00,	SOSO	PID/	E	
)	- - - - - 51	18	50-52	Soil	13-27-30-14	57	.83	0-0.9	SAA		-		0		PiD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	- 52 -	19	52-54	Soil	10-12-12-12	24	1.67	0-1	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	- 53							1-1.4	Very light are	ey (N8), mottled (common, fine		ML	0		PID(B)=0.0 ppm, (H)=0.0
									prominent, d	ark yellowish orange), well sort. T, some fine sand, moist, stiff,	ted,				ppm; RAD(B)=40 cpm, (H)=40 cpm
	54							1.4-1.8	laminated Grayish oran prominent, di rounded, silty	ge (10YR 7/4), mottled (comm ark yellowish orange), well sort CLAY, high plasticity, moist, s	non, fine, ted,	СН	0		PID(B)=0.0 ppm, (H)=0.0 _ ppm; RAD(B)=40 cpm, (H)=40 cpm
	54	20	54-56	Soil	10-20-48-50	68	1	0-0.3	Very pale ora	ange (10YR 8/2), mottled (few,	fine,	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
								0.3-1	distinct, dark rounded, SIL	yellowish orange), well sorted T and clay, trace fine sand, mo ey (N8), well sorted, rounded, fi	oist, hard	SP	0		(H)=40 cpm, (H)=0.0 _ PID(B)=0.0 ppm, (H)=0.0 _ ppm; RAD(B)=40 cpm, (H)=40 cpm
	55 - 56	21	56-58	Soil	20-17-33-47	50	1	0-1	Omit	40VP 700	-	SP	0		PID(B)=0.0 ppm, (H)=0.0
)	NOTES:	21	30.00	Guil			,		medium to co	ge (10YR 7/4), well sorted, rou parse SAND, moist, very dense to 10YR 6/6 at bottom 2in of s	e (NOTE:	J ,		= me	ppm; RAD(B)=40 cpm, (H)=40 cpm

SHEET 7 OF 8

CLIENT:		E	PA Region 2										
PROJECT	NUMBER	t: <u>16</u>	64453				F	BORING NUMBER:	MA-MW2	OM			
PROJECT	NAME: _	EPA-N	Martin Aaron				l	LOCATION: Sixth Street	and Jackso	on			
SURFACE	ELEVATI	ON:	6.93	feet	msl			TOTAL DEPTH:	70.00	f€	et bgs		
								FOREMAN:					
DRILLING	METHOD	: <u>H</u>	ollow Stem Au	ıger			[DRILLING EQUIPMENT	CME 85 Ri	ig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPLING	S METHO	D: <u>2</u> -	in Split Spoor	1/140	LB F	lammer	(CH2M GEOLOGIST:	Wojciech	Wink	der		
START:		1	<u>1/13/2001_7:0</u>					FINISH:				PM	
NORTHING	G:	39	98174.443	fee	<u>t</u>			EASTING:	318875.7	77	fee	et	
E (FT)	SAMPLE NUMBER SAMPLE INTERVAL (FT)	rype	UNTS		RY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MOT PREDOMINAN	OIL DESCRIPTION TLING, SOIL DESCRIPTION IT GRAIN SIZE, SUBORDIN ITH DESCRIPTORS, SORT	IATE	GROUP SYMBOL	PID/FID READING (PPM)	ESTING	COMMENTS
GRADE (FT)	SAMPLE	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE	1	E, PLASTICITY, MINERALOG E, DENSITY/COHESIVENES		USCS GF	PID/FID F	OTHER T	
- 57 - 58 2 - 59 - 60 2 - 61 - 62 - 63		Soil	24-37-37-42 10-12-14-17 20-17-20-37	26	1.3	0-0.6 0.6-1.2	prominent, dark rounded, clayey plasticity, moist	(5Y 7/2), mottled (common, yellowish orange), well sort y SILT, trace fine sand, slight i, very stiff, laminated	ed,	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
NOTES:											met .	= m	an sea level

302518

SHEET 8 OF 8

CLIENT:			Ε	PA Region 2					•					-
PROJEC	T NI	UMBER	: _16	64453			····		BORING NUMBER:	MA-MW	20M			
									LOCATION: Sixth Street					
SURFAC	E EI	LEVATION	ON:	6.93	feet	msl			TOTAL DEPTH:	70.00	fe	et bgs		·
DRILLIN	G C	ONTRA	стог	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>H</u>	ollow Stem Au	iger				DRILLING EQUIPMENT	CME 85	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoor	1/140	LB F	lammer		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:		a.	1	1/13/2001 7:0	0:00	AM			FINISH:	11/13/20	001_12	:00:00	РМ	
NORTHI	NG:		39	98174.443	fee	<u>t</u>			EASTING:	318875.	777	fee	et	
		(FT)					N O	,	SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE FING, GY),	USCS GROUP SYM	PID/FID READING (OTHER TESTING	
— 64	25	64-66	Soil	20-30-39-36	69	1	0-0.5	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- - 65							0.5-1	Very light gre SAND, moist	y (N8), very well sorted, round , very dense	ed, fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
														_
— 66 -	26	66-68	Soil	18-28-47-48	75	1.16	0-1.4	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 67										-				
68	27	68-70	Soil	50-50		1	0-1.8	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
69										_				-
- 70		·		,				,	······································					

NOTES:

msl = mean sea level

SHEET 1 OF 2

	·													
CLIENT:			Е	PA Region 2					_					
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-MW	20R			
PROJEC	T NA	ME: E	PA-N	Martin Aaron					LOCATION: Sixth Street	and Jacks	on			
SURFAC	E EL	EVATIO	ON:	6.98	feet	msl			TOTAL DEPTH:	126.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOR	t: Unit-Tech					FOREMAN:					
DRILLIN	G M	THOD	<u>Н</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1	/4in I.D	./8in (O.D. HSA
SAMPLI	NG N	ETHO	D: <u>2</u> .	in Split Spoon	<u>/140</u>	LBF	lammer		_ CH2M GEOLOGIST:	Mark Esl	nbaug	h		
	_			5/29/2002					FINISH:			-	_	
NORTHI	NG:		3	98181.143	fee	<u>t</u>			EASTING:	318876.2	27	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN E WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALO ATE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
98								NOTE: Blind MA-MW20M	drill to 100 ft bgs. See boring	1				-
- 100 - 101	1	100-102	Soil	85-100/3in		0.67	0-0.67	Yellowish gr subrounded	ay (5Y 8/1), very well sorted, fine SAND, trace silt, dense	-	SM	0		_
- 102 - 103	2	102-104	Soil			0.67	0-0.67	SAA (NOTE	: increasing moisture and fine o	gravel)		0		-
- 104 - 105	3	104-106	Soil	50-31-40-50/4in	71	1	0-1	Very pale or rounded, find moist, dense	ange (10YR 8/2), very poorly so e GRAVEL and fine sand, trace	orted,	GM	0		
- 106 - 107	4	106-108	Soil			0.67	0-0.67	SAA				0		_ - -
- 108 - 109	5	108-110	Soil			1.33	0-1.33		ange (10YR 8/2), moderately so e to medium SAND, some fine	oricu,	SM	0		-
- 110 - 111	6	110-112	Soil	75-130		0.83	0-0.83		ange (10YR 8/2), well sorted, ro tittle silt, trace fine gravel, wet, o	Junaca,	SM	0		-
- - 112	7	112-114	Soil			1.16	0-1.16	SAA				0		-

NOTES:

msl = mean sea level

SHEET 2 OF 2

			_											
CLIENT	:		E	PA Region 2										
PROJE	CT NU	JMBER:	: _1	64453					BORING NUMBER:	MA-MW2	20R			
PROJE	CT NA	AME: _E	PA-N	Martin Aaron					LOCATION: Sixth Street	and Jacks	on_	·-·		
SURFA	CE EL	EVATIO	ON:	6.98	feet	msl			TOTAL DEPTH:	126.00	fe	et bgs		
DRILLIN	IG C	ONTRA	CTOF	R: Unit-Tech	<u> </u>				FOREMAN:					
DRILLIN	IG MI	ETHOD:	<u>Н</u>	ollow Stem A	uger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1	/4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	METHO	D: <u>2</u>	in Split Spoo	n/140	LB F	lammer	·	CH2M GEOLOGIST:	Mark Est	nbaug	h		
START:			0	5/29/2002					FINISH:					
NORTH	NG:		3	98181.143	fee	<u>*t</u>			EASTING:	318876.2	27	fee	<u>et</u>	
		(<u>F</u>					NO N		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
		•						,						
— 113										+				-
- 448														
— 114 	8	114-116	Soil	25-50/5in		0.33	0-0.33		some fine-medium gravel in sp om higher depth in boring)	poon may		0		-
— 115									, o,	4]		-
-										1				-
— 116	9	116-118	Soil			0.5	0-0.5	SAA				0		
_ _ 117														
-			ŀ							4				-
118	10	118-120	Soil			0.5	0-0.5	SAA				0		\vdash
- 440			·]				_
— 119 -														
- 120	11	120-122	Soil	60-62-70-72	132	0.5	0-0.5	Madagata val	low (5Y 7/6), well sorted, round	lod	sw	0		-
_	'		00						D and fine to medium gravel, w	eu,				-
— 121								dense		1				
- 122														
- 122	12	122-124	Soil				0-2	Very pale ora fine SAND ar	nge (10YR 8/2), well sorted, ro	unded,	SM	0		_
- 123									icity increasing; sample collect					-
-										1				-
— 124 -	13	124-126	Soil	38-60/1ft		0.67	0-0.67		y (N8), CLAY, trace silt and fine	c sand,	CL	0		Set well screen from 113 ft-123 ft bgs
- 125								sand and silt	icity, moist, hard (NOTE: decre with depth)	zasıny				
-										1				-
126	ш		L	<u> </u>		L								L

NOTES:

msl = mean sea level

SHEET 1 OF 12

									<u> </u>					
CLIENT:	:		E						-					
PROJEC									BORING NUMBER:					
PROJEC	CT NA	AME: _E	EPA-N						LOCATION: Sixth and Ja					
			•						TOTAL DEPTH:					
									FOREMAN:					
									DRILLING EQUIPMENT:				th 6ir	n O.D. dia. Sand Bit
									CH2M GEOLOGIST:					
									FINISH:					
NORTHI	NG:		3	98202.363	fee				EASTING:	318876.	827	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
63		ω		шъ			00 =	NOTE: Blind MA-MW20M	drill to 65 ft bgs. See boring					
65	1	65-67	Soil	25-46-50	96	.3	0-1.3	subangular,	ay (5Y 7/2), very poorly sorted, ine to medium SAND, some fir lay, trace coarse gravel, very d	ne ense	sc	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 67 - 68	2	67-69	Soil	20-36-50	86	.5	0-0.5	subangular,	ny (5Y 7/2), very well sorted, medium to coarse SAND, little i me to medium gravel, wet, dens		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm -
69	3	69-71	Soil	37-39-50	89	0.75	0-0.75	SAA, trace c	ay			D		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES: Set screen at 133.0 feet bgs.

SHEET 2 OF 12

CLIENT	:		Ε	PA Region 2											
PROJEC	CT N	UMBER	: _1	64453							MA-MW2				
PROJEC	CT N	AME: _F	EPA-N	Martin Aaron						LOCATION: Sixth and Jac	ckson Stre	ets			
										TOTAL DEPTH:			eet bgs		
										FOREMAN:					
										DRILLING EQUIPMENT:				th 6i	n O.D. dia. Sand Bit
										CH2M GEOLOGIST:					
					00:00					FINISH:			:00:00	AM	
NORTHI	NG:		3	98202.363	fe	et				EASTING:	318876.82	27	fee	et	
		(F)					z		,	SOIL DESCRIPTION		 ਨ	(PPM)	Π	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6".6".6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)		PREDOMINA GRAIN SIZE GRAIN SHAP	TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI E, PLASTICITY, MINERALOG FE, DENSITY/COHESIVENES		USCS GROUP SYMBOL	PID/FID READING (PI	OTHER TESTING	·
- 70								:			+				_
71 	4	71-73	Soil	33-37-50	87	0	0-2		No Recovery;	coarse gravel thought to be slo	ough		0		PID(B)0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
72 73	5	73-75	Soil	25-39-23-21	62	1.5	0-2			/ (5Y 7/2), very well sorted, ledium to coarse SAND, trace y dense	_	SP.	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 74 -								1			-				_
75 -	6	75-77	Soil	27-14-12-28	26	2	0-2		Yellowish gray medium to co gravel, wet, m	r (5Y 7/2), well sorted, subang arse SAND, little fine to mediur edium dense	ulai, I	iP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 76 -															-
	. '				•		-	1			•	•	•	•	,

NOTES: Set screen at 133.0 feet bgs.

SHEET 3 OF 12

														
CLIENT:			El	PA Region 2					-					
PROJEC	T NU	JMBER	:16	64453					BORING NUMBER:					
PROJEC	T NA	ME: E	PA-N	Martin Aaron					LOCATION: Sixth and Ja					
			-						TOTAL DEPTH:					·
									FOREMAN:					
DRILLIN	G MI	ETHOD:	<u>M</u>	lud Rotary with	n 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	100 OS	Rig wil	th 6i	n O.D. dia. Sand Bit
									CH2M GEOLOGIST:					····
									FINISH:					
NORTHI	NG:		39	98202.363	fee	et			EASTING:	<u>318876.</u>	827	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMIN GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 77 - 78	7	77-79	Soil	42-24-26-30	50	2	0-1.5	Yellowish grato medium Gwet, dense	ay (5Y 7/2), well sorted, subang RAVEL, trace medium to coard	gular, fine se sand,	GP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 79	8	79-81	Soil	29-14-32-34	46	0	1.5-2	Yellowish gra CLAY, some No Recovery	ay (5Y 7/2), moderately sorted, fine to medium sand, wet	silty	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 81 - 82	9	81-83	Soil	24-20-22-21	42	0	0-2	No Recovery						-
- 83 -	10	83-85	Soil	32-25-20-26	45	0	0-2	No Recovery						

NOTES: Set screen at 133.0 feet bgs.

msl = mean sea level

SHEET 4 OF 12

CLIENT	:		E	PA Region 2											•
PROJEC	T N	UMBER	: _1	64453	•				BORING NUMBER:	MA-MW	/20D			···	
PROJEC	T N	AME: E	PA-N	Martin Aaron			 		LOCATION: Sixth and Ja	ckson St	eets				_
SURFAC	EE	LEVATIO	ON:	6.97	feet	msl			TOTAL DEPTH:	141.00	fe	et bgs			-
				R: <u>Unit-Tech</u>			<u> </u>		FOREMAN:						-
DRILLIN	G M	ETHOD:	M	lud Rotary wit	h 6in	O.D.	Hollow S	and Bit	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wil	th 6ir	O.D. dia. Sand Bit	-
SAMPLI	NG N	METHO): <u>D</u>	own-the-Hole	2-in	Split	Spoon		CH2M GEOLOGIST:	Wojcied	h Wink	der		- All March	-
START:			1	1/16/2001 8:0	0:00	AM	·		FINISH:	11/21/20	001 11	:00:00	AM		-
NORTH	NG:		3	98202.363	fee	<u>et</u>	<u></u>	<u></u>	EASTING:	318876.	827	fee	et		-
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	TUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG PE, PLASTIVICO HERIVENICS	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	ER TESTING	COMMENTS	
GFPT	SAME	SAME	SAME	3LOV	×	REC	SAME	LAYERING]	TE, DENSITY/COHESIVENES	55,	USC	PID/	OTHER		
84 85 86 87	11	85-87 85-89		30-14-23-18 35-20-29-23	37		0-2	No Recovery No Recovery						:	
- 88 - 89 - 90	13	89-91	Soil	37-50		0	0-2	No Recovery							

NOTES: Set screen at 133.0 feet bgs.

SHEET 5 OF 12

CLIENT:			El	PA Region 2										
PROJEC	T N	JMBER:	16	34453					BORING NUMBER:	MA-MW	20D			
PROJEC	T NA	AME: E	PA-N	fartin Aaron			<u> </u>		LOCATION: Sixth and Ja	ckson Str	<u>eets</u>			
									TOTAL DEPTH:			et bgs		
									FOREMAN:					
DRILLIN	G MI	ETHOD:	_M	ud Rotary witl	n 6in	O.D.	Hollow Sand E	3it	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wi	th 6i	O.D. dia. Sand Bit
									CH2M GEOLOGIST:					
					0:00	AM			FINISH:	11/21/20	01 11	:00:00	AM	
NORTHI	NG:		39	98202.363	fee	t			EASTING:	318876.8	<u> 827</u>	fee	et	
LOW (FT)	UMBER	ITERVAL (FT)	YPE	JNTS		۲۲ (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	(COLOR, MC	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORT	ATE	GROUP SYMBOL	EADING (PPM)	STING	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE D INTERVAL	GRAIN SHAF	PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	SY),	USCS GR	PID/FID READING	OTHER TESTING	
- 91	14	91-93	Soil	27-47-50	97	0	0-2	No Recovery						_
— 92 										-				_
93 	15	93-95	Soil	25-27-24-32	51	.5	0-2	Yellowish gra medium to co dense	y (5Y 7/2), well sorted, subang arse SAND, trace fine sand, w	ular, et, very	SP	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=20 cpm, (H)=20 cpm
94 -														
95 	16	95-97	Soil	18-15-32-36	47	2	0-1	prominent, da	y (5Y 7/2), mottled (few, fine, irk yellowish orange), CLAY an icity, dry, hard	od silt,	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
96 -							1-2	Yellowish gra subangular, fi wet, dense	y (5Y 7/2), very well sorted, ne to medium SAND, trace fine	e gravel,		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 97	17	97-99	Soil	18-13-32-25	45	.5	0-2	SAA (NOTE:	no gravel)			0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,

NOTES: Set screen at 133.0 feet bgs.

msl = mean sea level

SHEET 6 OF 12

CLIENT	:		F	PA Region 2	i i										1
PROJE	CT N	UMBER	: 1	64453	·				BORING NUMBER:	MA-MW2	20D				
				Martin Aaron					LOCATION: Sixth and Ja		ets				
SURFA	CE-EI	LEVATI	ON:	6.97	feet	msl			TOTAL DEPTH:			et bgs	3		-
DRILLIN	IG C	ONTRA	СТОР	R: <u>Unit-Tech</u>					FOREMAN:					*****	
DRILLIN	IG M	ETHOD	: <u>N</u>	lud Rotary with	6in	O.D.	. Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wi	th 6ir	n O.D. dia. Sand Bit	_
SAMPL	ING N	METHO	D: _D	own-the-Hole	2-in	Split	Spoon		CH2M GEOLOGIST:	Wojciech	Wink	der		V. Springer	_
START:			1	1/16/2001 8:0	0:00	AM			FINISH:	11/21/20	01 11	:00:00	AM		_
NORTH	ING:		3	98202.363	fee	et			EASTING:	318876.8	327	fee	et		
		F					N N	;	SOIL DESCRIPTION		ರ	(PPM)	П	COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAP	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDINI WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, iY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	14	
I	ı	1	ı	I	ı	l	1	I		I	1			(H)=20 cpm	ł
-		,								-				<u>-</u>	ĺ
					l										
98					·					1				_	1
_														4	•
- 99	18	99-101	Soil	17-35-34-36	69	0	0-2	No Recovery							
										1				-	
100										4					
-				j						1				-	
404															
— 101 ₋	19	101-103	Soil	38-50		0	0-2	No Recovery				,			
_										4				-	
							ļ								
- 102) 			1				-	
											l				
-				<u> </u> -						1				7	
— 103	20	103-105	Soil	38-50		0	0-2				l				
	20	100-100	3011	30-30		ľ	J-E	No Recovery							
_]				1				+	
40.															
 104		l	l	I	}	ļ	l	1		7	I	i		=	4

NOTES: Set screen at 133.0 feet bgs.

SHEET 7 OF 12

													٠	1 , 0, 12
CLIENT:			Е	PA Region 2					_					
PROJEC	T NL	MBER	:16	64453					BORING NUMBER:	MA-MW	20D			
PROJEC	TNA	ME: E	PA-N	Martin Aaron					LOCATION: Sixth and Ja	ckson Str	eets			
SURFAC	E EL	EVATIO	ON:	6.97	feet	msl			TOTAL DEPTH:	141.00	fe	et bgs		
DRILLIN	G CC	NTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G ME	THOD:	M	lud Rotary wit	h <u>6in</u>	O.D.	Hollow Sand	l Bit	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	ETHO	D: _D	own-the-Hole	2-in	Split :	Spoon	····	CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			1	1/16/2001 8:0	0:00	AM			FINISH:	11/21/20	01 11	:00:00	АМ	
NORTHI	NG:		39	98202.363	fee	et			EASTING:	318876.	827	fee	et	
			ι –	I	T^-	T		T	SOIL DESCRIPTION			ŝ	l	COMMENTS
		[F]					SAMPLE DESCRIPTION INTERVAL (FT)	ļ	SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
3 0	SAMPLE NUMBER	SAMPLE INTERVAL		ıς		E	CRIP	1 -	OTTLING, SOIL DESCRIPTION			PID/FID READING	υN	
DEPTH BELOW GRADE (FT)	NCM	N H	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"		SAMPLE RECOVERY (FT)	L (FI	l l	ANT GRAIN SIZE, SUBORDIN/ WITH DESCRIPTORS, SORT		GROUP	ÆAC	OTHER TESTING	
TH B	PLE	F	PLE	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	N VALUE	PE See	PLE		PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES		SGF	E	ER T	
DEP	SAM	SAMI	SAM	BLO 6"-6"	Ž	SAM	SAM	LAYERING]	•	,,,	USCS	PID/	OTH	
L	·		1 ,	l	٠	1	L			····		ı	Ц	
ŀ		}	i	1	ł	l	1	1				l	ı	
														_
]		
105	21	105-107	Soil	20-26-20-18	46	1.5	0-0.75	Dala vellavia	h h (40)/D C/O)		SP	0		PID(B)=0.0 pom. (H)=0.0
	["		"					subangular,	sh brown (10YR 6/2), well sorted medium to coarse SAND, some once	u, e fine	Ų.	ľ		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
-								Sand, wet, di	ense	H				-
						İ	0.75-1.5	Yellowish gra	ay (5Y 7/2), CLAY and silt, som	e	СН	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 106								medium to c	oarse sand, high plasticity, mois	st, hard -				(H)=40 cpm
1 07	22	107-109	Soil	30-28-32-24	60	,	0-2	244 01575			,	0		PID/B)=0.0 ppm (H)=0.0
	22	107-103	3011	30-20 32 24			0.2	and clay and	alternating layers of some sand silt (CH))	ds (SP)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
}						1				1				4
108										-				
L							 							
109	rio.	109-111	Cail	27-22-25-22	47	0.8	0-2							PID(B)=0.0 ppm, (H)=0.0
	23	109-111	2011	21-22-25-22	1	0.0	0-2	SAA, some f	ine to medium gravel					ppm; RAD(B)=40 cpm, (H)=40 cpm
-										-				_
110					ŀ					-				-
				1						1				-
!				i	1		[1		i				

NOTES: Set screen at 133.0 feet bgs.

SHEET 8 OF 12

CLIENT	:		E	PA Region 2											(
PROJEC	T NI	JMBER	: _1	64453					BORING NUMBER:	MA-MW	20D				_
PROJEC	CT NA	AME: E	EPA-N	Martin Aaron					LOCATION: Sixth and Jac	ckson Stre	ets				_
SURFAC	E EI	EVATI	ON:	6.97	feet	msl	·····		TOTAL DEPTH:	141.00	fe	eet bgs	<u> </u>		
									FOREMAN:						
DRILLIN	IG MI	ETHOD	: <u>N</u>	lud Rotary wi	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wi	th 6	in O.D. dia. Sand Bit	_
SAMPLI	NG N	METHO	D: _D	own-the-Hole	2-in	Split			CH2M GEOLOGIST:						_
START:			1	<u>1/16/2001 8:0</u>	00:00	AM		·	FINISH:	11/21/20	01 11	:00:00	ΑM	<u> </u>	_
NORTH	NG:		3	98202.363	fee	et	,,		EASTING:	318876.8	327	fee	∋t		_
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NAT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTI PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, iY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
- 111 - 112	24	111-113	Soil	26-33-20-33	53	0	0-2	No Recovery		-					1
- - - - - 114	25	113-115	Soil	32-50-35-24	85	1.3	0-2	Pale yellowisi subangular, r sand, wet, ve	h brown (10YR 6/2), very well s nedium to coarse SAND, some ry dense	outeu,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
— 115 — 116	26	115-117	Soil	22-26-22-27	48	1.7	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm	7
- - 117	27	117-119	Soil	. 17-20-15-17	35	1	0-2	Moderate yell subangular, n sand, wet, de	owish brown (10YR 5/4), well s nedium to coarse SAND, little fi nse	oneu,	SP	0			

NOTES: Set screen at 133.0 feet bgs.

SHEET 9 OF 12

														
CLIENT	:		E	PA Region 2			·		•					
PROJEC	T NL	JMBER:	16	64453					BORING NUMBER:	MA-MW	20D			
PROJEC	T NA	AME: _E	PA-N	Martin Aaron					LOCATION: Sixth and Ja	ckson Str	eets			
SURFAC	E EL	EVATIO	ON:	6.97	feet	msl			TOTAL DEPTH:	141.00	fe	et bgs		
									FOREMAN:					
DRILLIN	G ME	THOD:	M	ud Rotary with	6in	O.D.	Hollow Sand I	Bit	DRILLING EQUIPMENT:	Failing 14	00 OS	Rig wit	th 6ir	O.D. dia. Sand Bit
SAMPLI	NG N	IETHOI): <u>D</u>	own-the-Hole	2-in :	Split 9	Spoon		CH2M GEOLOGIST:	Wojciec	h Wink	der		
					0:00				FINISH:				AM	
NORTHI	NG:		39	98202.363	fee	<u>et</u>		······································	EASTING:	318876.	827	fee	et	
							z	-	SOIL DESCRIPTION		<u>بر</u>	ξ		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLETYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
					-									
- 118 - 119 - 120	28	119-121	Soil	24-27-22-23	49	.75	0-2	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 121 - 122	29	121-123	Soil	9-13-23-10	36	1.9	0-2	prominent, da	ny (5Y 7/2), mottled (common, f ark yellowish orange), clayey Si , hard (NOTE: bottom 3in of sp clay)	ILT, low	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 123 — 124	30	123-125	Soil	12-12-26-30	38	1.5	0-2	prominent, da	inge (10YR 8/2), mottled (few, f ark yellowish orange), CLAY an licity, moist, very stiff	fine, d silt,	CL	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=20 cpm, (H)=20 cpm
<u> </u>										1				

NOTES: Set screen at 133.0 feet bgs.

SHEET 10 OF 12

CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	: _1	64453					BORING NUMBER:	MA-MV	/20D			
PROJEC	T NA	AME: _E	PA-N						LOCATION: Sixth and Ja-					10.00
									TOTAL DEPTH:					
									FOREMAN:					
DRILLIN	G MI	ETHOD:	. <u>N</u>	lud Rotary witl	h 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMENT:	Failing 1	400 OS	Rig wi	th 6	in O.D. dia. Sand Bit
SAMPLI	NG N	METHO	D: _D	own-the-Hole	2-in	Split			CH2M GEOLOGIST:					
START:			1	1/16/2001 8:00	0:00				FINISH:				ΑN	1
NORTHI	NG:		3	98202.363	fee	et			EASTING:	318876	.827	fee	et	
	<u> </u>	E				Г	z]	SOIL DESCRIPTION		۲	ξ		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAP	OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
125 	31	125-127	Soil	36-50		2	0-1.5	prominent, da	nge (10YR 8/2), mottled (few, i irk yellowish orange), clayey Si y, moist, hard	fine, ILT,	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
— 1 26										-				
- 127		:					1.5-2	Very pale ora subrounded, t	nge (10YR 8/2), very well sorte fine to medium SAND, wet, ver	ed, y dense	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 127	32	127-129	Soil	28-40-50	90	0	0-2	No Recovery		-				_
— 128 ·										:				_
_ 1 29	33 .	129-131	Soil	50		0.5	0-2	poorly sorted, wet, very dens	subrounded, fine to medium G se	GRAVEL,	GW	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=20 cpm, (H)=20 cpm
— 130 –										-				_
— 131	34	131-133	Soil	50		.75	0-2	SAA, (NOTE:	gravel size 0.5 inches to 1.0 in	nches)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES: Set screen at 133.0 feet bgs.

msl = mean sea level

SHEET 11 OF 12

CLIENT:			E	PA Region 2					-					
PROJEC	T NU	MBER:	<u>_16</u>	64453					BORING NUMBER:	MA-MW2	0D			
PROJEC	T NA	ME: _E	PA-N	fartin Aaron	······································				LOCATION: Sixth and Ja	ckson Stre	ets			
SURFAC	E EL	EVATIO	ON:	6.97	feet	msl			TOTAL DEPTH:	141.00	f	eet bgs	<u> </u>	
DRILLIN	G C	NTRA	CTOR	t: Unit-Tech	1				FOREMAN:					
DRILLIN	G ME	THOD:	_M	ud Rotary wit	th 6in	O.D.	Hollow Sand	t Bit	DRILLING EQUIPMENT:	Failing 140	00 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLI	NG N	IETHO	D : _D	own-the-Hole	2-in	Split 9	Spoon		CH2M GEOLOGIST:	Wojciech	Win	kler		
						<u>AM</u>			FINISH:	11/21/200)1 11	:00:00	AM	
NORTHI	NG:		39	98202.363	fee	<u>:t</u>			EASTING:	318876.8	27	fee	et	
Γ	· · · ·		Ι		1				SOIL DESCRIPTION			ŝ	1	COMMENTS
l 		L (FT)					SAMPLE DESCRIPTION INTERVAL (FT)	-	OOIE BEOOKII TION		SYMBOL	(PPM)		COMMENTO
} E	SAMPLE NUMBER	SAMPLE INTERVAL	,,,	ည		E	CRIP FIR		OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN			PID/FID READING	S N N	
DEPTH BELOW GRADE (FT)	≥ N	INTE	TYPE	BLOW COUNTS 6"-6"-6"-6"	\	SAMPLE RECOVERY (FT)	DES L (F	GRAIN SIZE	WITH DESCRIPTORS, SORT	ING,	USCS GROUP	REAL	OTHER TESTING	
THE	PLE	PLE	SAMPLE .) γ φ γ	N VALUE	일 S	PLE		PE, PLASTICITY, MINÉRALOG ATE, DENSITY/COHESIVENES	,	SG	E	ER L	
DEP	SAM	SAM	SAM	BLO'	> z	SAM	SAM	LAYERING]			OSO	Old Old	P H	
	L		<u> </u>	·	L			<u></u>						
Γ			l		1	l				1]
							}			1		1		
132						1				1		1		_
				İ		1				.]				
- 133	35	133-135	Soil	76		.75	0-2	214 (1)075				0		PID(B)=0.0 ppm (H)=0.0
	33	100-100	3011		Ì	"		SAA, (NOTE	gravel size 0.5 inches to 1.0 i	ncnes)		١		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
}	1			ļ						-				_
134										1				_
						ļ				}				
]		ł		
— 135		105 107		05.40.44.42		1.5	0.075				~~			DID(D) 0.0 (1) -0.0
, , ,	36	135-137	Soil	25-10-11-13	21	1.5	0-0.75	Yellowish gra medium GRA	ay (5Y 7/2), poorly sorted, fine t AVEL and fine to medium sand	o , trace	GC	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
}								clay, wet, de	nse	4				-
<u> </u>							0.75-1.25	Yellowish ar	ay (5Y 7/2), SILT and clay, trace	e fine	ML	0		PID(B)=0.0 ppm, (H)=0.0
- 136								sand, low pla	asticity, wet, very stiff	-				ppm; RAD(B)=20 cpm, (H)=20 cpm
							1.25-1.5	Yellowish gra	ay (5Y 7/2), mottled (many, fine		ML	0		PID(B)=0.0 ppm, (H)≠0.0 ppm; RAD(B)=20 cpm,
<u> </u>								prominent, d	ark yellowish orange), SILT, mo	oist, very				(H)=20 cpm
127														
137	37	137-139	Soil	13-11-50	61	1.3	0-0.9	SAA				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm,
L	Ì													(H)=20 cpm
- 138							0.9-1.4	prominent, q	brown (10R 5/4), mottled (few, rayish orange pink), CLAY and	silt.	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm

NOTES: Set screen at 133.0 feet bgs.

msl = mean sea level

SHEET 12 OF 12

CLIENT:_		E	PA Region 2										
PROJECT	NUMBER	: <u>1</u> 0	64453			*		BORING NUMBER: _	MA-MV	/20D			
PROJECT	NAME: _i	EPA-N	Martin Aaron				· · · · · · · · · · · · · · · · · · ·	LOCATION: Sixth and	Jackson Str	eets			
SURFACE	ELEVATI	ON:	6.97	feet	msl			TOTAL DEPTH:	141.00	fe	et bgs	3	
DRILLING	CONTRA	CTOR	R: Unit-Tech					FOREMAN:					
DRILLING	METHOD	: <u>M</u>	lud Rotary with	n 6in	O.D.	Hollow Sand	Bit	DRILLING EQUIPMEN	T: Failing 1	400 OS	Rig wi	th 6i	n O.D. dia. Sand Bit
SAMPLING	METHO	D : _D	own-the-Hole	2-in	Split :	Spoon		CH2M GEOLOGIST:	Wojcied	h Win	kler		
START:		1	1/16/2001 8:0	0:00	AM			FINISH:	11/21/20	001 11	:00:00	AM	
NORTHING):	39	98202.363	fee	et			EASTING:	318876.	827	fe	et	
GRADE (FT)	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NOT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO PE, PLASTICITY, MINERALI TE, DENSITY/COHESIVEN	NATE RTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
— 139 ₃₈ — 140	3 139-141	Soil	39-38-30-37	68	2	0-2	SAA	·	-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=20 cpm, (H)=20 cpm
_ 141 _													

SHEET 1 OF 2

CLIENT:			El	PA Region 2										
PROJEC	T NU	JMBER:	16	64453					BORING NUMBER:	MA-MW	218			
PROJEC	TNA	ME: <u>E</u>	PA-N	fartin Aaron			·		LOCATION: South Jersey	/ Port				
SURFAC	E EL	EVATIO	N:	6.47	feet	msl		·	TOTAL DEPTH:	20.00	fe	et bgs		
									FOREMAN:					
DRILLIN	G ME	THOD:	<u>H</u>	ollow Stem Au	ger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1/	4in I.D.	/8in	O.D. HSA
SAMPLI	NG N	TETHOD): <u>2</u> -	in Split Spoor	/Han	nmer.	/liners		CH2M GEOLOGIST:	Winkler/	Rech			
START:			0′	1/02/2002 12:					FINISH:					
NORTHI	NG:		39	98392.191	fee	et			EASTING:	317912.	704	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION ITTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 0 - 1	1	0-2	Soil	4-3-4-3	7	1	0-1	SAND, trace	Y 3/2), well sorted, subangular, fine gravel, dry, loose (NOTE: terial, fine gravel was slag)		SM			Asphalt sub-base material, fine gravel was slag
- 2 - - 3	2	2-4	Soil	5-3-2-2	5	o	0	No Recovery						Chunk of concrete in tip. Some soil recovered, it was wet.
- 4 5	3	4-6	Soil	1-2-3-2	5	0.5	0-0.5	Moderate yel sorted, subar fine gravel, di	owish brown (10YR 5/4), mode gular, medium SAND, little silt y, loose	erately , little	SM			-
- 6 - - 7	4	6-8	Soil	wн	NA	0	0	No Recovery						Tube was wet
- - - - 9	5	8-10	Soil	4-4-4	8	1.2	0-1.2		owish brown (10YR 5/4), well s nedium SAND, trace silt, little f loose		SM			fine gravel appeared to be quartz
- 10								 						-

NOTES:

msl = mean sea level

SHEET 2 OF 2

CLIENT:		E	PA Region 2				
PROJECT	NUMBI	R: _1	64453	·			BORING NUMBER: MA-MW21S
PROJECT	NAME:	EPA-	Martin Aaron			<u> </u>	LOCATION: South Jersey Port
SURFACE	ELEVA	TION:	6.47	feet	msl		TOTAL DEPTH: 20.00 feet bgs
DRILLING	CONTR	ACTO	R: <u>Unit-Tec</u>	h			FOREMAN:
DRILLING	METHO	D:	Hollow Stem A	Auger		_	DRILLING EQUIPMENT: CME 85 Rig 4 1/4in I.D./8in O.D. HSA
SAMPLING	METH	OD: _2	?-in Split Spoo	n/Har	nmer	/liners	CH2M GEOLOGIST: Winkler/Rech
START:			1/02/2002 12	2:45:00) PM		FINISH:
NORTHING	s:	3	98392.191	fee	et		EASTING: 317912.704 feet
	T .		T	Т	Τ	7	SOIL DESCRIPTION
DEPTH BELOW GRADE (FT)	SAMP THE NOTICE OF THE STATE OF	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION, PREDOMINANT GRAIN SIZE, SUBORDINATE GRAIN SIZE WITH DESCRIPTORS, SORTING, GRAIN SHAPE, PLASTICITY, MINERALOGY), WATER STATE, DENSITY/COHESIVENESS, LAYERING] COMMENTS O O O O O O O O O O O O O
 - 11	10-12	Soil	9-6-7-9	13	1.7	0-1.7	Moderate yellowish brown (10YR 5/4), well sorted, subangular, medium SAND, some fine gravel, trace silt, wet, medium dense
- 12 ₇ - 13	12-14	Soil	7-7-8-8	15	1.7	0-1.7	Moderate yellowish brown (10YR 5/4), well sorted, subangular, coarse SAND, some fine gravel, trace silt, wet, medium dense
- 14 ₈ - 15	14-16	Soil	7-9-8-5	17	1.3	0-1.3	SAA, wet, medium dense
- - 16 9 - - 17	16-18	Soil	5-9-7-8	16	1.2	0-1.2 ,	SAA, wet, medium dense
- 18 ₁₀ - 18 ₁₀ - 19) 18-20	Soil	6-5-2-1	7	1	0-1	Light olive gray (5Y 5/2), well sorted, subrounded, medium SAND, trace fine to medium gravel, trace silt, wet, medium dense

NOTES:

msl = mean sea level

SHEET 1 OF 2

CLIENT:			Е	PA Region 2										
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-MW	22S			
PROJEC	T N	AME: _E	PA-N	fartin Aaron					LOCATION: South Jerse	y Port				
SURFAC	E EI	EVATION	ON:	7.29	feet	msl	<u>.</u>		TOTAL DEPTH:	20.00	fe	et bgs	3	
DRILLIN	G C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>H</u>	ollow Stem Au	ıger				DRILLING EQUIPMENT:	CME 85 F	Rig 4 1	4in I.D.	./8in	O.D. HSA
SAMPLI	NG N	NETHO	D: <u>2</u> -	in Split Spoor	n/Har	nmer	/liners		CH2M GEOLOGIST:	Winkler/l	Rech			
START:									FINISH:	· · · · · · · · · · · · · · · · · · ·				
NORTH	NG:		39	98276.023	fee	et			EASTING:	318308.8	384	fee	et	
Γ	Γ	Γ	Ι	I	Τ			1	SOIL DESCRIPTION			<u> </u>	Г	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO ITE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 0														
"	1	0-2	Soil	4-4-5-5	9	0.5	0-0.5	ASPHALT		Į				Asphalt
_ 1	2		Soil				0.5-0.7	Olive back (5 medium SAN loose	SY 2/1), moderately sorted, sub ND, some silt, some fine gravel	oangular, I, dry,	SM			
- 2 - 3	3	2-4	Soil	6-8-9-7	17	0	0-	No Recovery	,					Single piece of medium gravel in spoon
- 4	4	4-6	Soil	4-4-3-4	7	0.1 .	0-0.1	CONCRETE concrete det debris)	(NOTE: Small pieces of brick ris; Tip was clogged with large	and e piece of				Small pieces of brick and concrete debris; Tip was clogged with large piece of debris
- - - - 7	5	6-8	Soil	2-1-1-1	2	1.5	0-1.5	(common, m brown), well	sh orange (10YR 6/6), mottled edium, distinct, moderate redd sorted, subangular, medium S. ce fine gravel, dry, very loose		SM			-
- 8	6	8-10	Soil	4-6-4-5			0-1	SAA, dry, loc	ise					
9	7		Soil				1-1.8		sh orange (10YR 6/6), well sort medium SAND, trace silt, dry, l		sw			-
- 10		1												-1

NOTES:

msl = mean sea level

SHEET 2 OF 2

CLIENT:			Ε	PA Region 2										
								•	BORING NUMBER:			J. 41 - 41 -		
									LOCATION: South Jerse					
									TOTAL DEPTH:					
									FOREMAN:					
									DRILLING EQUIPMENT:				./8in (D.D. HSA
SAMPLII	NG N	METHO	D: <u>2</u>	in Split Spoo	n/Haj	mmer	/liners		CH2M GEOLOGIST:	Winkler	/Rech			
									FINISH:					
NORTHI	NG:		3	98276.023	fee	et		· · · · ·	EASTING:	318308	.884	fee	et	
DEPTH BELOW GRADE (FT)	6 8 SAMPLE NUMBER	SAMPLE INTERVAL (FT)	S SAMPLE TYPE	8-8-8-6"-6"-6"-6"		SAMPLE SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF WATER STA LAYERING] SAA, moist, I	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES medium dense th orange (10YR 6/6), moderat unded, coarse SAND, some fi el, trace silt, wet, medium den	PATE FING, SY), SS,	© USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 12 - 13 - 14	10	12-14		9-8-8-11 8-9-8-8	16		0-2	sorted, subro	h orange (10YR 6/6), moderat unded, fine GRAVEL, some co lit, wet, medium dense		GМ			-
- 15 16	12	16-18	Soil	7-8-9-7	17	1.2	0-1.2	SAA, wet, me		-				-
- 17 - 18	13	18-20	Soil	5-2-4-2	6	1.2	0-1.2	Moderate red subrounded, moist, loose	dish brown (10R 4/6), well sort îne SAND and clay, low plastic	ted,	SC			-
— 19 - — 20								, , , , , ,		_				-

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2	_									
PROJEC	T NU	JMBER	:16	34453				····	BORING NUMBER:	MA-SB-	02			
PROJEC	T NA	ME: _E	PA-M	lartin Aaron					LOCATION: Martin Aaro	n Proper				
SURFAC	EEL	EVATIO	ON: _	7.18	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	t: Unit-Tech					FOREMAN:					
DRILLIN	G MI	THOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: <u>Simco 24</u>	00			
SAMPLI	NG N	ETHO	D : <u>A</u> c	cetate Liners				····	CH2M GEOLOGIST:	Wojciec	<u>h Wink</u>	ler		
START:			10	<u>)/18/2001 10:3</u>	30:00	AM.			FINISH:	10/18/20	001 11	:30:00	AM	
NORTHI	NG:		39	8542.5613	fee	t	· · · · · · · · · · · · · · · · · · ·		EASTING:	318429.	8517	fee	et	
					Γ	l	<u> </u>	1	OOIL DECODIDATION					001415170
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO ITE, DENSITY/COHESIVENES	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7	2	0-4	Soil			2.5	0-2 0-1 1-2 2-2.5	SAA Olive gray (5 moist (NOTE	Y 4/1), mottled (few, fine, faint, sorted, subrounded, fine to collt, some fine gravel, dry Y 4/1), well sorted, rounded, fine: thin bed of black (N1) fine saint (10Y 4/2), well sorted, rounded arse sand, wet	ne SAND,	SW ML	0.3 0.3		PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
8 I			ــــا		L			11					ш	

NOTES:

msl = mean sea level

SHEET 1 OF 1

DRILLING METHOD: Direct Push DRILLING EQUIPMENT: Sinco 2400	CLIEN	T:		EF	PA Region 2										
SURFACE ELEVATION: 7.42 feet ms TOTAL DEPTH: 8.00 feet bgs	PROJE	CT N	UMBER	: 16	34453					BORING NUMBER:	MA-SB-	04			
DRILLING METHOD: Direct Push DRILLING EQUIPMENT: Sinco 2400	PROJE	CT N	AME: _	EPA-N	lartin Aaron					LOCATION: Martin Aaro	n Proper				
DRILLING METHOD: Direct Plush DRILLING EQUIPMENT: Simco 2400 Minker	SURFA	CE E	LEVATI	ON: _	7.42	feet	msl			TOTAL DEPTH:	8.00	fe	eet bgs	:	
Chamber Cham	DRILL	NG C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
NORTHING: 398619.146 feet EASTING: 318514.464 feet	DRILL	NG N	IETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	100			
NORTHING: 398619,146 feet	SAMP	ING	метно	D: _A	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	kler		
SOIL DESCRIPTION	START	:		10	<u>)/16/2001 11:</u>	00:00	AM (FINISH:	10/16/20	001 11	:30:00	АМ	J
1	NORT	IING:	:	39	8619.146	fee	t			EASTING:	318514.	464	fee	et	
1			Т				Γ—	<u> </u>	T	OOU DECORIDATION		Γ	-	Τ-	COMMENTO
Olive gray (SY 3/2), mottled (many, medium, distinct, olive gray), poorly sorted, subrounded, fine SAND 1.5-3.5 SAA and medium gravel, dry 1.5-3.5 SAA and medium gravel, dry 1.5-3.5 SAA and medium gravel, dry 1.5-3.5 ML 1 PID(8)=2.0 ppm, (H)=0 ppm; RAD(8)=40 cpm, (H)=40 cpm (H)=40 cpm ML 1 PID(8)=2.0 ppm, (H)=1 ppm; RAD(8)=40 cpm, (H)=6 ppm;	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	1 1111	BLOW COUNTS 6"-6"-6"-	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINI GRAIN SIZE GRAIN SHAI WATER STA	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO	NATE TING, GY),	GROUP	PID/FID READING (PPN	OTHER TESTING	COMMENTS
	- 1 - 2 - 3 - 4 - 5							1.5-3.5 0-1.5	Moderate olin faint, modera fine sand, no Black (N1), n poorly sorted fine gravel, r 7/2 yellowish (ML) some Medium bluis faint, light blu	corty sorted, subrounded, fine el, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry dium gravel, dry mottled (many, medium, disting, subangular, medium SAND, oist, thinly bedded (NOTE: 4! gray, many, fine, faint, well so le sand) h gray (58 5/1), mottled (manish gray), well sorted, SILT, tr	any, fine, ILT and	ML	0.3		PID(B)=2.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=2.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msi = mean sea level

SHEET 1 OF 2

													_
			A Region 2						00				_
PROJECT							BORING NUMBER:						_
					msl		LOCATION: Martin Aaror TOTAL DEPTH:						-
		_					FOREMAN:						
DRILLING							DRILLING EQUIPMENT:					•	
							CH2M GEOLOGIST:						
							FINISH:						
			8685.8321				EASTING:			fee	. 6		
						I					Γ-		_ _
DEPTH BELOW GRADE (FT)	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTION PREDOMINANT GRAIN SIZE, SUBORDIN GRAIN SIZE WITH DESCRIPTORS, SORT GRAIN SHAPE, PLASTICITY, MINERALOG WATER STATE, DENSITY/COHESIVENES LAYERING]	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
- 1	0-4	Soil	18	Z	₹ <u>8</u> 2	0-0.5 0.5-1 1-2	Brownish black (5YR 2/1), mottled (many, n prominent, brownish black), poorly sorted, subrounded, medium SAND, some fine gray Medium light gray (N6), mottled (many, coap prominent, light gray), well sorted, angular, coarse GRAVEL, dry Moderate olive brown (5Y 4/4), mottled (man medium, prominent, moderate olive brown) sorted, rounded, fine to medium SAND, son gravel, dry Black (N1), mottled (many, medium, black), sorted, fine to medium SAND, some fine gramoist, thinly bedded Black (N1), mottled (many, fine, prominent, well sorted, SILT, trace fine sand, moist, sol	vel, dry rse, fine to ny, poorly ne fine poorly avel, black),	SW GP SW	0.9 0.9 0.3	[0]	PID(B)=0.5 ppm, (H)= 0.9 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm; RAD(B)=40 cpm, (H)=40 cpm; RAD (B)= 40 cpm, (H)=40 cpm PID(B)=0.5 ppm, (H)=0.9 ppm; RAD (B)= 40 cpm, (H)=40 cpm PID(B)=0.3 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(H)=0.3 ppm, (H)=0.3 ppm, (H)=0.3 ppm; RAD(H)=40 ppm, (H)=40 ppm	-
- 8												_	

NOTES:

msl = mean sea level

SHEET 1 OF 1

							· · · · · · · · · · · · · · · · · · ·					_		
CLIENT:		EF	PA Region 2											
PROJECT N	UMBER	:16	64453					BORING NUMBER:	MA-SB-0	8				
PROJECT N	IAME: _E	PA-M	lartin Aaron					LOCATION: Martin Aaron I	Proper					
								TOTAL DEPTH:			et bgs			
DRILLING (ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:						
DRILLING N	/IETHOD:	<u>Di</u>	rect Push					DRILLING EQUIPMENT:	Simco 240	00				—
			etate Liners					CH2M GEOLOGIST:						
			/16/2001 1:3	0:00				FINISH:			30:00 F	M		
NORTHING	:	39	8549.3296	fee	t			EASTING:	318568.1	428	fee	<u>et</u>		
DEPTH BELOW GRADE (FT) SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6" 6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP WATER STA' LAYERING]	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION, NT GRAIN SIZE, SUBORDINA WITH DESCRIPTORS, SORTIN E, PLASTICITY, MINERALOGY IE, DENSITY/COHESIVENESS	TE NG, (),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
- 1	0-4 4-8 8-12	Soil Soil			3	0-0.5	poorly sorted. Dark gray (Note of the poorly sorted wood debris) SAA, Light brodistinct, light little fine grave. Yellowish grave.	by, mottled (many, fine, faint, dar fine SAND, dry (NOTE: wood do), mottled (many, fine, faint, dar fine SAND and fine gravel (NOTE) when the sand fine gravel (NOTE) were sand fine gravel (NOTE) when the sand fine gravel (NOTE) were sand fine gravel (Many, foreway), well sorted, medium SAPI, moist, thinly bedded (SY 7/2), well sorted, SILT, we sand fine gravel, little silt, we sand fine gravel, little silt, we	lebris) rk gray), rt E: - ine, ND,	SW SW SP ML	0.3 0.3 0.3		PID(B)=5 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=5 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=40 cpm PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=2 ppm, (H)=0.3; RAD(B)=20 cpm, (H)=40 cpm PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=40 cpm PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=20 cpm PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=20 cpm	1
_ 12						· · · · · · · · · · · · · · · · · · ·			<u> </u>					إل

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT	:		E	PA Region 2										
PROJE	CT N	UMBER	: _16	34453					BORING NUMBER:	MA-SB-	09			
PROJE	CTN	AME: _E	PA-N	fartin Aaron				· · · · · · · · · · · · · · · · · · ·	LOCATION: Martin Aaro	n Proper				
SURFAC	CEE	LEVATION	ON: _	6.60	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs	<u> </u>	
DRILLIN	VG C	ONTRA	CTOR	R: Unit-Tech					FOREMAN:	Mike				
DRILLIN	NG M	ETHOD	: <u>D</u>	rect Push					DRILLING EQUIPMENT	: Simco 2	400			
SAMPL	ING I	METHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST: _	Winkler				
START:			10	0/15/2001 11:	30:00	MA (FINISH:	10/15/2	001 12	:15:00	PM	<u> </u>
NORTH	ING:		39	98692.4535	fee	t			EASTING:	318657	.4831	fee	et	
0 DEPTH BELOW 6RADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"		S SAMPLE (FT)	PTION	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF WATER STA LAYERING] Brownish bla and silt, trace Light olive br SAND and fir of brick, (N1) mixed) Brick and gra Grayish black black), well s fine gravel, m	SOIL DESCRIPTION ITTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDII WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE OK (5YR 2/1), well sorted, fine fine gravel, dry DOWN (5Y 5/6), well sorted, me te to coarse gravel, dry (NOT black poorly sorted sand (SV Vel fill I (N2), mottled (many, fine, gr orted, rounded, medium SAN	N, NATE TING, GY), SS, SAND dium E: pieces y), all	T NSCS GROUP SYMBOL	1 1 PID/FID READING (PPM)	OTHER TESTING	PID(B) = 0 ppm, (H) = 3 ppm; RAD(B) = 60 cpm, (H) = 60 cpm (H) = 60 cpm, (H) = 60 cpm, (H) = 60 cpm, (H) = 60 cpm, (H) = 60 cpm (H) = 60 cpm,
- 11 - 12										-				-

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	T NI	JMBER:	16	4453					BORING NUMBER:	MA-SB-	11			
PROJEC	T N	AME: <u>E</u>	PA-M	lartin Aaron					LOCATION: Martin Aaron					-
				8.48					TOTAL DEPTH:			et bgs		
DRILLIN	G C	ONTRAC	CTOR						FOREMAN:					
DRILLIN	G M	ETHOD:	_Di	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	METHO): <u>Ac</u>	cetate Liners				······	CH2M GEOLOGIST:	Winkler				
START:			10	<u>/15/2001 2:5</u>	5:00 I	PM			FINISH:	10/15/20	01 4:3	80:00 F	M	
NORTHI	NG:		39	8584.759	fee	<u> </u>			EASTING:	318653.	8978	fee	et	
OW FT)	MBER	ERVAL (FT)	щ.	S L		(FT)	ESCRIPTION (FT)	[COLOR, MC	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN		GROUP SYMBOL	ADING (PPM)	TESTING	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DE INTERVAL (I	GRAIN SHAF	WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	SY),	USCS GRO	PID/FID READING	OTHER TES	
_ 0 _	1	0-4	Soil			4	0-1	fine, promine	h orange (10YR 6/6), mottled (nt, dark yellowish orange), wel fine SAND and silt, dry		SM	0.6		PID(B) = 0.3 ppm, (H) = 0.6ppm; RAD(B) = 60 cpm, (H) = 60 cpm —
<u> </u>							1-2	Black (N1), m gray), well so and silt, dry	nottled (many, fine, prominent, rted, subrounded, fine to coars	dark se SAND _	SM	7		PID(B) = 0.6 ppm, (H) = 7 ppm; RAD(B) = 60 cpm, 60 cpm
2 3							2-4	Black (N1), rr gray), poorly gravel, dry	ottled (common, fine, distinct, sorted, fine SAND and silt and	dark fine	SM	4		PID(B) = 0.6 ppm, (H) = 4 ppm; RAD(B) = 60 cpm, (H) = 60 cpm —
- 4 - 5	2	4-8	Soil			3	0-1.5	medium, disti	wn (5YR 4/4), mottled (commonct, black), poorly sorted, medie gravel, trace silt, moist	on, Jium	sw	2		PID(B) = 0.3 ppm, (H) = 2 ppm; RAD(B) = 50 cpm, (H) = 50 cpm
- 6							1.5-2.5	grayish black	(N2), mottled (many, medium), poorly sorted, medium SANI ace silt, moist	n, distinct, D and	sw			PID(B)=0.3 ppm, (H)=2 ppm; RAD(B)=50 cpm, (H)=5 cpm
- 7							2.5-3	Brick		-		2		PID(B)=0.3 ppm, (H)=2.0 ppm; RAD(B)=50 cpm, (H)=50 cpm
— 8 -	3	8-12	Soil			4	0-0.5	Brick				0.3		PID(B)0.3 ppm, (H)=0.3 ppm; RAD(B)=80 cpm, (H)=80 cpm
- 9 -						4	0.5-2		ottled (many, coarse, promine sorted, medium SAND and fine		sw	0.3		PID(B) = 0.3 ppm, (H) = 0.3 ppm; RAD(B) = 80 cpm, (H) = 80 cpm
— 10 -							2-3		ray (5B 7/1), mottled (many, fir sh blue), well sorted, SILT and		ML	0.3		PID(B)=0.3 ppm, (H)=0.3 ppm; RAD(B)=80 cpm, (H)=80 cpm
— 11 - — 12							3-4	Black (N1), m SILT, moist	ottled (, black), well sorted, cla	ayey -	МН	0.3		PID(B)=0.3 ppm, (H)=0.3 ppm; RAD(B)=80 cpm, (H)=80 cpm

NOTES:

msi = mean sea level

SHEET 1 OF 2

_													
CLIENT:		EP/	A Region 2	· - · , - · -				•					
PROJECT NU	JMBER:	164	453					BORING NUMBER: _	MA-SB	-13			
PROJECT NA	ME: E	PA-Ma	rtin Aaron				· · · · · · · · · · · · · · · · · · ·	LOCATION: Martin Aar	on Proper				
SURFACE EL	EVATIO	N: _	8.30	feet r	msł			TOTAL DEPTH:	12.00	fe	et bgs		
DRILLING CO	NTRAC	TOR:	Unit-Tech					FOREMAN:					
DRILLING ME	THOD:	Dire	ect Push					DRILLING EQUIPMEN	T: Simco 2	400			
SAMPLING N	ETHOD:	Ace	etate Liners					CH2M GEOLOGIST: _	Wojcied	h Winl	der		
START:		10/	19/2001 12:0	00:00	РМ			FINISH:	10/19/2	001 12	:40:00	РМ	
NORTHING:		398	455.0235	feet	<u> </u>		······································	EASTING:	318639	.1195	fee	et	
				П				OOU DECORURTION		1 .		Τ	201115170
	(F)					O.		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS
ER	VAL		(0 :		E	RIPT	[COLOR, MC	TTLING, SOIL DESCRIPTION	ON,	SYM) NG	ত্	
(FT)	TER	YPE	IN.		.Y (F	ESC (FT)	ľ	ANT GRAIN SIZE, SUBORDI		J G	<u> </u>	STIN	
DEPTH BELOW GRADE (FT) SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTȘ 6"-6"-6"	빙	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	1	WITH DESCRIPTORS, SOF PE, PLASTICITY, MINERALO		GROUP (PID/FID READING	OTHER TESTING	
GR GR	MPI	MPi	φφ φ	\ \ \ \ \	ECC	AMP	WATER STA	TE, DENSITY/COHESIVENI	ESS,	nscs	D/F	里	
	Ś	Ø.		Z	S E	ωZ					Δ.	Ö	<u> </u>
-0				<u>,</u>								,	
" 1	0-4	Soil		1	2	0-0.5		ish brown (10YR 2/2), mottle dusky yellowish brown), well		SP	0.1		PID(B)=0.6 ppm, (H)=0.1 ppm; RAD(B)=40 cpm, (H)=40 cpm
							rounded, fine	SAND, trace fine gravel, dry					` '
						0.5-1		h orange (10YR 6/6), well so nedium SAND, trace fine gra		SP	0.1		PID(B)=0.6 ppm, (H)=0.1 ppm; RAD(B)=40 cpm, (H)=40 cpm
1						4.2							
		1				1-2		3), poorly sorted, subangular ne gravel, dry (NOTE: various		SW	0.1		PID(B)=0.6 ppm, (H)=0.1 ppm; RAD(B)=40 cpm, (H)=40 cpm
-							pieces)						(1)-40 opin
		[
- 2		-							-	-			
_		i											
з									-				
	ļ	-			ļ								
-									-				
-4 ₂	4-8	Soil			2	0-2	Ducky brown	(5YR 2/2), poorly sorted, sub		sw	0		PID(B)=0.0 ppm, (H)=0.0
[Į		medium SAN	D and fine to medium gravel	, dry				ppm; ŘAD(B)=40 cpm, (H)=40 cpm
_									-				
- 5									-				
							-						
-	1								-				
-6									-				
-				1 1	}		1		-				

NOTES:

msl = mean sea level

SHEET 1 OF

												i i Or i
CLIENT:		US	EPA Region	2			-					
PROJECT	NUMBE	R:164	1453				BORING NUMBER:	MA-SB-1	4			
PROJECT	NAME:	EPA-Ma	artin Aaron				LOCATION: Martin Aar	on Proper				
SURFACE	ELEVAT	ION: _	7.56	feet ms	il		TOTAL DEPTH:	12.00	f	eet bgs	3	
DRILLING	CONTRA	ACTOR:	Unit-Tech				FOREMAN:					
DRILLING	METHO): <u>Dir</u>	ect Push	.,,.			DRILLING EQUIPMEN	T: Simco 24	00			
SAMPLING	G METHO	D: <u>Ace</u>					CH2M GEOLOGIST: _					·
START:_		10/	15/2001 10:	30:00 A	M		FINISH:	10/15/20	01 11	:00:00	AM	I
NORTHIN	G:	398	3695.0394	feet			EASTING:	318757.3	883	fee	et	
				1							_	1
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE SAMPLE	RECOVERY (FT) SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTIC ANT GRAIN SIZE, SUBORD. WITH DESCRIPTORS, SOF PE, PLASTICITY, MINERALC ITE, DENSITY/COHESIVENI	INATE RTING, DGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 1	0-4	Soil		3	0-4	prominent, m	own (5YR 4/4), mottled (many loderate brown), well sorted, ID, some fine gravel, dry	7,	SP	0		PID(B) = 0 ppm, (H)=0 ppm; RAD(B) = 20 cpm, (H)=20 cpm -
- 2 - 3 - 4 - 5 - 6	2 4-8	Soil		2	0-2	prominent, lig	th gray (5YR 6/1), mottled (m ght brownish gray), well sorte SAND, trace fine gravel, dry	ed,	SP	0		PID(B) = 0 ppm, (H) = 0 ppm; RAD(B) = 40 cpm, (H) = 40 to 60 cpm
- 7 - 8 3 - 9 - 10	8-12	Soil		2	0-2	Grayish black grayish black	(N2), mottled (many, promir), well sorted, CLAY, wet, soi	non,	СН	0		PID(B) = 0 ppm, (H) = 0 ppm; RAD(B) = 40 cpm, (H) = 40 to 60 cpm -

NOTES:

SHEET 1 OF 1

				F										
CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-SB-	29			
PROJEC	TN	AME: _	EPA-N	Martin Aaron			····		LOCATION: Martin Aaron	Proper				
			-	6.30					TOTAL DEPTH:					
DRILLIN	G Ç	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
				irect Push					DRILLING EQUIPMENT:					
									CH2M GEOLOGIST:					
					<u>5:00</u>				FINISH:				PM_	
NORTHII	NG:		39	98634.2017	fee	et			EASTING:	318197.	3406_	fee	et	
		E)			Γ		8		SOIL DESCRIPTION		걸	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	
[0	1	0-4	Soil			2.3	0-0.9	Olive gray (5 medium to co	Y 3/2), poorly sorted, subangul parse GRAVEL, little medium s	ar, sand, dry	GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 1 							0.9-2.3		ck (5YR 2/1), poorly sorted, su parse SAND, some silt, little fin rel, moist		SM	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 -										-				_
— 3 -										-				_
- 4 - 5	2	4-8	Soil			2.2	0-2.6	SAA, wet						PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6										-				
- - 7							2.6-3.2	Black (N1), w	rell sorted, angular, coarse GR. d, little silt, wet	AVEL,	GP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
-										-				_

NOTES:

msl = mean sea level

SHEET 1 OF 1

PROJECT NAME: EPA-Martin Aaron				
SURFACE ELEVATION: 7.60 fee				
DRILLING CONTRACTOR: Unit-Tech				
SAMPLING METHOD: Acetate Liners				
START: 10/17/2001 1:50:00				
NORTHING: 398520.0099 fe	eet	EASTING:3	18569.6187	eet
(F)	Z S	OIL DESCRIPTION	JO L	COMMENTS
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (I SAMPLE TYPE BLOW COUNTS 6"-6"-6" N VALUE	PREDOMINAL GRAIN SIZE V	TLING, SOIL DESCRIPTION, NT GRAIN SIZE, SUBORDINATI VITH DESCRIPTORS, SORTING E, PLASTICITY, MINERALOGY), E, DENSITY/COHESIVENESS,	GROU B REA	OTHER TESTING
- 1 Soit Soit - 2	2.5 0-1 Olive back (5Y moderately sor coarse sand, li	2/1), mottled (common, olive bated, subrounded, SiLT and fine title fine gravel	ack), ML 10.9	PID(B)=0.3 ppm, (H)=10.9 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 3 - 4 2 4-8 Soil	3 0-3 SAA (NOTE: (3	Bin) thin bed of gravel and brick)	14	PID(B)=0.0 ppm, (H)=14.0 ppm: RAD(B)=20 cpm, (H)=90 cpm
- 5 - 6 - 7				
8				

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EI	PA Region 2											
PROJEC	TNL	JMBER:	16	64453					BORING NUMBER:		42				_
				lartin Aaron					LOCATION: Martin Aaror						_
			_						TOTAL DEPTH:			eet bgs			_
									FOREMAN:						—
				irect Push					DRILLING EQUIPMENT:						_
									CH2M GEOLOGIST:						_
									FINISH:						_
NORTHI	NG:		38	98380.2864	100				EASTING:	310402.	0703	100	<u> </u>		_
		(FT)					Z O		SOIL DESCRIPTION		7	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-5"-5"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	IATE TING, SY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING		
- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7	2	0-4	Soil			2.5	0-4	Dark gray (N well sorted, r gravel	sh orange (10YR 6/6), well sort yey SILT, moist 3), mottled (many, fine, faint, dounded, fine SAND and silt, so th orange (10YR 6/6), well sort SAND, wet	ark gray), ome fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
_ 0															

NOTES:

msi = mean sea level bgs = below ground surface

SHEET 1 OF 2

CLIENT:			EF	PA Region 2											
PROJEC	T NI	JMBER	: 16	34453					BORING NUMBER:	MA-SB-	47				
PROJEC	T N	AME: _E	PA-M	lartin Aaron			······································		LOCATION: Martin Aaro	n Proper					
SURFAC	E EI	EVATIO	ON: _	6.64	feet	msl			TOTAL DEPTH:	12.00	fe	eet bgs	3		
DRILLIN	IG C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:		·				
DRILLIN	G M	ETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	00				
SAMPLI	NG N	NETHO	D: <u>A</u>	etate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	kler			
						<u>AM</u>			FINISH:	10/18/20	001 8:3	30:00 /	ΔM		
NORTHI	NG:		39	98422.5553	fee	<u>t</u>			EASTING:	318 <u>564</u> .	2282	fe	et		
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN/ GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
	2	0-4	Soil			2	0-0.5 0.5-1 1-2	fine, promine sorted, subro dry SAA, Dark gr Black (N1), w dry Black (N1), moderately some fine gra Moderate ora fine, promine SILT and fine Light brown (nottled (many, fine, distinct, blorted, subangular, fine SAND avel, moist	ne gravel, ne gravel, ack), and silt, nany,	SP SP ML	0.3 0.3 0.3		PID(B)=0.3 ppm, (H)=0 ppm; RAD(B)=40 cpm, (H)=40 cpm	3
L 8															4

NOTES:

msl = mean sea level

SHEET 2 OF 2

CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	: <u>1</u> 6	54453					BORING NUMBER:	MA-SB-	47		·=•····	
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: Martin Aaro	n Proper				<u> </u>
SURFAC	E El	EVATIO	ON:	6.64	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs		
DRILLIN	G C	ONTRA	СТОР	: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD:	: <u>D</u>	irect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	METHOL	D: <u>A</u>						CH2M GEOLOGIST:			kler		
START:		· ·	10	0/18/2001 8:00	0:00	AM_			FINISH:	10/18/20	01 8:3	30:00 A	М	
NORTHI	NG:		39	98422.5553	fee	et			EASTING:	318564.1	2282	fee	et	
				r	1					 -			T	
		(FT)					N O		SOIL DESCRIPTION		30	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLETYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALON TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
	3	8-12	Soil			3	0-1	Black (N1), w	vell sorted, SILT, wet		ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ _ 9							4.2							0.00
							1-2	Olive gray (5)	Y 3/2), well sorted, SILT, wet	-	ML	0		8-9ft organic like odor
- 10							2-3	Light olive ar	ay (5Y 5/2), well sorted, subro	nuded.	SP			9-10ft organic material
								fine to mediu	m SAND, wet	dilded,	-			visible wood roots and fibers
- - 11														_
[''										1				
-									•	4				-
_ 12														

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:														
PROJEC	T N	JMBER	: _16	54453					BORING NUMBER:	MA-SB-	56			
PROJEC	T N	AME: _E	PA-N	fartin Aaron					LOCATION: Martin Aaron	Proper				
SURFAC	E EI	EVATIO	ON:	6.78	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF						FOREMAN:				<u>.</u>	
DRILLIN	G M	ETHOD	: _Di	irect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	/IETHOI	D: _A	cetate Liners					CH2M GEOLOGIST:	Wojcied	h Win	kler		
START:			10	0/16/2001 8:0	0:00 A	AM_			FINISH:	10/16/20	001 9:3	30:00 <i>A</i>	AM_	
NORTHI	NG:		39	98518.6821	feet				EASTING:	318486.	4084_	fee	<u>et</u>	
O DEPTH BELOW CRADE (FT)	SAMPLE NUMBER	8- 12 SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"		2 SAMPLE RECOVERY (FT)	NOIT	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP WATER STA' LAYERING] Dark gray (N' dark gray), pc some fine gra Light Brown (distinct, light medium SAN Dark gray (N' dark gray), pc SAND and sill	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES 1), mottled (common, medium, orly sorted, rounded, medium vel, dry 5YR 5/6), mottled (common, nerown), poorly sorted, rounded D silt, some fine sand, dry 1), mottled (common, medium, orly sorted, subangular, medium, orl	distinct, SAND, distinct, sim many, d,	MS MS MS MS MS MS MS MS MS MS MS MS MS M	8.0 PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.3 ppm, (H)=0.3 ppm; RAD(H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=40 cpm —— PID(B)=40 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=40 cpm —— PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=60 cpm —— PID(B)=2 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=60 cpm —— PID(B)=1 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=60 cpm —— PID(B)=1 ppm, (H)=0.3 ppm; RAD(B)=20 cpm, (H)=60 cpm ——
11								weii sorieu, S	Li, wei, suit	- - - -				(H)=60 cpm '

NOTES:

msl = mean sea level

SHEET 1 OF 2

CLIENT:			E	PA Region 2									-	
PROJEC	T N	UMBER	: <u>1</u> 6	64453					BORING NUMBER: _	MA-SB	-60			
PROJEC	T N	AME: _	EPA-N	Martin Aaron					LOCATION: Martin Aaro	on Proper				
SURFAC	E EI	LEVATI	ON:	7.06	feet	msl	·		TOTAL DEPTH:	7.00	fe	et bgs	;	
DRILLIN	G C	ONTRA	стог						FOREMAN:					
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push					DRILLING EQUIPMENT	T: Simco 2	400			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST: _	Wojcied	h Winl	der		
START:			10	0/16/2001 9:50	0:00	AM			FINISH:	10/16/2	001 10	:40:00	AM	<u> </u>
NORTHI	NG:		39	98564.7766	fee	t	· · · · · · · · · · · · · · · · · · ·		EASTING:	318514	.6026	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTIC INT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOR E, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE ITING, IGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
0	1	0-4	Soil			2.5	0-1	Dark gray (No gray), poorly some mediun	8), mottled (many, medium, fa sorted, subrounded, medium n gravel, dry	aint, dark SAND,	SM	0.3		PID(B)=1.0 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=60 cpm
<u> </u>							1-2.5	SAA, medium	GRAVEL (NOTE: pieces of	brick)	GP	0.3		PID(B)=10 ppm, (H)=0.3 — ppm; RAD(B)=40 cpm, (H)=60 cpm
_ 2										-				
— 3							 .			-				
— 4 	2	4-7	Soil				0-2	Dark gray (N3 well sorted, S), mottled (many, fine, faint, l ILT and fine sand, moist, sof	black),	ML	0.3		PID(B)=10 ppm, (H)=0.3 — ppm; RAD(B)=40 cpm, (H)=60 cpm
5														

NOTES:

msl = mean sea level

SHEET 2 OF 2

CLIENT:			E	PA Region 2					_					
PROJEC	T NL	MBER	: _16	64453					BORING NUMBER: _	MA-SB-	60			
									LOCATION: Martin Aar					
SURFAC	E EL	EVATI	ON: _	7.06	feet	msl			TOTAL DEPTH:	7.00	fe	et bgs	<u> </u>	
DRILLIN	G CC	NTRA	CTOR	R: Unit-Tech					FOREMAN:					
DRILLIN	G ME	THOD	: <u>Di</u>	irect Push			····		_ DRILLING EQUIPMEN	T: Simco 24	00			
									_ CH2M GEOLOGIST: _			kler		
START:			10	0/16/2001 9:50	0:00	AM_			FINISH:	10/16/20	001 10	:40:00	AM	
NORTHI	NG:		39	98564.7766	fee	t			EASTING:	318514.	6026	fe	et	
	· · ·				1								т	r
		Ē					<u>0</u>		SOIL DESCRIPTION		BQL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	DTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDION WITH DESCRIPTORS, SOF PE, PLASTICITY, MINERALON ATE, DENSITY/COHESIVENI	INATE RTING, DGY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
_ _ 6							2-2.5	Light olive bri light olive bro moist, soft	rown (5Y 5/6), mottled (many, own), well sorted, SILT and fi	fine, faint, ne sand,	ML	0.3		PID(B)=15 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=60 cpm
							2.7-3	Black (N1), r poorly sorted	nottled (many, medium, faint, i, medium SAND and medium	black), n gravel,	GW	0.3		PID(B)=15 ppm, (H)=0.3 ppm; RAD(B)=40 cpm, (H)=60 cpm

SHEET 1 OF 1

														· · · · · · · · · · · · · · · · · · ·
CLIENT:			E	PA Region 2										
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-SB-	62		<u> </u>	
PROJEC	TN	AME: E	PA-N	Martin Aaron					LOCATION: South Jerse	y Port				
SURFAC	E EL	EVATIO	ON: _	6.31	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD	D	irect Push					DRILLING EQUIPMENT:	Simco 24	100			
SAMPLII	NG N	TETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			12	2/12/2001 11:	10:00	AM			FINISH:	12/12/20	001 11	:45:00	AM	
NORTHI	NG:		39	98719.8832	fee	t			EASTING:	317909.	6461	fee	et	
		Ē.					N O		SOIL DESCRIPTION		ž	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PI	OTHER TESTING	
- 0 -	1	0-4	Soil			2.6	0-1		ck (5YR 2/1), moderately sorte fine SAND, little fine gravel, dr rick)		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
1 							1-2.6	Yellowish gra SAND, dry	y (5Y 7/2), well sorted, rounde	d, fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
2										-				_
- 3										-				_
-										-				-
4										_				_
- 5	2	4-8	Soil			4	0.5-1.7	Black (N1), w trace silt, moi	ell sorted, subrounded, fine SA st	ND,	SP	0		PID(B)=0.0 ppm, (H)=0.0 — ppm; RAD(B)=40 cpm, (H)=40 cpm ———————————————————————————————————
-							1.7-4	Blackish red (5R 2/2), well sorted, subround	ed.	SP	0		 PID(B)=0.0 ppm, (H)=0.0
6 		i						medium SAN	D, wet					ppm; RAD(B)=40 cpm, (H)=40 cpm
- 7										-				
- 8														_

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2					-					
PROJEC	TN	JMBER	: 16	64453					BORING NUMBER:	MA-SB-	66			
PROJEC	TN	AME: _E	PA-N	fartin Aaron					LOCATION: South Jerse	ey Port				
SURFAC	E E	EVATIO	ON: _	5.75	feet	msl			TOTAL DEPTH:	8.00	fe	eet bgs		
DRILLIN	G C	ONTRA	СТОБ	R: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push				···	DRILLING EQUIPMENT	r: Simco 24	400			
SAMPLI	NG I	/IETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Rob Re	<u>ch</u>			
START:			12	2/13/2001 12:	50:00	PM			FINISH:	12/13/2	001 1:	20:00 F	PM	
NORTHI	NG:		39	98304.9778	fee	t			EASTING:	318007	9721	fee	et	
		(FT)					NO		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN. GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTIO ANT GRAIN SIZE, SUBORDII WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO ITE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
- 0	1	0-4	Soil			2.8	0-1	Olive back (5 SAND, some	Y 2/1), poorly sorted, subang silt, trace fine gravel, dry, loc	ular, fine se	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
<u> </u>							1-2	Grayish brow fine SAND, s	rn (5YR 3/2), poorly sorted, st ome silt, trace fine gravel, dry	ibangular, r, loose	SM	0		PiD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - - 3							2-3	Light Brown medium SAN	5YR 5/6), poorly sorted, suba D, little clay, wet, firm	ngular,	sc	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
										-				
- 4 -	2	4-8	Soil			2.8	0-1	Moderate ora CLAY and sil	inge pink (5YR 8/4), poorly so t, medium plasticity, wet, firm	rted,	CL.	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
 5							1-2	subangular, i	own (5YR 3/4), poorly sorted, medium SAND, little silt, trace medium dense		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6 -							2-3		(N2), poorly sorted, CLAY, li asticity, moist, stiff	ttle fine	сн	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 7										-				
8														

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2					-					
PROJEC	T NI	JMBER	:10	64453					BORING NUMBER:	MA-SB-	67			· · · · · · · · · · · · · · · · · · ·
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: South Jerse	ey Port				
SURFAC	E EI	EVATR	ON:	6.39	feet	msl			TOTAL DEPTH:	8.00	fe	eet bgs		
DRILLIN	G C	ONTRA	СТОР						FOREMAN:					
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Win	kler		
									FINISH:				PM	
NORTHI	NG:		39	98691.0465	fee	<u>t</u>			EASTING:	318025.	6705	fee	et	
	or	AL (FT)					NOILON		SOIL DESCRIPTION		SYMBOL	3 (PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SY	PID/FID READING (PPM)	OTHER TESTING	
	1	0-4	Soil			2.5		Light olive gr	ay (5Y 5/2), well sorted, subro ome silt, little clay, dry	unded,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
<u> </u>										~				_
_ 2										_				_
- 3										-				_
- 4	2	4-8	Soil			2.7	0-1	000	NOTE			0		PID(B)=0.0 npm (H)=0.0
_	-	70	JUII			٤.1	V-1	SAA, moist (NOTE: some fill, brick pieces)	-				PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
5 -							1-2.7	Black (N1), m medium SAN	noderately sorted, subangular, ID, little silt, some fine gravel,		sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
6 										-				_
7														_

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

														
CLIENT:			EF	PA Region 2					-					
PROJEC	T NU	JMBER:	16	453					BORING NUMBER	: MA-SB-	-68		 -	
PROJEC	TNA	ME: <u>E</u>	PA-M						LOCATION: South					
SURFAC	EEL	EVATIO	ON: _	6.48	feet	msl		·	TOTAL DEPTH:	6.00	f	eet bgs	S	
DRILLIN	G C	ONTRA	CTOR						FOREMAN:					
									DRILLING EQUIPM					<u> </u>
									CH2M GEOLOGIS					
												0:15:00	AM	1
NORTHII	NG:		39	8578.0906	fee	t	J		EASTING:	318042	.2389	fe	et	
DEPTH BELOW CRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-5"	N VALUE	SAMPLE ** RECOVERY (FT)		[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAF WATER STA LAYERING] Olive back (5 SILT and me medium dense subangular, 1	SOIL DESCRIPTION OTTLING, SOIL DESCRI ANT GRAIN SIZE, SUBO WITH DESCRIPTORS, PE, PLASTICITY, MINEF ITE, DENSITY/COHESI OT 2/1), moderately sorted dium sand and medium se sh orange (10YR 6/6), pc ine SAND and silt, dry, l sh brown (10YR 4/2), pool ine SAND and silt, dry, l	PTION, DRDINATE SORTING, RALOGY), VENESS, ed, subangular, gravel, moist, porly sorted, oose	M M M M M M M M M M M M M M M M M M M	O O PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 3 - 4 - 5 -	2	4-8	Soil			2	0-1.5	Light Brown (medium SAN loose	5YR 5/6), poorly sorted, ID and silt, some fine gra	subangular, avel, moist, - -	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT			FI	PA Region 2				<u></u>						································
									BORING NUMBER:	MA-SB-	69			
									LOCATION: South Jerse					
									TOTAL DEPTH:					
DRILLIN	G C	ONTRA	CTOF	t: <u>Unit-Tech</u>					FOREMAN:					
									DRILLING EQUIPMENT					
SAMPLI	NG N	ЛЕТНОІ	D: <u>A</u>						CH2M GEOLOGIST: _					
START:			12	2/12/2001 9:3	5:00	AM			FINISH:	12/12/20	001 10	:00:00	АМ	
NORTHI	NG:		39	98751.4293	fee	t			EASTING:	318178.	4221	fee	<u>et</u>	
		(FT)					N O		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTIO ANT GRAIN SIZE, SUBORDII WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO ITE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
F 0	1	0-4	Soil			2.3	0-0.9	Moderate oli subrounded,	ve brown (5Y 4/4), well sorted fine SAND, trace fine gravel,	dry -	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 1							0.9-2.3		noderately sorted, subangular e fine to medium gravel, dry	, medium	sw	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=40 cpm, (H)=40 cpm
<u> </u>										_				_
- 3										 				_
- 4										-	٠			-
- - 5										-				-
										1				-
- 6										-				
- 7														-
8														

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			El	PA Region 2											_
PROJEC	T NI	JMBER	: _16	54453					BORING NUMBER:	MA-SB-	71				
PROJEC	T N	AME: _E	PA-M	fartin Aaron					LOCATION: South Jerse	ey Port					_
SURFAC	E EI	LEVATIO	O N : _	6.91	feet r	msl			TOTAL DEPTH:	8.00	fe	eet bgs			_
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:						_
DRILLIN	G M	ETHOD	: _D	irect Push					DRILLING EQUIPMENT	: Simco 24	00				_
SAMPLI	ŅG N	/ETHO	D: _A	cetate Liners					CH2M GEOLOGIST: _	Rob Red	ch				_
START:			12	2/13/2001 12:	12:00	PM			FINISH:	12/13/20	001 12	:30:00	РМ	l	_
NORTHI	NG:		39	98440.0226	feet	:			EASTING:	318115.	5259	fee	et		_
		(F)					N N		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS]
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALON TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (8	OTHER TESTING		
_ 0 _ 1 _ 2 _ 3 _ 4 _ 5 _ 6	2	0-4	Soil			2.1	0-0.5 0.5-3 3-3.5	medium SAN loose Greenish bla medium, dist SILT, little cla Olive back (5 medium SAN Dark yellowis subangular, r	Y 2/1), poorly sorted, subanguin, trace silt, trace fine gravel, ck (5GY 2/1), mottled (commondate, medium light gray), poorly, slight plasticity, dry, stiff and the silt, dry, loose h orange (10YR 6/6), poorly snedium SAND, little silt, dry, loose fine to medium grave it, some fine to medium grave	on, y sorted, orted, oose	SM ML SM SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm	
7															

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EI	PA Region 2				_				•		
PROJEC	T N	JMBER	: _16	54453				· · · · · · · · · · · · · · · · · · ·	BORING NUMBER:	MA-SB-	72			
PROJEC	T N	AME: E	PA-N	lartin Aaron					LOCATION: South Jerse	y Port				
SURFAC	EEL	EVATIO	ON: _	6.98	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOR	: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Rob Re	ch			
START:			12	2/13/2001 1:3	0:00	PM_			FINISH:	12/13/20	001 2:0	00:00 F	PM	
NORTHI	NG:		39	8301.4799	fee	t			EASTING:	318116.	2019	fee	et	
OEPTH BELOW GRADE (FT)	SAMPLE NUMBER	8-12 SAMPLE INTERVAL (FT)	©S SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"-6"	NVALUE	9. SAMPLE 9. RECOVERY (FT)	0-1 1-2 2-2-5 1-2 1-2 1-2 2-3 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2 1-2	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF WATER STA LAYERING] Olive back (5 medium to cogravel, dry, lo Dark yellowis subangular, redium grav Dark yellowis subangular, for subangular, for subangular, for subangular, redium grav Grayish brow subangular, redium grav Dark yellowis subangular, for su	h brown (10YR 4/2), moderate nedium SAND, little silt, trace el, dry, loose h brown (10YR 4/2), poorly some SAND, some silt, dry, loos wn (5YR 4/4), moderately some dium SAND, some silt, little	PATE FING, SY), SS, cangular, um cally sorted, fine to d, fine to orted, se - corted, se	MS MS MS MS MS MS MS MS MS MS MS MS MS M	O O O O O O O O O O O O O O O O O O O	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm — PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm —
- 10 11							2-4		(5Y 6/4), well sorted, subanguisit, trace fine gravel, moist, lo		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 12								1						

NOTES:

msl = mean sea level

SHEET 1 OF 1

										_				
CLIENT:			El	PA Region 2										`
PROJEC	T N	JMBER	: _16	54453					BORING NUMBER:	MA-SB-	75			
									LOCATION: South Jerse					
SURFAC	E EI	LEVATIO	ON: _	7.21	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOF						FOREMAN:					
									DRILLING EQUIPMENT					
									CH2M GEOLOGIST:					
									FINISH:					
NORTHI	NG:		39	98761.2648	fee	<u>:t</u>	· · · · · · · · · · · · · · · · · · ·		EASTING:	318318.	5965	fee	et_	
		(FT)					NO N		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (PT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
_	1	0-4	Soil			2.3	0-1	Moderate oliv subrounded,	re brown (5Y 4/4), well sorted, fine SAND, trace medium grav	vel, dry	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 1 - - 2							1-2.3	medium SAN	noderately sorted, subangular, D, some medium gravel, dry (of cinder, fly ash)	fine to NOTE:	SW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 3 4	2	4-8	Soil			1.5	0-1			-		0		
_	2	+0	3011			1.5		SAA				U		ppm; RAD(B)=40 cpm, (H)=40 cpm
5 -							1-1.5	Moderate yell subrounded,	owish brown (10YR 5/4), well fine SAND, trace silt, wet	sorted,	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
6 										-				_
- 7 - 8										-				-

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2											`
PROJEC	TN	JMBER	: _16	54453					BORING NUMBER:	MA-SB-	77				_
PROJEC	TN	AME: _E	PA-N	Martin Aaron					LOCATION: South Jerse	ey Port					_
SURFAC	EEI	EVATI	ON:	7.02	feet	msi			TOTAL DEPTH:	8.00	f∈	et bgs		****	_
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					***************************************	_
DRILLIN	G M	ETHOD	: _D	irect Push					DRILLING EQUIPMENT	: Simco 24	100				_
SAMPLI	NG N	/IETHOI	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojcied	h Winl	kler			_
START:			12	2/12/2001 2:2:	3:00	PM_			FINISH:	12/12/20	001 3:0	00:00 F	PM		-
NORTHI	NG:		39	98580.5931	fee	et			EASTING:	318312.	4344	fee	et		-
		. (FT)					NOIL		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS]
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYA	PID/FID READING	OTHER TESTING		
_ o	1	0-4	Soil			2.4	0-0.6		rell sorted, subrounded, medi e medium gravel, dry	um SAND,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=60 cpm, (H)=60 cpm]
1							0.6-2.4	Grayish oran subangular, i medium grav	ge pink (10R 8/2), moderately nedium to coarse SAND, little el	sorted, e silt, little	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=60 cpm, (H)=60 cpm	
2 3 4 5 6 7	2	4-8	Soil			2.9	0-2.9	Olive gray (5'	f 3/2), well sorted, subangula D, little silt, wet	r, fine to	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=60 cpm, (H)=60 cpm	

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2					-					
PROJEC	T NI	JMBER	:16	64453			·-		BORING NUMBER:	MA-SB-	78		· · · ·	
PROJEC	TN	AME: _E	EPA-N	Martin Aaron					LOCATION: South Jerse	y Port	···-			
SURFAC	EEI	EVATI	ON:	7.45	feet	msl			TOTAL DEPTH:	6.50	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	СТОР	R: Unit-Tech)				FOREMAN:					* *****
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push				· · · · · · · · · · · · · · · · · · ·	_ DRILLING EQUIPMENT:	Simco 24	100			
SAMPLI	NG N	/ETHO	D: <u>A</u>	cetate Liners					_ CH2M GEOLOGIST:	Rob Re	ch			- 110
START:			12	2/13/2001 10:	15:00	AM			FINISH:	12/13/20	001 11	:00:00	AM	
NORTHI	NG:		39	98489.034	fee	et .			_ EASTING:	318313.	6424	fe	et	
		(<u>L</u>		<u> </u>			N O		SOIL DESCRIPTION		ğ	Û M M	Γ	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION IANT GRAIN SIZE, SUBORDIN E WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ATE, DENSITY/COHESIVENES	ATE. ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
0	1	0-4	Soil		T	2.2	0-1	subangular,	own (5YR 4/4), moderately sort SILT and fine sand, trace fine of		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 1 — 1							1-2	Yellowish grafine SAND, s	ay (5Y 8/1), poorly sorted, suba some slit, little fine to coarse gra	ingular, avel, dry,	SM	o		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 2 -														_
— 3 -														
- 4	2	4-8	Soil			2.6	0-1.5		llowish brown (10YR 5/4), poor medium SAND and silt, dry, loc		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
5 -							1.5-2		llowish brown (10YR 5/4), poorl		sc	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
- 6		_					2-2.5	fine SAND, li Moderate yel	ittle clay, moist, medium dense llowish brown (10YR 5/4), poort fine SAND, little silt, wet, mediu	y sorted,	SM	0		ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2				-						
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-SB-	79			
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: South Jerse	y Port				
SURFAC	E E	EVATION	ON:	7.69	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech				,	FOREMAN:					
DRILLIN	G M	ETHOD	: _ D	irect Push					DRILLING EQUIPMENT	: Simco 24	100			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Rob Re	ch			
START:			12	2/13/2001 2:10	0:00	PM_			FINISH:	12/13/20	001 3:0	00:00 F	PM	
NORTHI	NG:		39	98359.1232	fee	<u>t</u>			EASTING:	318278.	5745	fee	et	
	~	L (FT)					NOIL		SOIL DESCRIPTION		MBOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	Æ	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOO	IATE IING,	GROUP SYMBOL	PID/FID READING	TESTING	
DEPTH GRA	SAMPL	SAMPL	SAMPL	BLOW 6"-6"-6"	N VALUE	SAMPL	SAMPL INTER\	•	TE, DENSITY/COHESIVENES	,,	nscs	PID/FI	OTHER	
_ 0	1	0-4	Soil			2.8	0-1	Pale yellowis subangular, f dry, loose	h brown (10YR 6/2), moderate ine SAND, some silt, trace fine	ely sorted, e gravel,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
1 -							1-2	Dark yellowis subangular, f moist, mediu	h brown (10YR 4/2), moderate ine SAND, some silt, trace fine m dense	ely sorted, e gravel,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ 2 							2-3	Dark yellowis subangular, f dense	h brown (10YR 4/2), moderate ine SAND, little silt, moist, me	ely sorted, dium	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 3 														_
 4	2	4-8	Soil			2.6	0-1	distinct, dark	y (5G 6/1), mottled (few, medii yellowish orange), moderately ne sand, slight plasticity, moist	sorted,	ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 5							1-3	fine SAND, so	(4/1), moderately sorted, subome silt, trace fine gravel, mois	angular, st,	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
6								medium dens	e	-				
- 7										1				-
										-				-
_ 8 l														

NOTES:

msl = mean sea level

SHEET 1 OF 1

NOTES:

mst = mean sea level

SHEET 1 OF 1

										-
CLIENT:		EPA Region 2								
PROJECT NU	MBER:				BORING NUMBER:					_
PROJECT NA	ME: EPA-	-Martin Aaron			LOCATION: Martin Aa					_
					TOTAL DEPTH:		eet bgs			
DRILLING CO	NTRACTO				FOREMAN:				,	_
DRILLING ME	THOD:!	Direct Push			DRILLING EQUIPMEN	IT: Simco 2400				_
SAMPLING M	ETHOD: _/	Acetate Liners			CH2M GEOLOGIST:	Wojciech Win	kler			_
START:		10/19/2001 8:00	0:00 AM		FINISH:	10/19/2001 8:	30:00 A	М		_
NORTHING: _		398593.5231	feet		EASTING:	318404.9155	fee	t		_
SAMPLE NUMBER	SAMPLE INTERVAL (FT)		N VALUE SAMPLE of RECOVERY (FT)	1.0 SAMPLE DESCRIPTION 1.1 INTERVAL (FT)	SOIL DESCRIPTION [COLOR, MOTTLING, SOIL DESCRIPTI PREDOMINANT GRAIN SIZE, SUBORE GRAIN SIZE WITH DESCRIPTORS, SO GRAIN SHAPE, PLASTICITY, MINERAL WATER STATE, DENSITY/COHESIVEN LAYERING] CONCRETE (NOTE: concrete pad) Black (N1), poorly sorted, subangular, m SAND, some fine gravel, little silt, dry (N appears to be fill)	DINATE DESTRING, OGY), USSS, U	O O PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm, (H)=30 cpm, (H)=30 cpm, (H)=30 cpm, (H)=30 cpm	
- 4 2 - 5 - 6 - 7	4-8 Soi	ii	1.5	0-0.5 0.5-1 1-1.5	SAA, mottled (, pale yellowish orange) (happears to be fill) BRICK (NOTE: red brick and gravel) Black (N1), well sorted, angular, fine to c GRAVEL, wet (NOTE: fibrous decompos debris)	oarse	0		PID(B)=0.6 ppm, (H)=0.0 ppm; RAD(B)=10 cpm, (H)=10 cpm PID(B)=0.6 ppm, (H)=0.0 ppm; RAD(B)=10 cpm, (H)10 cpm PID(B)=0.6 ppm, (H)=0.0 ppm; RAD(B)=10 cpm, (H)=0.0 ppm; RAD(B)=10 cpm, (H)=10 cpm, (H)=10 cpm	1

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:	EPA Region 2									
PROJECT NUMBER:	164453				BORING NUMBER:	MA-SB-8	B5			·····
PROJECT NAME: EPA	-Martin Aaron				LOCATION: Camarco					
SURFACE ELEVATION:	7.53 fee	t msl			TOTAL DEPTH:	8.00	f∈	et bgs		
DRILLING CONTRACTO					FOREMAN:					
DRILLING METHOD:	Direct Push				DRILLING EQUIPMENT	Simco 24	00			
SAMPLING METHOD: _	Acetate Liners				CH2M GEOLOGIST:	Rob Rec	:h			
					FINISH:			15:00 A	M	
NORTHING:	398322.0239 fe	et			EASTING:	318418.	7645	fee	et	
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT)	BLOW COUNTS 6"-6"-6" N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 1			0-0.5 0.5-3	subangular, fi gravel, dry, lo Olive back (5 SAND, little s debris) Dark yellowist sorted, subroumedium dens	Y 2/1), well sorted, subangula lit, dry, loose (NOTE: some bill, dry, loose (NOTE) and some bill orange (10YR 6/6), moderatinded, fine SAND and silt, mo	ely ist,	SW SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2										
PROJEC	T N	JMBER	:16	34453				· · · · · · · · · · · · · · · · · · ·	BORING NUMBER:	MA-SB-	96			· · · · · · · · · · · · · · · · · · ·
PROJEC	TN	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaror	Proper -	off Six	cth Stre	et	
SURFAC	E EI	LEVATIO	ON: _	5.79	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	l: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	NETHO	D: _A	cetate Liners			· · · · · · · · · · · · · · · · · · ·		CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			10	0/22/2001 10:0	00:00	AM			FINISH:	10/22/20	001 11	:00:00	АМ	ļ
NORTHI	NG:		39	98748.1704	fee	t			EASTING:	318857.	0096	fee	et	
		(£)					z O		SOIL DESCRIPTION		ğ	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (I	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	
┌ o	1	0-4	Soil			2	0-0.5	Grayish black	(N2), moderately sorted, SIL1	and fine	ML	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm,
<u> </u>							0.5-2	Grayish black	k (N2), mottled (many, fine, dis), moderately sorted, subround lt, some fine gravel, dry	tinct, led, fine	SM	0.5		(H)=40 cpm PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2									er 1 . <mark>- •</mark> 1 . in 1 . je	1				
<u> </u>	2	4-8	Soil			2	0-1	SAA, moist				0.5		PID(B)=5.0 ppm, (H)0.5 ppm; RAD(B)=40 cpm,
_								,		-				ppm; RAD(B)=40 cpm, (H)=40 cpm
— 5 -							1-2	Grayish black GRAVEL, so petroleum like	((N2), poorly sorted, subangula me silt, some fine gravel, wet (l e odor at 5ft)	ar, fine NOTE:	SM	0.5		PID(B)=5.0 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
 6										-				-
- 7														_
- 8										-				_

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2					-					
PROJEC	T NI	JMBER	:16	64453					BORING NUMBER:	MA-SB-	97			
PROJEC	TN	AME: _E	PA-M	Martin Aaron					LOCATION: Martin Aaro	n Proper -	off Six	kth Stre	et	
SURFAC	EEI	LEVATION	ON: _	5.89	feet m	ısl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR						FOREMAN:					
DRILLIN	G M	ETHOD	: <u>Di</u>	irect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	kler		
									FINISH:				<u>AM</u>	
NORTHI	NG:		39	98681.2242	feet				EASTING:	318854.	3253	fee	<u>:t</u>	
		(FT)					NOI		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE SAMPLE	RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN E WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALON ATE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (6	OTHER TESTING	
_ o	1	0-4	Soil		2	. (0-0.5	Medium ligh GRAVEL, dr	t gray (N6), well sorted, mediu	m	GP	0.5	 [PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
-						(0.5-1		noderately sorted, fine SAND,	some silt,	SP	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm,
- 1							1-2	Moderate br	own (5YR 4/4), mottled (many, ate brown), well sorted, fine SA	fine, ND, little	SP	0.5		(H)=40 cpm PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
– 2										-				
_										_				_
— 3 						İ				1				_
4	2	4-8	Soil			(D-0.5	Olive gray (5	Y 3/2), well sorted, fine SAND		SP	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
_						().5-1	Olive gray (5 moist	Y 3/2), well sorted, fine SAND	and clay,	SM	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
5 -						1	1-2		ay (5Y 7/2), mottled (many, fine sy), moderately sorted, fine SAI gravel, wet		SM	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
– 6										-				_
-										+				-
-7										-				-
-										-				-
_ 8									·					

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	T NI	JMBER:	: _16	34453			·····		BORING NUMBER:	MA-SB-	98			
PROJEC	TN	ME: _E	PA-N	fartin Aaron					LOCATION: Martin Aaro	n Proper -	off Six	dh Stre	et	
SURFAC	EEL	EVATIO	ON: _	5.84	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	NTRA	CTOR	: Unit-Tech				<u></u>	FOREMAN:					
DRILLIN	G MI	ETHOD:	. <u>Di</u>	rect Push					DRILLING EQUIPMENT	Simco 24	00			
SAMPLI	NG N	1ETHOI): <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	kler		
START:			10)/22/2001 12:4	1 5:00	PM			FINISH:	10/22/20	001 1:3	30:00 F	M	
NORTHI	NG:		39	98588.6621	fee	<u>t</u>			EASTING:	318853.	7257	fee	et	
		(FT)					Z O		SOIL DESCRIPTION		٦	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	IATE FING, SY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	
- 0 - 1 - 2 - 3 - 4 - 5	2	0-4	Soil			2.5	0-0.5 0.5-1.5 1.5-2	little fine gravangular gravi Grayish black grayish black some silt, little Moderate brotaint, moderate SAND and si	(N2), mottled (many, fine, dis), well sorted, subangular, fine e fine gravel, dry wn (5YR 3/4), mottled (many, te brown), well sorted, subangular, fine gravel, dry re brown (5Y 4/4), mottled (many, te brown), well sorted, fine gravel, dry	fine, jular, fine , iny, fine, ne	SM SP SM	0.5 0.5 0.5		PID(B)=0.9 ppm, (H)=0.5 ppm; RAD(B)=70 cpm, (H)=40 cpm PID(B)=0.9 ppm, (H)=0.5 ppm; RAD(B)=70 cpm, (H)=40 cpm PID(B)=0.9 ppm, (H)=0.5 ppm; RAD(B)=70 cpm, (H)=40 cpm PID(B)=0.9 ppm, (H)=0.5 ppm; RAD(B)=70 cpm, (H)=40 cpm PID(B)=1.2 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.2 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 7 - 7										_				
8 ¹			لـــــــــا				·							

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2								_		
PROJEC	T NL	IMBER	: <u>16</u>	4453					BORING NUMBER:	MA-SB-	106			
PROJEC	TNA	ME: E	PA-M	artin Aaron					LOCATION: Sixth Street	t				
SURFAC	E EL	EVATIO	ON: _	6.63	feet	msl			TOTAL DEPTH:	8.00	f∈	et bgs		
DRILLIN	G CC	ONTRA	CTOR	: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	T: Simco 24	100			
SAMPLI	NG N	ETHO	D: <u>Ac</u>	etate Liners					CH2M GEOLOGIST: _	Wojciec	h Winl	der		
START:			10	/22/2001 9:30	0:00	AM			FINISH:	10/22/20	001 10	:00:00	AM	
NORTHII	NG:		39	8707.9053	fee	t			EASTING:	318895.	0109	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION NAT GRAIN SIZE, SUBORDII WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	nate Rting, PGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 0 - 1 - 2 - 3 - 4 - 5	2	0-4	Soil			2.5	0-0.2 0.2-2 2-2.5 0-0.5 0.5-1.5	grayish black SAND, some Moderate brofaint, modera medium SAN SAA Grayish black gray), poorly little silt, som	(N2), mottled (many, fine, fa), poorly sorted, subangular, silt, little fine gravel, dry own (5YR 4/4), mottled (many, fine, fa), poorly sorted, subangular, medium (sorted, sorted,	, fine, angular, , dry	sw sw sm	0 0 0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 ppm, (H)=40 ppm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 7 - 8														-

NOTES:

msl = mean sea level

NOTES:

SOIL BORING LOG

SHEET 1 OF 2

													_		_
CLIENT:			Е	PA Region 2											
PROJEC	T N	JMBER	:16	64453					BORING NUMBER:	MA-SB-	-108				
PROJEC	TN	AME: _E	PA-N						LOCATION: Sixth Street						
SURFAC	E EL	EVATIO	ON: _	9.60	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		·	_
DRILLIN	G C	ONTRA	CTOF						FOREMAN:						_
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push				 	DRILLING EQUIPMENT	: Simco 24	400				_
									CH2M GEOLOGIST:						
START:			10	0/22/2001 8:20	0:00	AM	····		FINISH:	10/22/2	001 9:0	00:00 A	M		_
NORTH	NG:		39	98539.8106	fee	t			EASTING:	318892	.1235	fee	et	N-1	_
DEPTH BELOW C GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE 9. RECOVERY (FT)	SAMPLE DESCRIPTION 1.0-0 1.0-2.0 1.0-2.0	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF WATER STA LAYERING] ASPHALT Medium gray GRAVEL, dry Black (N1), m sorted, fine S thinly bedded	TTLING, SOIL DESCRIPTION TTLING, SOIL DESCRIPTIO INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE (N5), well sorted, angular, fin Nottled (, fine, faint, black), mo AND and fine gravel and silt, (NOTE: moderate yellowish, ell sorted, fine sand (SP), mo	NATE TING, GY), SS, ee	4 9 USCS GROUP SYMBOL	O O O PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
- 3 - 4	2	4-8	Soil			2.5	0-1.5	SAA, moist		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm	

bgs = below ground surface

msl = mean sea level

SHEET 2 OF 2

CLIENT	:		E	PA Region 2					_					
PROJE									BORING NUMBER:	MA-SB-	108			
PROJE	CT NA	ME: E	PA-N	Martin Aaron					LOCATION: Sixth Stree	t				
SURFA	CE EL	EVATION.	ON:	9.60	feet	msl			TOTAL DEPTH:	8.00	f∈	et bgs	<u> </u>	
DRILLIN	ig co	ONTRA	стог	R: Unit-Tech					FOREMAN:					
DRILLI	IG MI	ETHOD	: <u>D</u>	irect Push					DRILLING EQUIPMENT	T: Simco 24	400			
SAMPL	ING N	NETHO	D: <u>A</u>	cetate Liners					_ CH2M GEOLOGIST: _	Wojcied	h Wink	der		
START:			1	0/22/2001 8:2	0:00	AM			FINISH:	10/22/2	001 9:0	00:00	ΑM	
NORTH	ING:		3	98539.8106	fee	et			EASTING:	318892	.1235	fee	et	
		(FT)			Γ		Z O		SOIL DESCRIPTION		್ದ	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (F	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	OTTLING, SOIL DESCRIPTIC ANT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO ATE, DENSITY/COHESIVENE	NATE RTING, PGY),	USCS GROUP SYMBOL	PID/FID READING (PI	OTHER TESTING	
										-	1			
- 5										-	-			
Ì														
-							1.5-2	Pale brown ((5YR 5/2), poorly sorted, fine S	SAND, wet	SP	0		PID(B)=0.0 ppm, (H)=0.0 - ppm; RAD(B)=40 cpm, (H)=60 cpm
L 6							2-2.5		······					DID(D)=0 0 (U)=0 0
							2-2.3	wet, thinly be	k (N2), well sorted, fine SANE edded (NOTE: (4in) grayish br osed wood debris, wet)	and clay, own (5YR	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
-										-				-
							i							
├ 7										_				_
				}										
										-				_
L 8			<u> </u>	L		L							Ш	

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:	EPA Region 2						
PROJECT NUMBER:	164453		BORIN	IG NUMBER:	MA-SB-112		
PROJECT NAME: EP	A-Martin Aaron		LOCAT	TION: Martin Aaron	Proper		•
SURFACE ELEVATION	N : <u>6.93</u> feet	msl	TOTAL	. DEPTH:	12.00 fe	eet bgs	
DRILLING CONTRACT	FOR: Unit-Tech		FORE	MAN:			
DRILLING METHOD:	Direct Push		DRILLI	ING EQUIPMENT:	Simco 2400		
SAMPLING METHOD:	Acetate Liners		СН2М	GEOLOGIST:	Wojciech Win	kler	
START:	10/17/2001 3:30:00	РМ	FINISH	l:	10/17/2001 4:0	00:00 PN	Л
NORTHING:	398479.7164 fee	t	EASTII	NG:	318477.5657	feet	
O DEPTH BELOW GRADE (FT) GRADE (FT) GRADE (FT) SAMPLE INTERVAL (FT)		SAMPLE RECOVERY (FT) P	SOIL DE	SOIL DESCRIPTION, IN SIZE, SUBORDINA' SCRIPTORS, SORTINTICITY, MINERALOGY SITY/COHESIVENESS 4/4), poorly sorted, AND, some fine gravel chunks) chunks)	TE NG,). SP I, trace Poorly SW	READING (PPM)	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=60 cpm, (H)=60 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=60 cpm, (H)=60 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	T NI	JMBER	:16	4453					BORING NUMBER:	MA-SB-	118			
PROJEC	TN	AME: _E	PA-M						LOCATION: Martin Aaro					
SURFAC	E EI	EVATIO	ON: _	10.80	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOR	: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G M	ETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	100			
SAMPLI	NG N	IETHO	D : <u>Ac</u>	etate Liners					CH2M GEOLOGIST:	Wojcied	h Winl	der		·
START:			10	/18/2001 11:	45:00	AM (FINISH:	10/18/20	001 12	:30:00	РМ	
NORTHI	NG:		39	8446.2187	fee	t			EASTING:	318690.	1397	fee	et	
					T		7		SOIL DESCRIPTION			Γŝ	Γ	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTO
_ 0 _	1	0-4	Soil			1.5	0-1	Dark gray (N and silt, trace	B), well sorted, subangular, fir fine gravel	ne SAND	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm –
1 -							1-1.5	BRICK, dry (NOTE: red brick debris)	-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9	2	4-8 8-12	Soil Soil			1.5	0-1.5 0-2	Dark gray (N gray), well sc	NOTE: red brick debris) 3), mottled (many, fine, distincted, subrounded, fine to coar fine gravel, moist		SM	0.3		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm —
- - 10 - 11 - 12							2-2.5 2.5-3	fine sand, we	8), well sorted, interbedded, S t (NOTE: (3in) of dark gray (Norted, sandy silt (ML), wet)		ML	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2					-					
PROJEC	T NL	JMBER	:16	64453					BORING NUMBER:	MA-SB-	120			
PROJEC	TN	AME: E	PA-N	Martin Aaron				****	LOCATION: Martin Aaro	n Proper				
SURFAC	E EL	EVATIO	ON: _	8.76	feet	msl			TOTAL DEPTH:	8.00	f∈	et bgs		
DRILLIN	G C	ONTRA	CTOR	R: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>Di</u>	irect Push					DRILLING EQUIPMENT	: Simco 24	100			
SAMPLI	NG N	METHO	D: <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			10	0/16/2001 2:45	5:00	РМ			FINISH:	10/16/20	001 3:4	15:00 F	<u>М</u> _	
NORTH	NG:		39	98536.2185	fee	et			EASTING:	318715.	8159	fee	et_	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	/ALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN GRAIN SIZE GRAIN SHAI WATER STA	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO ITE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
DE	SAI	SAI	SAI	BL(ź	R B	A F	LAYERING]			S	l g	5	
	1	0-4	Soil			2.5	1-2.5	SAA, SILT (I drove down brick pieces; sample to in	3), poorly sorted, rounded, fine avel, dry NOTE: man made elastic mate o 8ft but miminal recovery, loc moved hole twice, same resulticate water level, redo hole w d split spoon)	erial (4ft) ose fill, lt, no	ML	0.5		PID(B)=3.0 ppm, (H)=0.5 ppm; RAD(B)=20 cpm, (H)=40 cpm
_ g	L				<u>L</u> _								\sqcup	

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			E	PA Region 2										
PROJEC	TNL	JMBER	:16	54453					BORING NUMBER: _	MA-SB-	120A	-		
PROJEC	TNA	AME: _E	PA-N	artin Aaron					LOCATION: Martin Aaı	ron Proper				
SURFAC	EEL	EVATIO	ON: _		feet	msl			TOTAL DEPTH:	8.00	fe	et bgs	3	
DRILLIN	G CC	ONTRA	CTOR	R: <u>Unit-Tech</u>				·- 	FOREMAN:					
DRILLIN	G ME	ETHOD:	: <u>Di</u>	rect Push				<u></u>	DRILLING EQUIPMEN	IT: Simco 24	00			
SAMPLI	NG N	1ETHOI	D: <u>Ac</u>	cetate Liners					CH2M GEOLOGIST: _	Cindy D	Sante			
									FINISH:					
NORTHI	NG:	**			fee	t			EASTING:			fee	et	
		(FT			T		N N		SOIL DESCRIPTION		ВОГ	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	DTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO PE, PLASTICITY, MINERAL NTE, DENSITY/COHESIVEN	PINATE RTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
F°	1	0-4	Soil			2.5	0-1	Dark gray (N gravel, dry	3), rounded, fine SAND, son	ne fine	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm
<u> </u>							1-2	Greenish gra	ny (5GY 6/1), well sorted, rou trace fine gravel, dry (NOTE	unded, i: brick)	ML	o		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm
- 2 -							2-2.5	and silt, trace	noderately sorted, rounded, e fine gravel, dry (NOTE: fibr st likely paper-found at 2ft bo	ous	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm
- 3 - - 4	2	4-8	Soil			1.5	0-1	Olive back (SY 2/1), mottled (common, m	nedium.	SM	0		PID(B)=0.0 ppm. (H)=0.0
-								distinct, olive	back), poorly sorted, fine SA gravel, dry (NOTE: brick del	AND and				PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm
- 5 -							1-1.5	SAA, wet				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=30 cpm, (H)=30 cpm
- 6						٠								_
- 7										-				_
										_				

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	T NU	IMBER:	16	4453					BORING NUMBER:	MA-SB-	122			· .
PROJEC	T NA	ME: E	PA-M	lartin Aaron					LOCATION: Martin Aaron	Proper				
SURFAC	E EL	EVATIO	ON: _	8.34	feet i	msl			TOTAL DEPTH:	12.00	fe	et bgs		
DRILLIN	G CC	NTRAC	TOR	: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G ME	THOD:	_Di	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	ETHOD): <u>Ac</u>	etate Liners					CH2M GEOLOGIST:	Wojciec	h Wink	ler		
START:			10	/16/2001 4:46	6:00 F	РМ			FINISH:	10/16/20	001 6:0	0:00 F	M	
NORTHI	NG:		39	8561.7639	feet	t .			EASTING:	318773.	1533	fee	et	
_		(FT)					NO.		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
- 0					· · · ·									
-	1	0-4	Soil			2	0-1	medium, dist	own (5Y 5/6), mottled (commo inct, light olive brown), poorly s nedium SAND and medium gra	orted,	SP	0.5		PID(B)=1.0 ppm, (H)=0.5 ppm; RAD(B)=20 cpm, (H)=20 cpm
- 1							1-1.5	Grayish gree	n (5G 5/2), SILT, dry, stiff		ML	0.5		PID(B)=1.0 ppm, (H)≈0.5 ppm; RAD(B)=20 cpm,
- 2							1.5-2	Black (N1), w fine to mediu	vell sorted, medium SAND and m gravel, dry	silt, trace	SP	0.5		(H)=20 cpm – PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=20 cpm, — (H)=20 cpm
_ _ 3										-				-
— 4 -	2	4-8	Soil			2.5	0-1	SAA		-		0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 5 -							1-2	fine SAND, s	ry (5Y 7/2), well sorted, subroup ome silt, moist, thinly bedded (ery pale blue (5B 8/2))		SP	0.5		PiD(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6 -							2-2.5	Very pale blu sand, moist	e (5B 8/2), well sorted, SILT, lif	ttle fine	ML	0.5		PJD(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpmm, (H)=40 cpm
- 7						:]				
- 8 - - 9	3	8-10	Soil			3.5	0-0.5 0.5-3.5		ell sorted, medium SAND and m gravel, moist 3), SILT, wet	silt, trace	SP ML	0.5 0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 10										-				-
_ 11 11										-				
- 12					L									

NOTES:

msl = mean sea level

SHEET 1 OF 1

Color Colo	PROJECT NUMBER:													<u> </u>		, , e, ,
COATION: Martin Aaron Froper	PROJECT NAME: EPA-Martin Aaron LOCATION: Martin Aaron Proper	CLIENT:	:		EF	PA Region 2				····	•					
SURFACE ELEVATION: 8.11 feet ms FOREMAN: FOREMAN: SIMO 2400 SIM	SURFACE ELEVATION:	PROJEC	CT N	UMBER	: _16	34453					BORING NUMBER:	MA-SB-	124			
DRILLING CONTRACTOR: Unit-Tech Driet Push DRILLING GOUIPMENT: Simoo 2400	DRILLING CONTRACTOR: Unit-Tech FOREMAN: DRILLING EQUIPMENT: Simoz 2400	PROJEC	CT NA	AME: _i	EPA-M	lartin Aaron			· · · · · · · · · · · · · · · · · · ·		LOCATION: Martin Aaron	n Proper				
DRILLING METHOD: Dried Push DRILLING EQUIPMENT: Simco 2400	DRILLING METHOD: Direct Push DRILLING EQUIPMENT: Simco 2400	SURFAC	CE EI	LEVATI	ON: _	8.11	feet	msl			TOTAL DEPTH:	8.00	fe	eet bgs	<u> </u>	
START: 10/17/2001 8:20:00 AM	START: 10/17/2001 8:20:00 AM	DRILLIN	IG C	ONTRA	CTOR	: Unit-Tech					FOREMAN:					
START: 10/17/2001 8:20:00 AM	START: 10/17/2001 8:20:00 AM	DRILLIN	IG MI	ETHOD	: <u>Di</u>	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
NORTHING: 398497,9374 feet EASTING: 318772,9534 feet	NORTHING: 398497,9374 feet EASTING: 318772,9534 feet	SAMPLI	NG N	NETHO	D: <u>Ac</u>	etate Liners					CH2M GEOLOGIST:	Wojciec	h Win	kler		
SOIL DESCRIPTION Soil Standard Soil Description Soil Descrip	SOIL DESCRIPTION Soil Standard Soil Standard	START:			10)/17/2001 8:2	0:00	AM			FINISH:	10/17/20	001 9:	30:00 A	\M_	
Color Colo	Color Colo	NORTHI	NG:		39	98497.9374	fee	et	· · · · · · · · · · · · · · · · · · ·		EASTING:	318772.	9534	fee	∋t	
CLUCR MOTHER COLO	Substitution Subs			F.			T	Γ	z		SOIL DESCRIPTION		7	Ĭ M M		COMMENTS
Dusky yellow, 157 (64), mottled (many, fine, faint, day) 2-3 Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry 3.5 3.5 3.6 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.1 3.9 3.1 3.1 3.1 3.2 3.2 3.3 3.4 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7	Dusky yellow, 157 (64), mottled (many, fine, faint, day) 2-3 Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry 3.5 3.5 3.6 3.7 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.1 3.9 3.1 3.1 3.1 3.2 3.2 3.3 3.4 3.5 3.5 3.5 3.6 3.6 3.7 3.7 3.7 3.7 3.7 3.7	DEPTH BELOW GRADE (FT)	SAMPLE NUMBER		SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTIC INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF WATER STA	ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOC	IATE FING, GY),	USCS GROUP SYMB	PID/FID READING (P	OTHER TESTING	
Dusky yellow, 157 (64), mottled (many, fine, faint, downward)	Dusky yellow (SY 64), moderately sorted, rounded, fine, faint, dusky yellow, moderately sorted, rounded, fine, SAND, little fine gravel, little fine to coarse sand, dry PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	O		T	10.11			13	104				LOW	104		DID(D)
2-3 Black (N1), poorly sorted, subangular, fine SAND, ilitle fine gravel, little silt, dry 3.5 0-0.5 SAA, moist 0.5-2 Moderate brown (5YR 4/4), mottled (many, fine, faint, moderate brown), poorly sorted, rounded, fine SAND, one fine to coase gravel, little silt, wet, thinky bedded (NOTE: 2in dusky yellow green (SGY 5/2) silty sand, wet) 2-2.5 Black (N1), poorly sorted, medium SAND and fine gravel, wet gravel, gr	2.3 Black (N1), poorly sorted, subangular, fine SAND, SW 0 PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm	-		0.4	Soll					dusky yellow), moderately sorted, rounded,	fine	300	0.1		ppm; RAD(B)=40 cpm, (H)=40 cpm
Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry 3.5 0-0.5 SAA, moist 0.5-2 Moderate brown (5YR 4/4), mottled (many, fine, faint, moderate brown), poorly sorted, rounded, fine SAND, some fine to coarse gravel, little silt, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) silty sand, wet) SW 0 PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	Black (N1), poorly sorted, subangular, fine SAND, little fine gravel, little silt, dry 3.5 0-0.5 SAA, moist 0.5-2 Moderate brown (5YR 4/4), mottled (many, fine, faint, moderate brown), poorly sorted, rounded, fine SAND, some fine to coarse gravel, little silt, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) silty sand, wet) SW 0 PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	- 1										-				_
A 2 4-8 Soil 3.5 0-0.5 SAA, moist 0 PID(B)=0.0 ppm, (H)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm (H)=40 cpm 0.5-2 Moderate brown (SYR 4/4), mottled (many, fine, faint, moderate brown), poorly sorted, rounded, fline SAND, some fine to coarse gravel, little still, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) slity sand, wet) SW 0 PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm (H)=40 cp	3.5 0-0.5 SAA, moist 0 PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm 0.5-2 Moderate brown (SYR 4/4), mottled (many, fine, faint, moderate brown), poorly sorted, rounded, fline SAND, some fine to coarse gravel, little still, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) slity sand, wet) SW 0 PID(B)=0.0 ppm, RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=40 cpm PID(B)=0.0 ppm, RAD(B)=0.0	- - 2							2-3	Black (N1), p	oorly sorted, subangular, fine	SAND,	sw	0		PtD(B)=0.0 ppm, (H)=0.0
2 4-8 Soil 3.5 0-0.5 SAA, moist 0 PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm (H)=40 cpm Cpm; RAD(B)=40 cpm, (H)=40 cpm Cpm; RAD(B)=	2 4-8 Soil 3.5 0-0.5 SAA, moist 0 PID(B)=0.0 ppm; (H)=0.0 ppm; (H)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm faint, moderate brown), poorly sorted, rounded, fine SAND, some fine to coarse gravel, little silt, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) slity sand, wet) 2-2.5 Black (N1), poorly sorted, medium SAND and fine gravel, wet 2.5-3.5 Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, formeded, SUT red for the fact of the sorted, considered, pale yellowish green), well sorted, formeded, SUT red for the sorted, considered, pale yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, fine yellowish green), well sorted, yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, the yellow yellow green) yellow yellow green (10GY 7/2), mottled (many, fine, th	- 3								little fine grav	vel, little silt, dry					ррт; КАЦ(в)=40 срт, (Н)=40 срт
SAA, moist SAA, moist SAA, moist SAA, moist SAA, moist SW O PID(B)=0.0 ppm; RAD(B)=40 cpm (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm SW O PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	SAA, moist SAA, moist SAA, moist SAA, moist SAA, moist SW O PID(B)=0.0 ppm; RAD(B)=40 cpm (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm SW O PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	_										_				
Faint, moderate brown), poorly sorted, rounded, fine SAND, some fine to coarse gravel, little silt, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) slity sand, wet) Black (N1), poorly sorted, medium SAND and fine gravel, wet Black (N1), poorly sorted, medium SAND and fine gravel, wet Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, fine, faint, pale yellowish green, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, gravel, wetler, gravel,	Faint, moderate brown), poorly sorted, rounded, fine SAND, some fine to coarse gravel, little silt, wet, thinly bedded (NOTE: 2in dusky yellow green (5GY 5/2) slity sand, wet) Black (N1), poorly sorted, medium SAND and fine gravel, wet Black (N1), poorly sorted, medium SAND and fine gravel, wet Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, fine, faint, pale yellowish green, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, wetler, gravel, gravel, wetler, gravel,	— 4	2	4-8	Soil			3.5	0-0.5	SAA, moist				0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
Black (N1), poorly sorted, medium SAND and fine gravel, wet 2.5-3.5 Black (N1), poorly sorted, medium SAND and fine gravel, wet Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, fine, faint, pale yellowish green), well sorted, (H)=40 cpm, (H)=4	Black (N1), poorly sorted, medium SAND and fine gravel, wet 2.5-3.5 Black (N1), poorly sorted, medium SAND and fine gravel, wet Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, fine, faint, pale yellowish green), well sorted, (H)=40 cpm, (H)=4	- 5							0.5-2	faint, modera SAND, some thinly bedded	te brown), poorly sorted, round fine to coarse gravel, little silt, (NOTE: 2in dusky yellow gre	ded, fine , wet, _	SW	0		ppm; RAD(B)=40 cpm,
2.5-3.5 Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, rounded SULT get flows or green, well sorted, (H)=40 cpm.	2.5-3.5 Pale yellowish green (10GY 7/2), mottled (many, fine, faint, pale yellowish green), well sorted, rounded SULT get flows or green, well sorted, (H)=40 cpm.	6							2-2.5		oorly sorted, medium SAND ar	nd fine	sw	0		ppm; RAD(B)=40 cpm.
		- - 7							2.5-3.5	Pale yellowis	le yellowish green), well sorted	t,	ML.	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:			EI	PA Region 2										
PROJEC	TNU	JMBER:	16	34453	· · · · · ·				BORING NUMBER:	MA-SB-	130			
PROJEC	T NA	ME: _E	PA-N	fartin Aaron					LOCATION: Martin Aaror	n Proper				
SURFAC	E EL	EVATIO	ON: _	6.46	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs		
DRILLIN	G CC	NTRA	CTOR	: Unit-Tech					FOREMAN:	· ,				
DRILLIN	G ME	THOD:	Di	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	ETHO): <u>A</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			10)/17/2001 <u>11:</u>	30:00) AM			FINISH:	10/17/20	01 12	:00:00	PM	
NORTHI	NG:		39	98520.1999	fee	et .			EASTING:	318833.	9259	fee	∋t	
OEPTH BELOW 1	SAMPLE NUMBER	8+ SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"		SAMPLE RECOVERY (FT)	NOIT	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI WATER STA LAYERING] Olive gray (5 sand, some i material—wo	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG ITE, DENSITY/COHESIVENES Y 3/2), poorly sorted, SILT and ine gravel, dry (NOTE: 0-1.5ft) od and root debris) yell sorted, SILT and fine to coathinly bedded (NOTE: 10YR 5 lowish brown, sandy silt (ML), yell sorted, SILT, moist, soft	N, IATE FING, GY), SS, I fine organic	ML WILL MALE MARCH SYMBOL	0.4 0.4 0.4 0.4	OTHER TESTING	PID(B)=0.4 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=2 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm - PID(B)=17 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm,
- 8 - 9 - 10	3	8-12	Soil	-			0-1	SAA, wet Dark gray (N	3), well sorted, SILT, wet, soft		ML	0.4		PID(B)=10 ppm, (H)=0.4 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 11 - 12														

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:				PA Region 2										
PROJECT									BORING NUMBER:	MA_SR_	131			
									LOCATION: Martin Aaro					· · · · · · · · · · · · · · · · · · ·
									TOTAL DEPTH:			et bgs		
			_						FOREMAN:					
				rect Push					DRILLING EQUIPMENT:					
									CH2M GEOLOGIST:					
									FINISH:					
									EASTING:			fee		
												r -	·	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	IATE FING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
L 0 L	1	0-4	Soil		т—	2	0-1	Dark vellowis	th orange (10YR 6/6), well sor	ted, fine	SP	0	T-	PID(B)=0.0 ppm, (H)=0.0
- 1									fine gravel, moist	_				ppm; RAD(B)=40 cpm, (H)=60 cpm
- 1 - 2							1-2	Dark gray (N silt, little fine	3), moderately sorted, fine SA gravel, dry	ND, some	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
- 3 - 4 - 5 - 6	2	4-8	Soil			3	0-0.5 0.5-1.5 1.5-2	Some fine gra Dark reddish fine, faint, da subangular, f gravel, moist	brown (10R 3/4), mottled (corrk reddish brown), well sorted ine to coarse SAND and silt, t	nmon, race fine	SM SM SP	0.3 0.3		PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=10 cpm, (H)=10 cpm — PID(B)=0.0 ppm, (H)=0.3 ppm; RAD(B)=10 cpm, — (H)=10 cpm PID(B)=0.0 ppm; RAD(B)=10 cpm, (H)=0.0 ppm; RAD(B)=10 cpm, (H)=10 cpm
7 8 9 10 11	3	8-12	Soil			3	0-3	Black (N1), v clay, wet	ery well sorted, well rounded,	SILT and	мн	5		PID(B)=0.0 ppm, (H)=5.0 ppm; RAD(B)=20 cpm, (H)=20 cpm —

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			<u>E</u> F	PA Region 2	·									
PROJEC	TNU	JMBER:	16	34453					BORING NUMBER:	MA-SO-	201			
PROJEC	T NA	ME: <u>E</u>	PA-M	lartin Aaron					LOCATION: Martin Aaron	Proper				
SURFAC	E EL	EVATIO	N: _	10.53	feet	msł			TOTAL DEPTH:	8.00	fe	eet bgs		
DRILLIN	G CC	ONTRAC	CTOR	: Unit-Tech					FOREMAN:					
DRILLIN	G ME	THOD:	Di	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG M	IETHOL): <u>Ac</u>	cetate Liners					CH2M GEOLOGIST:	Wojciec				
START:			10)/17/2001 9:45	5:00 <i>i</i>	AM			FINISH:	10/17/20	01 11	:00:00	АМ	
NORTHII	NG: .		39	8439.0105	fee	t			EASTING:	318785.	754	fee	et	
		(FT)					N O		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VÁLUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN, WITH DESCRIPTORS, SORT PE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, IY),	USCS GROUP SYMBOL	PID/FID READING (P	OTHER TESTING	
- o [1	0-4	Soil			2.5	0-0.75		h orange (10YR 6/6), well sorto dium SAND, dry	ed,	SP	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40cpm
1							0.75-2.5	Black (N1), p gravel, dry (N elastic white	oorly sorted, medium SAND ar IOTE: 2 ft found 3-inch thick pie solid substance)	nd fine ece of	SW	0.5		PID(B)=100 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - 3 - 4 - 5 - 6	2	4-8	Soil				0-1 1-2 2-3	fine gravel, so inches) of yel	3), poorly sorted, coarse SAND ome silt, wet (NOTE: thin bed (lowish brown, organic silt (ML) oorly sorted, medium SAND an silt (NOTE: 6 ft organic silt, vis	3) -	sw	0.5		PID(B)=20 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 ppm PID(B)=60 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=60 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ 7 8										-				_

NOTES:

msl = mean sea level

SHEET 1 OF 2

CLIENT:			EP	A Region 2										
PROJEC	TNU	IMBER:	164	1453					BORING NUMBER:	MA-SO-	-202			· · · · · · · · · · · · · · · · · · ·
PROJEC	TNA	ME: <u>E</u>	PA-Ma	artin Aaron					LOCATION: Ponte Prop	erty				
SURFAC	E EL	EVATIO)N:	8.19	feet	msl			TOTAL DEPTH:	16.00	fe	et bgs		
DRILLIN	G CC	NTRAC	CTOR:						FOREMAN:					
DRILLIN	G MI	THOD:	Dir	ect Push					DRILLING EQUIPMENT	r: Simco 24	100			
									CH2M GEOLOGIST: _					
									FINISH:					
NORTHI	NG:		398	3256.3674	fee	t			EASTING:	318719.	.3708	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTIO INT GRAIN SIZE, SUBORDIR WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
L	Ś	δ	δ	B .	z	S R	% <u>Z</u>	LATERING			5	Δ.	0	
「° [1	0-4	Soil			2.3	0-0.5	Black (N1), w and silt, dry	ell sorted, subrounded, medi	um SAND	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
-							0.5-1	Moderate red GRAVEL, dry	(5R 4/6), well sorted, angula	r, medium	GP	5		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
- 1							1-2.3	Pale yellowish subrounded,	h brown (10YR 6/2), well sort fine SAND, dry	ed,	SP			PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=60 cpm
- 2 - 3 - 4 - 5 - 6 - 7	2	4-8	Soil			3.1	0-2.1 2.1-3	medium to co gravel, dry	ay (5Y 5/2), well sorted, subro arse SAND and clay, little me the orange (10YR 6/6), well sor fine to medium SAND, trace s	edium -	SC	5		PID(B)=2.0 ppm, (H)=5.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=2.0 ppm, (H)=5.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 8 - — 9	3	8-12	Soil			2.7	0-2.7	SAA		-		5		PID(B)=2.0 ppm, (H)=5.0 ppm; RAD(B)=40 cpm, (H)=60 cpm

NOTES:

msl = mean sea level

SHEET 2 OF 2

		,												
CLIENT:			E	PA Region 2										
PROJEC	T NŁ	JMBER	: _16	64453					BORING NUMBER: _	MA-SO-	-202			
PROJEC	TNA	ME: E	PA-N	fartin Aaron					LOCATION: Ponte Prop	perty				
SURFAC	EEL	EVATIO	ON: _	8.19	feet	msl			TOTAL DEPTH:	16.00	fe	et bgs	<u> </u>	····
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:					
DRILLIN	G MI	ETHOD	: _D	irect Push					DRILLING EQUIPMEN	T: Simco 24	100			
SAMPLII	NG N	IETHO	D: _A	cetate Liners					CH2M GEOLOGIST: _	Wojcied	h Winl	kler		
START:			12	2/14/2001 8:00	00:00	AM			FINISH:	12/14/20	001 9:3	30:00 A	<u>M</u>	
NORTHI	NG:		39	98256.3674	fee	t			EASTING:	318719.	3708	fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOIPE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENI	INATE RTING, DGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 10 - 11 - 12 - 13 - 14 - 15	4	12-16	Soil			3.5	0-0.5 0.5-3.5	prominent, ye	oarse gravel wn (5YR 4/4), mottled (man) ellowish gray), well sorted, su LAY and silt, wet		CL	7		PID(B)=2.0 ppm, (H)=7.0 ppm; RAD(B)=40 cpm, (H)=60 cpm PID(B)=2.0 ppm, (H)=7.0 ppm; RAD(B)=40 cpm, (H)=60 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			El	PA Region 2										
PROJEC	T N	JMBER	: _16	54453					BORING NUMBER:					
PROJEC	T N	AME: _E	PA-N	lartin Aaron					LOCATION: Martin Aaron	n Proper -	off Six	th Stre	et	
SURFAC	E El	EVATIO	ON: _	5.81	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	: Unit-Tech					FOREMAN:					
DRILLIN	G M	ETHOD:	: <u>Di</u>	irect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	METHOL	D: <u>A</u>	cetate Liners			 -		CH2M GEOLOGIST:	Wojciec	h Wink	der		
									FINISH:				AM	
NORTH	NG:		39	98404.2711	fee	<u>t </u>			EASTING:	318847.	6152	fee	et	
ELOW E (FT)	VUMBER	SAMPLE INTERVAL (FT)	ГҮРЕ	UNTS		RY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC	SOIL DESCRIPTION OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT	IATE	GROUP SYMBOL	PID/FID READING (PPM)	TESTING	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE	GRAIN SHAF	PE, PLASTICITY, MINERALOC TE, DENSITY/COHESIVENES	GY),	USCS GR	PID/FID F	OTHER T	
- 0 -	1	0-4	Soil			2	0-1	Black (N1), p little fine grav	oorly sorted, subangular, fine rel, dry	SAND,	SP	0		PID(B)=0.5 ppm, (H)=0.0 ppm; RAD(B)=100 cpm, (H)=30 cpm
1 - 2							1-2	fine, faint, ve	inge (10YR 8/2), mottled (com ry pale orange), moderately so ine SAND, little fine gravel, dr	orted,	SP	0		PłD(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=80 cpm, (H)=30 cpm
- - 3														_
— 4 –	2	4-8	Soil			2	0-1.5	Dark gray (N medium grav	3), poorly sorted, fine SAND ar el, dry	nđ	sw	0.5		PID(B)=1 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
 5							1.5-2	Black (N1), w	rell sorted, rounded, SILT, wet e odor at 5.5ft)	(NOTE:	ML	0.5		PID(B)=1 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
6 7										-				
- 8					<u></u>									

NOTES:

msl = mean sea level

SHEET 1 OF 1

								·							_
CLIENT:			El	PA Region 2											
PROJEC	T N	JMBER	: _16	34453					BORING NUMBER:	MA-SO-	-204				_
PROJEC	T N	AME: _E	PA-N	Martin Aaron					LOCATION: Camarco, S	South of Pr	operty				_
SURFAC	E El	EVATION	ON:	7.83	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs		· · · · · · · · · · · · · · · · · · ·	_
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech					FOREMAN:				_		_
DRILLIN	G M	ETHOD	: <u>D</u>	irect Push					DRILLING EQUIPMENT	r: Simco 24	100				_
SAMPLI	NG N	летноі	D: _A	cetate Liners				·	CH2M GEOLOGIST:	Wojcied	h Wink	der			_
START:			12	2/17/2001 8:5	5:00	АМ			FINISH:	12/17/2	001 9:2	20:00 /	<u>M</u> _		_
NORTHI	NG:		39	98199.1739	fee	et	·	"	EASTING:	318596	4917	fee	et_		
		L (FT)					NOIT		SOIL DESCRIPTION		SYMBOL	(PPM)		COMMENTS]
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	TTLING, SOIL DESCRIPTION TO GRAIN SIZE, SUBORDIE WITH DESCRIPTORS, SOR E, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE ITING, IGY),	USCS GROUP SY	PID/FID READING	OTHER TESTING		
— 0 -	1	0-4	Soil	,	T .	2.4	0-4	Moderate oliv subangular, r medium grav	e brown (5Y 4/4), poorly sort nedium SAND, some fine gra el, dry	ed, avel, little	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm]
— 1 - — 2 -										- - -				- -	
3 4	2	4-8	Soil			2.9	0-2	SAA, moist		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
- 5 - 6										-				- (n)=40 cpm	
- - 7										-				<u>-</u>	
8 9	3	8-12	Soil				0-4	Moderate oliv subrounded,	e brown (5Y 4/4), well sorted fine SAND, some silt, wet	, -	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm -	
- 10							,			-				-	
 11 										-					
- 12		L		l	L_		L,.	L			L		L.,		J (

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			El	PA Region 2	· · · · · · · · · · · · · · · · · · ·			_					
PROJEC	TNU	JMBER	: _16	34453			·	BORING NUMBER:	MA-SO	-206			
PROJEC	TN	AME: _E	PA-M	Martin Aaron				_ LOCATION: Camarco	Parking Lot	, South	End_		
SURFAC	E EL	EVATIO	ON: _	6.49	feet m	sl		_ TOTAL DEPTH:	12.00	fe	et bgs	<u> </u>	
DRILLIN	G C	ONTRA	CTOF	R: Unit-Tech				FOREMAN:					
DRILLIN	G MI	ETHOD	: <u>D</u>	irect Push				DRILLING EQUIPME	NT: Simco 2	400			
SAMPLI	NG N	NETHO	D: <u>A</u>	cetate Liners				_ CH2M GEOLOGIST:	Wojcied	h Win	kler		
START:			12	2/17/2001 7:4	0:00 AN	1		FINISH:	12/17/2	001 8:0	05:00 A	MΑ	
NORTHI	NG:		39	98260.5719	feet			EASTING:	318405	.9555	fee	et .	
			1			1		SOIL DESCRIPTION		Τ.	€	T	COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE SAMPLE	RECOVERY (FT) SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHA	OTTLING, SOIL DESCRIPT ANT GRAIN SIZE, SUBOR E WITH DESCRIPTORS, SO PE, PLASTICITY, MINERAI ATE, DENSITY/COHESIVE	DINATE ORTING, LOGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
1	1	0-4	Soil	6				v (5Y 6/4), well sorted, subr AND, some fine gravel, littl		sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - 3 - 4 - 5	2	4-8	Soil		2	.4 0-4	subrounded	sh orange (10YR 6/6), well fine to medium SAND, me oist (NOTE: 2in layer of clay	dium _	SP	O		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6 - 7 - 8	3	8-12	Soil			0-4	SAA	<u>u</u>	-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm –
- 10 - 11 - 12									- - - -				

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC									BORING NUMBER:	MA-SO-	207			
PROJEC	TN	AME: _E	PA-M						LOCATION: Martin A			dh Stre	et	
SURFAC	EE	EVATIO	ON: _	6.46	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>Di</u>	rect Push					DRILLING EQUIPME	NT:				
SAMPLI	NG N	/ETHO	D: <u>A</u> c	etate Liners					CH2M GEOLOGIST:					
START:			10)/22/2001 1:3	0:00	PM_			FINISH:	10/22/20	001 11	:05:00	AM	
NORTHI	NG:		39	98327.1455	fee	t			EASTING:	318843.		fee	et	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	NVALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMIN, GRAIN SIZE GRAIN SHAI	SOIL DESCRIPTION OTTLING, SOIL DESCRIPT ANT GRAIN SIZE, SUBOR WITH DESCRIPTORS, SO PE, PLASTICITY, MINERAL TE, DENSITY/COHESIVE	DINATE ORTING, LOGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
	2	0-4	Soil			2.6	0-0.5 0.5-1.5 1.5-2.5 0-0.5 0.5-1.5	subrounded, dry Moderate yet rounded, fine Light olive br SILT, moist SAA Moderate yel rounded, fine	th brown (10YR 4/2), mottle rk yellowish brown), moder fine SAND and silt, some followish brown (10YR 5/4), very sand and silt, moist own (5Y 5/6), well sorted, respectively. The sand silt, wet sand silt, wet sand silt, wet sand silt, wet sand silt, wet sand silt, wet sand silt, wet sand silt, sand fine sand silt, san	rately sorted, fine gravel, well sorted, rounded,	SM SM ML	0.5 0.5 0.5 0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=20 cpm, (H)=40 cpm
L 8				· :										

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:	_		EF						-					-	
PROJEC	T NI	JMBER	:16	4453				· · · · · · · · · · · · · · · · · · ·	BORING NUMBER: _	MA-SO	-208				
									LOCATION: Everett Str						
									TOTAL DEPTH:						
ORILLIN	G C	ONTRA	CTOR						FOREMAN:						
									DRILLING EQUIPMEN						
									CH2M GEOLOGIST: _						
									FINISH:						
NORTHI	NG:		39	98837.736	fee	t			EASTING:	318693	.092	fee	et		
I		(FT)					N O		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMIN GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SOI PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVEN	INATE RTING, OGY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING		
- o	1	0-4	Soil			2	0-0.5	Light gray (N GRAVEL, dr	7), well sorted, angular, med	lium	GP	0.5		PID(B)=0.5 ppm, (H)=0. ppm; RAD(B)=40 cpm, (H)=40 cpm	5
- - 1							0.5-2	gravel, dry, t yellowish ora	nottled (many, fine, faint, blangular, fine SAND and silt and hinly bedded (NOTE: (3in) pange (10YR 8/6) not mottled, bunded, silt (ML), dry)	nd fine ale -	SM	0.5		PID(B)=0.5 ppm, (H)=0. ppm; RAD(B)=40 cpm, (H)=40 cpm	5 -
- 2 - - 3										-					
- 4 -	2	4-8	Soil			2	0-1.5	Black (N1), n sorted, subar gravel	nottled (many, fine, faint, blac ngular, fine SAND and silt an	ck), poorly d fine	SM	0.5		PID(B)=0.5 ppm, (H)=0.5 ppm; RAD(B)=40 cpm, (H)=40 cpm	5
- 5 -							1.5-3	Dark yellowis	sh brown (10YR 4/2), mottled	- (many,	SP	0.5		PID(B)=0.5 ppm, (H)=0.	5
- 6 -								fine, faint, da rounded, fine	rk yellowish brown), well sort	ted, -				ppm; RAD(B)=40 cpm, (H)=40 cpm	1
- 7 -										-					
– 8 '	·						· · · · · · · · · · · · · · · · · · ·				L	·	لــــا		

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	TN	JMBER	:16	34453				· · · · · · · · · · · · · · · · · · ·	BORING NUMBER:	MA-SO-2	209			
PROJEC	TN	AME: _E	PA-M	lartin Aaron					LOCATION: Everett Stre	et				
SURFAC	E EL	EVATIO	ON: _	6.92	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G Mi	ETHOD:	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	00			
SAMPLI	NG N	NETHO) : <u>A</u> c	etate Liners		,			CH2M GEOLOGIST:	Wojciech	<u>n Winl</u>	kler		
START:			10)/22/2001 2:2	0:00	PM			FINISH:	10/22/20	01 3:	10:00 F	M	
NORTH	NG:		39	8849.458	fee	<u>t</u>		-	EASTING:	318817.	595	fee	et	
		(FT)					NOI		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR' PE, PLASTICITY, MINERALON TE, DENSITY/COHESIVENE	IATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
_ 0 _	1	0-4	Soil			2	0-1	rounded, fine	rn (5YR 3/2), moderately sorte SAND and silt, little fine grave of medium gravel (4in))	d, el, dry	SM	0.6		PID(B)=0.6 ppm, (H)=0.6 ppm; RAD(B)=40 cpm, (H)=40 cpm
− 1		·					1-2	Dark yellowis fine, faint, da SAND, dry	th orange (10YR 6/6), mottled rk yellowish orange), well sort	(many, ed, fine	SP	0.6		PID(B)=0.6 ppm, (H)=0.6 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - 3 -														-
— 4 - — 5	2	4-8	Soil			3	0-2	Dark yellowis rounded, fine	h brown (10YR 4/2), well sorte SAND, moist	ed,	SP	0.6		PID(B)=0.6 ppm, (H)=0.6 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6							2-3		gray (N4), mottled (many, fine gray), poorly sorted, fine SAN gravel, wet	, .u., .	SM	0.6		PID(B)=0.6 ppm, (H)=0.6 ppm; RAD(B)=40 cpm (H)=40 cpm
7 - 8										-				-

NOTES:

msl = mean sea level

SHEET 1 OF 1

														·····	
CLIENT:			EP	A Region 2											
PROJEC	T NU	JMBER:	16	4453					BORING NUMBER:	MA-SO-	210				
PROJEC	T NA	ME: E	PA-M	artin Aaron		<u>-</u> .			LOCATION: Junkyard						—
SURFAC	E EL	EVATIO	ON: _	7.89	feet	msl			TOTAL DEPTH:	12.00	fe	et bgs			
DRILLIN	G C	ONTRAC	CTOR	: Unit-Tech					FOREMAN:						
DRILLIN	G MI	ETHOD:	Dir	rect Push					DRILLING EQUIPMENT	Simco 24	00				_
SAMPLI	NG N	IETHO	D: <u>Ac</u>	etate Liners					CH2M GEOLOGIST:	Wojciec	h Winl	der			_
START:			12	/14/2001 10:	15:00	AM			FINISH:	12/14/20	001 11	:00:00	<u>ΑΜ</u>		
NORTH	NG:		39	8754.007	fee	t			EASTING:	318526.	545	fee	t		_
		(FT)					PTION		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPT INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAP	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOO TE, DENSITY/COHESIVENES	IATE TING, SY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING		
- 0 -	1	0-4	Soil			2.3	0-1.1	subangular, n	h orange (10YR 6/6), poorly s nedium to coarse SAND and r (NOTE: (0.9-1.1) 3in layer of D (SP))	nedium 🔟	SW	2.5		PID(B)=2.5 ppm, (H)=2.5 ppm; RAD(B)=60 cpm, (H)=60 cpm	;
— 1 - 2							1.1-2.3	and medium	oorly sorted, subangular, coar gravel, little silt, moist (NOTE: y and 2in 5R 5/4 clay at 2.0- 2	layered -	sw	2.5		PID(B)=2.5 ppm, (H)=2.5 ppm; RAD(B)=60 cpm, (H)=60 cpm	,
- 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10	3	4-8 8-12	Soil			2.3	0-2.8	Pale olive (10	2in layer of 5R 5/4 (SC)) Y 6/2), mottled (many, fine, faell sorted, subrounded, intermay, wet		sc	2.5		PID(B)=2.5 ppm, (H)=2.5 ppm; RAD(B)60 cpm, (H)=60 cpm PID(B)=2.5 ppm, (H)=2.5 ppm, RAD(B)=60 cpm, (H)=60 cpm	
— 11 -										-					1
- 12					L	L		<u> </u>					l		لـ

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:			EF	PA Region 2					-					
PROJEC	T N	JMBER	<u> 16</u>	34453					BORING NUMBER:	MA-SO-	211			
PROJEC	T NA	AME: _E	PA-M	lartin Aaron					LOCATION: Junkyard					
									TOTAL DEPTH:					
DRILLIN	G C(ONTRA	CTOR	: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G MI	ETHOD:	<u>Di</u>	rect Push					DRILLING EQUIPMENT	: Simco 24	100			
									CH2M GEOLOGIST:					
									FINISH:					
NORTH	NG:		39	<u>8758.181</u>	fee	t			EASTING:	318581.	477	fee	<u>t </u>	
		(FT)					N O		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAI	OTTLING, SOIL DESCRIPTIO ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING (F	OTHER TESTING	
- 0 -	1	0-4	Soil			2.8	0-1	CONCRETE		-		0		PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
– 1			-				1-2	Light olive gr subrounded, medium grav	ay (5Y 5/2), moderately sorted medium to coarse SAND, little el, dry	f, e silt, little -	sw	1.5		PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
2 							2-2.8	subangular,	brown (10R 3/4), moderately medium to coarse SAND, little rel, little silt, moist	sorted, fine to	sw	1.5		PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
3 -					-					-				
4 	2	4-8	Soil			2.5	0-1	Black (N1), p medium GR/	oorly sorted, subangular, fine AVEL, some coarse sand, wet	to	GW	1.5		PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
 5							1-2.5	Blackish red to medium G	(5R 2/2), poorly sorted, subar RAVEL, some coarse sand, r	igular, fine noist	GW	1.5		PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
6 -										-				
- 7										-				_
8														

NOTES:

msl = mean sea level

SHEET 1 OF 1

	_				_									
CLIENT:			Eł											
PROJEC	TN	JMBER	:16	34453					BORING NUMBER:	MA-SO-	212			
PROJEC	TN	AME: _E	PA-M	lartin Aaron					LOCATION: Junkyard					
SURFAC	E El	EVATIO	DN: _	7.66	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR	t: <u>Unit-Tech</u>					FOREMAN:					
DRILLIN	G M	ETHOD:	: <u>Di</u>	rect Push					DRILLING EQUIPMENT:	Simco 24	00			
SAMPLI	NG N	летног	D: <u>A</u>	cetate Liners				·	CH2M GEOLOGIST:	Wojciec	h Winl	der		
START:			12	2/14/2001 12:	15:00	PM (FINISH:	12/14/20	01 12	:50:00	PM	
NORTHI	NG:		39	98768.486	fee	<u>t</u>			EASTING:	318661.	853	fee	et	
		(FT)					NO NO		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT IE, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
_ 0	1	0-4	Soil		<u>. </u>		0-1.1	Dusky yellow SAND and si	(5Y 6/4), well sorted, subangu	lar, fine	SM	1		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	2	4-8	Soil			2	1.1-2.9 0-0.7 0.7-2	to medium Gi moist SAA Dark yellowis medium to co	(5R 2/2), poorly sorted, subance RAVEL, some coarse sand, litt the coarse sand, litt the coarse sand, litter that the coarse SAND, little fine gravel, we coarse SAND, little fine gravel, we coarse SAND, little fine gravel, we coarse SAND, little fine gravel, we coarse sand, little fine gravel, little fine gravel, we coarse sand, little fine gravel, little fine gravel, little fine gravel,	rited,	GW SW	1.5 1.5		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.5 ppm, (H)=1.5 ppm; RAD(B)=40 cpm, (H)=40 cpm
L 8							Ĺ			l				·

NOTES:

msl = mean sea level bgs = below ground surface

SHEET 1 OF 1

CLIENT:			EP	A Region 2											
PROJEC	TN	JMBER	:16	4453					BORING NUMBER: _	MA-SO-	213				_
									LOCATION: Junkyard						
SURFAC	E EI	LEVATIO	ON: _	8.14	feet	msl	-		TOTAL DEPTH:	12.00	fe	et bgs			_
DRILLIN	G C	ONTRA	CTOR	: Unit-Tech					FOREMAN:						_
DRILLIN	IG M	ETHOD	: <u>Dir</u>	ect Push					DRILLING EQUIPMEN	IT: CME				¥* ** 14	
SAMPLI	NG N	NETHO	D: <u>Ac</u>	etate Liners					CH2M GEOLOGIST: _	Wojciec	h Winl	kler		· · · · · · · · · · · · · · · · · · ·	
START:			12	/14/2001 1:00	0:00	PM			FINISH:	12/14/20	001 1:4	10:00 F	M		
NORTHI	NG:		39	8768.22	fee	t			EASTING:	318734.	646	fee	et .		_
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-5"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAP	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION NT GRAIN SIZE, SUBORD WITH DESCRIPTORS, SO E, PLASTICITY, MINERALO TE, DENSITY/COHESIVEN	INATE RTING, OGY),	SS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
DE C	SAN	SAN	SAN	BLC 6"-6	z	SAN	SAN	LAYERING]			uscs	믑	D T		
	2	0-4	Soil			2.3		Blackish red (to medium Gf moist	(5Y 6/4), well sorted, subarit, dry 5R 2/2), poorly sorted, subarity sorted, subarity sorted, subarity sorted, subarity sorted, subarity sorted, subarity sorted, subarity sorted, so	angular, fine little clay,	SM GW	1 3 3		PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=1.0 ppm, (H)=1.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=3.0 ppm, (H)=3.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm	
- 8 - 9 - 10 - 11	3	8-12	Soil			2	0-1.5 1.5-2	GRAVEL, trac	ell sorted, subangular, medi e coarse sand), well sorted, subrounded,	_	GP CL	3		PID(B)=3.0 ppm, (H)=3.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT: EPA Region 2							
PROJECT NUMBER: 164453			BORING NUMBER:	MA-SO-214			
PROJECT NAME: EPA-Martin Aaron			LOCATION: Martin Aaro	n Proper - off Br	oadway	<u></u>	
SURFACE ELEVATION: 7.12	feet msl		TOTAL DEPTH:	8.00 f	eet bgs		
DRILLING CONTRACTOR: Unit-Tec	h		FOREMAN:				
DRILLING METHOD:Direct Push			DRILLING EQUIPMENT	: Simco 2400			
SAMPLING METHOD: Acetate Liners			CH2M GEOLOGIST:	Wojciech Win	kler		
START: 10/18/2001 8:	30:00 AM		FINISH:	10/18/2001 9:	30:00 A	M	
NORTHING: 398451.055	feet		EASTING:	318415.563	fee	et	
- E		Z 0	SOIL DESCRIPTION	, j	рьм)		COMMENTS
DEPTH BELOW GRADE (FT) SAMPLE NUMBER SAMPLE INTERVAL (FT) SAMPLE TYPE BLOW COUNTS 6"-6"-6"-6"-6"	N VALUE SAMPLE RECOVERY (FT)	PREDO GRAIN: GRAIN:	MOTTLING, SOIL DESCRIPTION MINANT GRAIN SIZE, SUBORDIN BIZE WITH DESCRIPTORS, SOR HAPE, PLASTICITY, MINERALOR STATE, DENSITY/COHESIVENE IG]	IATE AND OF STATE OF	PID/FID READING (PPM)	OTHER TESTING	
0 1 0-4 Soil		-0.5 Dark gra	y (N3), well sorted, subrounded, fir	ne SAND SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
	0.	.5-1 BRICK (NOTE: brick chunks)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm.
-1	1 1-	-1.5 WOOD	NOTE: wood debris)		0		(H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,
- - 2		1005	NOTE. Wood debits)				ррт; RAD(B)=40 срт, (H)=40 срт —
— 3 — 4 — 2 — 4 — Soil							-
2 4-8 Soil	3 0-	-0.5 Dark gra	y (N3), well sorted, fine SAND and e gravel, moist	silt, SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)40 cpm
		distinct,	illow (5Y 6/4), mottled (common, fi lusky yellow), well sorted, rounded ome fine gravel, wet	ne, I, fine	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm (H)=40 cpm
- 5	1-		TE: no gravel)		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6	2-	-3 Light olin SAND, v	e gray (5Y 5/2), well sorted, roundet	ed, fine SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
7							_
8							

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF	PA Region 2										
PROJEC	T NI	JMBER	: 16	34453					BORING NUMBER:	MA-SO-	301			
PROJEC	T NA	AME: _E	PA-M	lartin Aaron					LOCATION: South Jerse	ey Port				
SURFAC	EEL	EVATIO	ON: _	5.91	feet	msl			TOTAL DEPTH:	8.00	fe	et bgs		
DRILLIN	G C	ONTRA	CTOR						FOREMAN:					
DRILLIN	G MI	ETHOD:	: <u>Di</u>	rect Push					DRILLING EQUIPMENT	T: Simco 24	100			
SAMPLI	NG N	NETHO	D: <u>Ac</u>	cetate Liners					CH2M GEOLOGIST: _	Rob Re	ch			
START:			12	2/13/2001 7:2	0:00 A	AM			FINISH:	12/13/20	001 8:3	30:00 A	M_	
NORTHI	NG:		39	98576.8904	fee	<u>t</u>			EASTING:	317901.	2175	fee	et	
		(FT)					NO N		SOIL DESCRIPTION		BOL	(PPM)		COMMENTS
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTIC ANT GRAIN SIZE, SUBORDI WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALC TE, DENSITY/COHESIVENE	NATE RTING, PGY),	USCS GROUP SYMBOL	PID/FID READING (OTHER TESTING	
- 0	1	0-4	Soil			2.3	0-1	subangular, i	(5YR 8/1), moderately sorted nedium to coarse SAND and pose (NOTE: some surface d	medium	SW	0	·	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
1 -							1-2	Brownish bla SAND and si some brick d	ck (5YR 2/1), moderately sort It, some fine gravel, dry, loos ebris)	ted, fine e (NOTE:	SM	Ō		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 2 -							2-3	Light greenis CLAY, slight	h gray (5GY 8/1), poorly sorte plasticity, dry, firm (NOTE: in	ed, silty organic)	CL	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 3 -							3-4	Black (N1), p medium grav	oorly sorted, medium SAND a el, dry, loose	and -	sw	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
4 -	2	4-8	Soil			2.6	0-1	SAA		-		0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
— 5 -							1-3	Brownish bla SAND and si	ck (5YR 2/1), poorly sorted, c tt, dry, loose	coarse	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 6 -										-				_
- 7 - - 8							3-4		oorly sorted, subrounded, fine e medium to coarse gravel, w se		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

									
CLIENT:	EPA Region 2								
PROJECT NUMBER: _	164453			BORING NUMBER:	MA-SO-3	302			
PROJECT NAME: <u>EPA</u>	A-Martin Aaron		·	LOCATION: South Jersey	y Port				
SURFACE ELEVATION	: 7.25 feet	msl		TOTAL DEPTH:	8.00	fee	et bgs		
DRILLING CONTRACT				FOREMAN:					
DRILLING METHOD: _	Direct Push			DRILLING EQUIPMENT:	Simco 240	00			
SAMPLING METHOD:	Acetate Liners			CH2M GEOLOGIST:	Wojciech	Winkl	er		
				FINISH:					
NORTHING:	398753.7512 fee	et		EASTING:	318042.8	511	fee	<u>t</u>	
(F)		NO.	(SOIL DESCRIPTION		BOL	PPM)		COMMENTS
SER SER	SAMPLE TYPE BLOW COUNTS 6"-6"-6" N VALUE	SAMPLE RECOVERY (FT) SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE I GRAIN SHAP	TTLING, SOIL DESCRIPTION INT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SORT E, PLASTICITY, MINERALOG TE, DENSITY/COHESIVENES	ATE ING, SY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	
0 1 0-4 So	oil	2.2 0-0.9		y (5YR 4/1), moderately sorted nedium to coarse SAND, little et, dry	, ,	SW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
_ 1		0.9-2.2		y (5Y 8/1), moderately sorted, nedium to coarse SAND, little y		sw	0		PID(B)=0.0 ppm, (H)=0.0— ppm; RAD(B)=40 cpm, (H)=40 cpm
- 2 - 3 4 2 4-8 So 5 6 7 - 8	oil	2.7 0-1.4	Olive gray (5Y little clay, dry hit refusal at 6	/ 3/2), well sorted, fine SAND a (NOTE: refusal at 6ft bgs, mo oft bgs again, moed again, fina ngs-wet soil at the tip (6.5ft-8f	ved hole,	SM	О		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

NOTES

msl = mean sea level

SHEET 1 OF 1

PROJECT	NUMBER	164	1453					BORING NUMBER:	MA-SO-	-401				_
								LOCATION: Ponte Prop						
								TOTAL DEPTH:			et bgs			_
DRILLING	CONTRA	CTOR:						FOREMAN:						-
DRILLING								DRILLING EQUIPMENT						_
								CH2M GEOLOGIST: _						_
								FINISH:			:15:00	AM		_
NORTHING	S:	398	3255.2585	fee	t			EASTING:	318625.	825	fee	<u>t </u>		-
0 DEPTH BELOW	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	NVALUE	SAMPLE 5 PECOVERY (FT)	1-3	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF WATER STA' LAYERING] Moderate bro subangular, fi loose Dark yellowis subangular, fi medium dens	h orange (10YR 6/6), well soi ne SAND, trace silt, trace fin	NATE (TING, IGY), ISS, Inted, Ivel, dry, Inted, Ivel, Inted, Intel, Inte	W W W W W W W W W W W W W W W W W W W	O O PID/FID READING (PPM)	OTHER TESTING	PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm, (H)=40 cpm	
- 5 - 6 - 7 - 8 - 9 - 10 - 11	8-12	Soil			3.7	0-1 1-4	Olive back (5 SAND and clamostly fill with	Y 2/1), well sorted, subangulary, low plasticity, moist, firm (a lot of brick debris) Y 2/1), mottled (common, metrate brown), well sorted, subdically, low plasticity, moist, fire (10YR 7/4), well sorted, subdically, trace silt, trace fine gravel, trace fine gravel.	ar, fine NOTE: - adium, angular, irm	SC SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:_			<u>E</u> P	A Region 2										
PROJECT	NU	MBER:	16	4453					BORING NUMBER:	MA-SO-	402		·	
									LOCATION: Ponte Pro					
SURFACE	EEL	EVATIO)N: _	7.76	feet	<u>msl</u>	a		TOTAL DEPTH:	12.00	fe	et bgs		
DRILLING	CC	NTRAC	TOR	: Unit-Tech					FOREMAN:					
DRILLING	S ME	THOD:	Dir	ect Push					DRILLING EQUIPME	NT: Simco 24	100			
SAMPLIN	G N	IETHOD	: <u>S</u> p	lit Spoon					CH2M GEOLOGIST:	Wojciec	h Winl	kler		
START: _			12	/17/2001 10:2	20:00	AM			FINISH:	12/17/20	001 11	:15:00	AM	
NORTHIN	IG:		39	8256.079	fee	t		·····	EASTING:	318638.	8445	fee	∋t	
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MC PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION TTLING, SOIL DESCRIPT INT GRAIN SIZE, SUBORI WITH DESCRIPTORS, SO E, PLASTICITY, MINERAL TE, DENSITY/COHESIVE	DINATE DRTING, LOGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS
- 1 - 2	1	0-4	Soil			2.4	1-2.4	Brownish bla subrounded,	y (5Y 8/1), well sorted, sub arse GRAVEL, dry ck (5YR 2/1), poorly sorted fine to medium GRAVEL, s arse sand, dry	- 	GP GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm – PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
- 3 - 4 - 5 - 6	2	4-8	Soil			3.3	0-3.3	subrounded, (NOTE: 4in a	h orange (10YR 6/6), well fine to medium SAND, little t 5.5-6.3ft layer of 5YR 3/4 gular, fine to medium grav	fine gravel _ , poorly	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm
7 8 9 10 11	3	8-12	Soil			3.4	0-0.9 0.9-3.4	clayey SILT,	ck (5YR 2/1), well sorted, s slight plasticity h orange (10YR 6/6), well s fine to medium SAND, moi	sorted,	ML SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm - PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm

NOTES:

msl = mean sea level

SHEET 1 OF 1

CLIENT:			EF												_
PROJEC	TNU	JMBER:	16	4453					BORING NUMBER:	MA-SO-	403_				_
									LOCATION: Ponte Prope						_
									TOTAL DEPTH:						_
									FOREMAN:						-
				rect Push					DRILLING EQUIPMENT						
									CH2M GEOLOGIST:						
									FINISH:						-
NORTHI	NG:		39	8255.7559	166	: L			EASTING:	318652.	0364	fee	<i>:</i> 1		_
		L (FT)					NOIF		SOIL DESCRIPTION		MBOL	(PPM)		COMMENTS	$\frac{1}{2}$
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"	N VALUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	PREDOMINA GRAIN SIZE GRAIN SHAF	OTTLING, SOIL DESCRIPTION ANT GRAIN SIZE, SUBORDIN WITH DESCRIPTORS, SOR PE, PLASTICITY, MINERALO TE, DENSITY/COHESIVENE	NATE TING, GY),	USCS GROUP SYMBOL	PID/FID READING	OTHER TESTING		
- o	1	0-4	Soil			2.4	0-0.5	Dark yellowis subangular, i gravel, dry, lo	h brown (10YR 4/2), moderat medium SAND, trace silt, trac	ely sorted, e fine	SM SW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	7
- 1 - 2								Grayish brow	n (5YR 3/2), moderately sorte medium SAND, little silt, some	ed, _ e fine to				PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, _ (H)=40 cpm	
- 3 - - 4	2	4-8	Soil			2.8	0-1	Grayish brow	n (5YR 3/2), moderately sorte	- -	SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm,	
- 5							1-2	medium grav	nedium SAND, trace silt, trace el, dry, medium dense		SM	0		(H)=40 cpm PID(B)=0.0 com (H)=0.0	1
-							, -	SAND, trace	(5Y 6/4), well sorted, subang silt, moist, medium dense	ular, fine	Jivi			ppm; RAD(B)=40 cpm, (H)=40 cpm	$\left\{ \right.$
6 - 7							2-3	Dusky yellow subangular, f dry, stiff	ish brown (10YR 2/2), well so ine SAND, some clay, slight p	rted, elasticity, _	sc	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	7
- - 8 - - 9	3	8-12	Soil			3.4	0-3	brown), well s	y (5Y 7/2), mottled (few, fine, sorted, subrounded, fine SAN to coarse gravel, wet		SM	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	4
- 10 -										-				- -	
— 11										_				-	-
- - 12										-]

NOTES:

msl = mean sea level

SHEET 1 OF 1

	_			PA Region 2											
PROJEC	TN	JMBER	: 16	4453					BORING NUMBER:	MA-SO-	404				
PROJEC	TN	AME: _E	PA-M	artin Aaron					LOCATION: Ponte Prop	erty					_
									TOTAL DEPTH:						
DRILLIN	G C	ONTRA	CTOR						FOREMAN:				_		
DRILLIN	G M	ETHOD:	: <u>Dir</u>	rect Push					DRILLING EQUIPMENT	F: Simco 2	100				_
SAMPLI	NG N	/ETHOI	D: <u>Ac</u>	etate Liners					CH2M GEOLOGIST:	Wojcied	h Winl	der			
									FINISH:				PM		
NORTH	NG:		39	8254.5975	fee	<u>t</u>			EASTING:	318811	.9383	fee	<u>et</u>		—
DEPTH BELOW GRADE (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT)	SAMPLE TYPE	BLOW COUNTS 6"-6"-6"-	LUE	SAMPLE RECOVERY (FT)	SAMPLE DESCRIPTION INTERVAL (FT)	[COLOR, MO PREDOMINA GRAIN SIZE GRAIN SHAF	SOIL DESCRIPTION TTLING, SOIL DESCRIPTION TTLING, SOIL DESCRIPTION INTERPRETATION THE PLASTICITY, MINERALO	NATE RTING, PGY),	USCS GROUP SYMBOL	PID/FID READING (PPM)	OTHER TESTING	COMMENTS	
GF	SAME	AMP	AMP	3LOW	N VALUE	SAMP	SAME	LAYERING)	TE, DENSITY/COHESIVENE	:55,	USCS	PID/F	불		
- 0 - 1 - 2 - 3	1	0-4	Soil			2.4			brown (10R 3/4), poorly sorte ine to medium GRAVEL, son		GW	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
- 4 - 5 - 6	2	4-8	Soil			3	0-4	subrounded,	h orange (10YR 6/6), well so fine SAND, trace silt (NOTE: /6, wet, poorly sorted, suban dry)	layer at _	SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
- 7 - 8 - 9 - 10	3	8-12	Soil				0-4		n orange (10YR 6/6), well so fine to medium SAND, trace		SP	0		PID(B)=0.0 ppm, (H)=0.0 ppm; RAD(B)=40 cpm, (H)=40 cpm	
12					<u></u>	<u> </u>									

NOTES:

msl = mean sea level

Appendix G
Analytical Results

Table G.1

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date			F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID			ĺ	B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	21 UJ	63 J	52 J	200 J	75 J
Benzene	1000	13000	30	10 U	1 J	11 U	通 生 100 J = 2 (c)	2 J
Bromoform	1000		800	10 U	2 J	11 U	12 U	11 U
Bromomethane	1000	1000000	200	10 U	10 U	11 U	12 U	11 U
Carbon disulfide			32000	2 J	2 J	11 U	19 J	11 U
Carbon tetrachloride	1000		70	10 U	10 U	11 U	12 U	11 U
Chlorobenzene	1000		1000	10 U	5 J	11 U	12 U	11 U
Chloroethane				10 U	10 UJ	11 U	12 UJ	11 U
Chloroform	1000	28000	600	10 U	10, U	11	12 U	11 U
Chloromethane	10000			10 U	10 U	11 U	12 U	11 U
Cyclohexane				10 U	10 U	11 U	66 J	11 U
DBCP (1,2-dibromo-3-chloropropane)				10 U	10 UJ	11 U	12 UJ	11 U
Dibromochloromethane	1000		400	10 U	10 U	11 U	12 U	11 U
Dibromoethane-1,2				10 U	10 U	11 U	12 U	11 U
Dichlorobenzene-1,2	50000		17000	10 U	1 J	11 U	2 J	11 U
Dichlorobenzene-1,3	100000			10 U	10 U	11 U	12 U .	11 U
Dichlorobenzene-1,4	100000		2000	10 U	10 U	11 U	12 U	11 U
Dichlorobromomethane	1000		600	10 U	10 U	11 U	12 U	11 U
Dichlorodifluoromethane				10 U	10 U	11 U	12 U	11 U
Dichloroethane-1,1	10000	<u> </u>	23000	25	10 U	11 U	18 J	11 U
Dichloroethane-1,2	1000		20	10 U	10 U	11 U	12 U	11 U
Dichloroethene-1,2 trans	50000		700	17	10 U	11 U	3 J	11 U
Dichloroethylene-1,1	10000		60	2 J	10 U	11 U	12 U	· 11 U
Dichloroethylene-1,2 cis	1000	1000000	400	180	2 J	11 U	19 J	11 U
Dichloropropane-1,2			30	10 U	10 U	11 U	12 U	11 U
Dichloropropene-1,3 cis			4	10 U	10 U	11 U	12 U	11 U
Dichloropropene-1,3 trans		ļ	4	10 U	10 U	11 U	12 U	11 U
Ethylbenzene	100000	1000000	13000	10 U	10 U	11 U	49 J.	11 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				10 U	10 U	11 U	12 U	11 U

J - Reported value estimated in quantity R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date]		F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval]			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID]			B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name								
Volatile Organic Compounds (ug/Kg								
Hexanone-2	<u> </u>			10 U	10 UJ	11 U	12 UJ	11 U
lsopropylbenzene				10 U	10 U	11 U	7 J	11 U
Methyl acetate		<u></u>		10 U	10 U	11 U	12 U	11 U
Methyl cyclohexane				10 U	1 J	11 U	86 J	11 U
Methyl ethyl ketone (2-butanone)	50000			10 U	21	9 J	64 J	20
Methyl isobutyl ketone (4-methyl-2-penta	50000			10 U	1 J	11 U	120 J	7 J
Methyl tertiary butyl ether (MTBE)				10 U	10 U	11 U	12 U	11 U
Methylene chloride	1000		20	10 U	10 U	16 U	12 UJ	11 U
Styrene	100000		4000	10 U	10 U	11 U	12 U	11 U
Tetrachloroethane-1,1,2,2	1000		3	10 U	10 U	11 U	12 U	11 U
Tetrachloroethylene	1000	6000	60	21	10 U	6 J	13 J	11 U
Toluene	500000	1000000	12000	10 U	4 J	4 J	52 J	15
Trichlorobenzene-1,2,4	100000		5000	10 U	10 U	11 U	12 U	11 U
Trichloroethane-1,1,1	50000		2000	11	10 U	11 U	12 U	11 U
Trichloroethane-1,1,2	1000		20	10 U	10 U	11 U	12 U	11 U
Trichloroethylene	1000	54000	60	5 J	10 U	11	7 J	11 U
Trichlorofluoromethane				10 U	10 U	11 U	12 U	11 U
Vinyl chloride	10000	7000	10	35 (c)	10 U	11 U	9 J	11 U
Xylenes, total	67000		210000	10 U	1 J	11 U	150 J	5 J

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date			F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0DG7RE	B0DF9	B0DG1RE	B0D99	B0DC4
Chemical Name							 	
					,			
Volatile Organic Compounds (ug/Kg)	•						
Acetone	100000		16000	13 UJ	14 U	13 U	150 J	72 J
Benzene	1000	13000	30	4 J	14 U	13 U	2 J	2 J
Bromoform	1000		800	13 R	14 U	13 U	2 J	13 U
Bromomethane	1000	1000000	200	13 UJ	14 U	13 U	18 U	13 U
Carbon disulfide			32000	13 UJ	14 U	13 U	130	4 J
Carbon tetrachloride	1000		70	13 UJ	14 U	13 U	18 U	13 U
Chlorobenzene	1000		1000	13 R	14 U	13 UJ	18 U	13 U
Chloroethane				13 UJ	14 U	13 U	18 U	13 U
Chloroform	1000	28000	600	13 UJ	14 U	13 U	18 U	13 U
Chloromethane	10000			13 UJ	14 U	13 U	18 U	13 U
Cyclohexane				7 J	14 U	13 U	18 U	13 U
DBCP (1,2-dibromo-3-chloropropane)				13 R	14 U	13 UJ	18 UJ	13 U
Dibromochloromethane	1000		400	13 UJ	14 U	13 U	18 U	13 U
Dibromoethane-1,2				13 R	14 U	13 UJ	18 U	13 U
Dichlorobenzene-1,2	50000		17000	13 R	14 U	13 UJ	18 U	13 U
Dichlorobenzene-1,3	100000			13 R	14 U	13 UJ	18 U	13 U
Dichlorobenzene-1,4	100000		2000	13 R	14 U	13 UJ	18 U	13 U
Dichlorobromomethane	1000	ļ	600	13 UJ	14 U	13 U	18 U	13 U
Dichlorodifluoromethane		 		13 UJ	14 U	13 U	18 U	13 U
Dichloroethane-1,1	10000		23000	· 13 UJ	14 U	13 U	18 U	13 U
Dichloroethane-1,2	1000		20	13 UJ	14 U	13 U	18 U	13 UJ
Dichloroethene-1,2 trans	50000		700	13 UJ	14 U	. 13 U	18 U	13 U
Dichloroethylene-1,1	10000		60	13 UJ	14 U	13 U	18 U	13 U
Dichloroethylene-1,2 cis	1000	1000000	400	13 UJ	14 U	13_U	8 J	13 U
Dichloropropane-1,2			30	13 UJ	14 U	13 U	18 U	13 U
Dichloropropene-1,3 cis			4	13 UJ	14 U	13 U	18 U	13 U
Dichloropropene-1,3 trans			4	13 UJ	14 U	13 U	18 U	13 U
Ethylbenzene	100000	1000000	13000	13 R	14 U	13 UJ	870	13 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				13 UJ	14 U	13 U	18 U	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date			F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval] [0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0DG7RE	B0DF9	B0DG1RE	B0D99	B0DC4
Chemical Name								
					,			
Volatile Organic Compounds (ug/Kg))							
Hexanone-2		<u> </u>		13 R	14 U	13 UJ	18 U	13 U
lsopropylbenzene		·		13 R	14 U	13 UJ	3 J	13 U
Methyl acetate				13 UJ	14 U	13 U	18 U	13 U
Methyl cyclohexane				4 J	14 U	2 J		13 U
Methyl ethyl ketone (2-butanone)	50000			13 UJ	14 U	13 U	85	17
Methyl isobutyl ketone (4-methyl-2-penta	50000			13 R	14 U	13 UJ	18 J	13 U
Methyl tertiary butyl ether (MTBE)				13 UJ	14 U	13 U	18: U	13 UJ
Methylene chloride	1000		20	13 UJ	14 U	13 U	18 U	13 U
Styrene	100000		4000	13 R	14 U	13 UJ	7 J	13 U
Tetrachloroethane-1,1,2,2	1000		3	13 R	- 14 U	13 UJ	18 U	13 U
Tetrachloroethylene	1000	6000	60	13 R	14 U	13 UJ	18 U	2 J
Toluene	500000	1000000	12000	23 J	14 U	13 UJ	340	13 U
Trichlorobenzene-1,2,4	100000		5000	13 R	14 U	13 UJ	18 U	13 U
Trichloroethane-1,1,1	50000		2000	13 UJ	14 U	13 U	18 U	13 U
Trichloroethane-1,1,2	1000		20	13 UJ	14 U	13 U	18 U	13 U
Trichloroethylene	1000	54000	60	13 UJ	14 U	13 U	8 J	13 U
Trichlorofluoromethane				13 UJ	14 U	13 U	18 U	13 U
Vinyl chloride	10000	7000	10	13 UJ	14 U	13 U	18 U	13 U
Xylenes, total	67000		210000	2 J	14 U	13 UJ	69	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

302609

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date	Ì	ì	F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval	1			0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID	1			B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	250 J	23 UJ	32 J	29 J	23 J
Benzene	1000	13000	30	13 U	4 J	12 U	2 J	2 J
Bromoform	1000		800	13 U	10 UJ	12 U	10 U	11 U
Bromomethane	1000	1000000	200	13 U	10 U	12 U	10 U -	11 U
Carbon disulfide			32000	13 U	2 J	12 U	10 U	2 J
Carbon tetrachloride	1000		70	13 U	10 U	12 U	10 U	11 U
Chlorobenzene	1000		1000	13 U	10 U	12 U	10 U	11 U
Chloroethane				13 U	10 UJ	12 U	10 U	11 U
Chloroform	1000	28000	600	13 U	10 U	12 U	10 U	11 U_
Chloromethane	10000			13 U	10 U	12 U	10 U	11 U
Cyclohexane				13 U	1 J	12 U .	10 U	11 U
DBCP (1,2-dibromo-3-chloropropane)				13 U	10 UJ	12 U	10 U	11 U
Dibromochloromethane	1000		400	13 U	10 U	12 U	10 U	11 U
Dibromoethane-1,2				13 U	10 U	12 U	10 U	11 U
Dichlorobenzene-1,2	50000		17000	13 U	10 U	12 U	10 U	11 U
Dichlorobenzene-1,3	100000			13 U	10 U	12 U	10 U	11 U
Dichlorobenzene-1,4	100000		2000	13 U	10 U	12 U	10 U	11 U
Dichlorobromomethane	1000		600	13 U	10 U	12 U	10 U	11 U
Dichlorodifluoromethane				1 U	10 U	12 UJ	10 U	11 U
Dichloroethane-1,1	10000		23000	13 U	10 U	12 U	10 U	11 U
Dichloroethane-1,2	1000		20	13 U	10 U	12 U	10 UJ	11 UJ
Dichloroethene-1,2 trans	50000		700	13 U	. 10 U	12 U	10 U	11 U
Dichloroethylene-1,1	10000		60	13 U	10 U	12 U	10 U	11 U
Dichloroethylene-1,2 cis	1000	1000000	400	13 U	10 U	6 J	. 10 U	11 U
Dichloropropane-1,2			30	13 U	10 U	12 U	10 U	11 U
Dichloropropene-1,3 cis			4	13 U	10 U	12 U	10 U	11 U
Dichloropropene-1,3 trans			4	. 13 U	10 U	12 U .	10 U	11 U .
Ethylbenzene	100000	1000000	13000	13 U	10 U	12 U	10 U	11 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				13 U	10 U	12 U	10 U	11 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date			F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval			Ī	0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID			Ι	B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name								l
	ļ	L						
Volatile Organic Compounds (ug/Kg	}	,						
Hexanone-2				13 U	10 UJ	12 U	10 U	11 U
Isopropylbenzene		<u> </u>	<u></u>	13 U	10 U	12 U	10 U	11 U
Methyl acetate				13 U	10 U	12 U	10 U	11 U
Methyl cyclohexane				13 U	. 1 J	12 U	10 U	11 U
Methyl ethyl ketone (2-butanone)	50000			. 27	10 U	12 U	10 U	11 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			13 U	10 UJ	12 U	10 U	11 U
Methyl tertiary butyl ether (MTBE)				13 U	10 U	12 U	10 UJ	11 UJ
Methylene chloride	1000		20	14 U	10 U	12 UJ	10 U	11 U
Styrene	100000		4000	13 U	10 U	12 U	10 U	11 U
Tetrachloroethane-1,1,2,2	1000		3	13 U	10 U	12 U	10 U	· 11 U
Tetrachloroethylene	1000	6000	60	. 28	10 U	8 J	10 U	1 J
Toluene	500000	1000000	12000	20	3 J	12 UJ	10	11 U
Trichlorobenzene-1,2,4	100000		5000	13 U	10 U	12 U	10 U	11 U
Trichloroethane-1,1,1	50000		2000	13 U	10 U	12 U	10 U	11 U
Trichloroethane-1,1,2	1000		20	13 U	10 U	12 U	10 U	11 U
Trichloroethylene	1000	54000	60	· 2 J	10 U	4 J	10 U	11 U
Trichlorofluoromethane				13 U	10 U	12 U	10 U	11 U
Vinyl chloride	10000	7000	10	13 U.	10 U	12 U	10 U	11 U -
Xylenes, total	67000		210000	2 J	10 U	12 U	10 U	11 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name								,
Volatile Organic Compounds (ug/Kg)								
Acetone	_100000		16000	14 UJ	310 J	22 UJ	50 J	38 UJ
Benzene	1000	13000	30	12 U	10 J	10 U	11 U	13 U
Bromoform	1000		800	12 UJ	15 UJ	10 UJ	11 U	13 U
Bromomethane	1000	1000000	200	12 U	3 J	10 U	11 U	13 U
Carbon disulfide			32000	12 U	4 J	10 U	11 U	13 U
Carbon tetrachloride	1000		70	12 U	15 U	_ 10 U	11 U	13 U
Chlorobenzene	1000		1000	12 U	15 U	10 U	11 U	13 U
Chloroethane				12 U	15 UJ	10 U	11 U	13 U
Chloroform	1000	28000	600	12 U	6 J	10 U	11 U	13 U
Chloromethane	10000			12 U	15 U	10 U	11_U	13 U
Cyclohexane				12 U	3 J	10 U	11 U	13 U
DBCP (1,2-dibromo-3-chloropropane)				12 UJ	15 UJ	10 UJ	11 U	13 U
Dibromochloromethane	1000		400	12 U	15 U	10 U	11 U	13 U
Dibromoethane-1,2				12 U	15 U	10 U	11 U	13 U
Dichlorobenzene-1,2	50000		17000	12 U	15 U	10 U	11 U	13 U
Dichlorobenzene-1,3	100000			12 U	15 U	10 U	11 U	13 U
Dichlorobenzene-1,4	100000		2000	12 U	15 U	10 U	11 U	13 U
Dichlorobromomethane	1000		600	12 U	15 U	10 U	11 U	13 U
Dichlorodifluoromethane				12 U	15 U	10 U	11 U	13 UJ
Dichloroethane-1,1	10000		23000	12 U	15 U	10 U	11 U	13 U
Dichloroethane-1,2	1000		20	12 U	15 U	10 U	11 U	13 U
Dichloroethene-1,2 trans	50000	<u> </u>	700	12 U	15 U	10 U	<u>11 U</u>	13 U
Dichloroethylene-1,1	10000		60	12 U	15 U	10 U	11 U	13 U
Dichloroethylene-1,2 cis	1000	1000000	400	12 U	15 U	10 U	11 U	13 U
Dichloropropane-1,2	L		30	12 U	15 U	10 U	11 U	13 U
Dichloropropene-1,3 cis			4	12 U	15 U	10 U	11 U	13 U
Dichloropropene-1,3 trans			4	12 U	15 U	10 U	11 U	13 U
Ethylbenzene	100000	1000000	13000	12 U	23	10 U	11 U	13 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				12 U	15 U	10 U	11 U	13 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval			İ	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				12 UJ	4 J	10 UJ	11 U	13 U
Isopropylbenzene				12 U	3 J	10 U	11 U	13 U
Methyl acetate				12 U	15 U	10 U	11 U	13 U
Methyl cyclohexane				12 U	3 J	10 U	11 U	13 U
Methyl ethyl ketone (2-butanone)	50000			12 UJ	34	10 UJ	8 J	13 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			12 UJ	5 J	10 UJ	11 U	13 U
Methyl tertiary butyl ether (MTBE)				12 U	15 U	10 U	11 U	13 U
Methylene chloride	1000		20	12 U	7.1 (c)	10 U	11 U	15 U
Styrene	100000		4000	12 U	15 U	10 U	11 U	13 U
Tetrachloroethane-1,1,2,2	1000		3	12 U	15 U	10 U	11 U	13 U
Tetrachloroethylene	1000	6000	60	2 J	-62 (c)	10 U	11 U	13 U
Toluene	500000	1000000	12000	12 U	22	10 U	11 U	13 U
Trichlorobenzene-1,2,4	100000		5000	12 U	15 U	10 U	11 U	13 U
Trichloroethane-1,1,1	50000	1	2000	12 U	43	10 U	11 U	13 U
Trichloroethane-1,1,2	1000		20	12 U	15 U	10 U	11 U	13 U
Trichloroethylene	1000	54000	60	12 U	17	2 J	11 U	13 U
Trichlorofluoromethane				12 U	3 J	10 U	11 U	13 U
Vinyl chloride	10000	7000	10	12 U	15 U	10 U	11 U	13 U
Xylenes, total	67000	1	210000	12 U	130	10 U	11 U	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

30261

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval]	•		1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name								
Volatile Organic Compounds (ug/Kg)						·	
Acetone	100000		16000	14000 UJ	10 UJ	1600 U	30 UJ	17 UJ
Benzene	1000	13000	30	14000 U	10 U	1600 U	4 J	6 J
Bromoform	1000		800	14000 U	10 U	1600 U	16 UJ	13 U
Bromomethane	1000	1000000	200	14000 U	10 U	1600 U	16 UJ	13 U
Carbon disulfide			32000	14000 U	10 U	1600 U	. 11 J	4. J
Carbon tetrachloride	1000		70	14000 U	10 U	1600 U	16 UJ	13 U
Chlorobenzene	1000		1000	14000 U	10 U	1600 U	16 UJ	13 U
Chloroethane				14000 UJ	10 U	1600 U	16 UJ	13 U
Chloroform	1000	28000	600	14000 U	10 U	1600 U	16 UJ	13 U
Chloromethane	10000			14000 U	10 U	1600 U	16 UJ	13 U
Cyclohexane				14000 U	10 U	1600 U	3 J	13 U
DBCP (1,2-dibromo-3-chloropropane)				14000 U	10 UJ	1600 U	15 UJ	13 U
Dibromochloromethane	1000		400	14000 U	10 U	1600 U	16 UJ	13 U
Dibromoethane-1,2				14000 U	10 U	1600 U	16 UJ	13 U
Dichlorobenzene-1,2	50000		17000	3300 J	10 U	1600 U	16 UJ	13 U
Dichlorobenzene-1,3	100000			14000 U	10 U	1600 U	16 UJ	13 U
Dichlorobenzene-1,4	100000		2000	14000 U	10 U	1600 U	16 UJ	13 U
Dichlorobromomethane	1000		600	14000 U	10 U	1600 U	16 UJ	13 U
Dichlorodifluoromethane				14000 U	10 U	1600 U	16 UJ	13 U
Dichloroethane-1,1	10000		23000	11000 Ji	10 U	1600 U	16 UJ	13 U
Dichloroethane-1,2	1000		20	14000 U	10 U	1600 U	16 UJ	13 U
Dichloroethene-1,2 trans	50000		700	14000 U	10 U	1600 U	16 UJ	13 U
Dichloroethylene-1,1	10000		60	14000 U	10 U	1600 U	16 UJ	13 U
Dichloroethylene-1,2 cis	1000	1000000	400	24000 (AC)	10 U	530 J (c)	16 UJ	13 U
Dichloropropane-1,2			30	14000 U	- 10 U	1600 U	16 UJ	13 U
Dichloropropene-1,3 cis			4	14000 U	10 U	1600 U	16 UJ	13 U
Dichloropropene-1,3 trans			4	14000 U	10 U	1600 U	16 UJ	13 U
Ethylbenzene	100000	1000000	13000	6700 J	- 10 U	1600 U	17 J	13 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				14000 U	10 U_	1600 U	16 UJ	13 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				14000 U	10 UJ	1600 U	16 UJ	- 13 U
Isopropylbenzene				14000 U	10 U	1600 U	16 UJ	13 U
Methyl acetate				14000 U	10 U	1600 U	16 UJ	13 U
Methyl cyclohexane				5000 J	10 U	1600 U	. 5 J	13 U
Methyl ethyl ketone (2-butanone)	50000		-	14000 U	10 U	1600 Ų	16 UJ	13 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			14000 U	10 UJ	1600 U	16 UJ	13 U
Methyl tertiary butyl ether (MTBE)				14000 UJ	10 U	1600 UJ	16 UJ	13 U
Methylene chloride	1000		20	14000 U	10 U	1600 U	16 UJ	13 U
Styrene	100000		4000	14000 U	10 U	1600 U	16 UJ	13 U
Tetrachloroethane-1,1,2,2	1000	<u> </u>	3	14000 U	10 U	1600 U	16 UJ	13 U
Tetrachloroethylene	1000	6000	60	26000 (ABC)	6 J	11000 (ABC)	64 J (C)	8 J
Toluene	500000	1000000	12000	160000 (c)	10 U	1600 U	13 J	2 J
Trichlorobenzene-1,2,4	100000		5000	14000 U	10 U	1600 UJ	16 UJ	13 U
Trichloroethane-1,1,1	50000		2000	14000 U	10 U	1600 U	16 UJ	13 U
Trichloroethane-1,1,2	1000		20	14000 U	10 U	1600 U	16 UJ	13 U
Trichloroethylene	1000	54000	60	60000 (ABC)	10 U	2300 (AC)	60 // (c)	48
Trichlorofluoromethane				14000 U	10 U	1600 U	16 UJ	13 U
Vinyl chloride	10000	7000	10	14000 U	10 U	1600 U	16 UJ	13 U
Xylenes, total	67000		210000	40000	10 U	1600 U	80 J	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden. NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date			F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval				1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name				Ì				
Volatile Organic Compounds (ug/Kg)			·				
Acetone	100000		16000	1300 UJ	24 UJ	11 U	40 UJ	4 J
Benzene	1000	13000	30	260 J (c)	11 U	11 U	11 U	12 U
Bromoform	1000		800	1300 U	11 U	11 U	11 U	12 U
Bromomethane	1000	1000000	200	120 J	11 U	11 U	11 U	12 U.
Carbon disulfide			32000	1300 U	11 U	11 U	11 U	12 U
Carbon tetrachloride	1000		70	1300 U	11 U	11 U	<u>11 U</u>	12 U
Chlorobenzene	1000		1000	3200 (AC)	11 U	11 U	11 U	12 U
Chloroethane				2700 J	11 U	11 U	11 U	12 U
Chloroform	1000	28000	600	1300 U	11 U	11 U	11 U	12 U
Chloromethane	10000			1300 U	11 U	11 U	11 U	12 U
Cyclohexane				1300 U	11 U	11 U	11 U	12 U
DBCP (1,2-dibromo-3-chloropropane)		-		1300 U	11 U	11 U	11 U	12 U
Dibromochloromethane	1000		400	1300 U	11 U	11 U	11 U	12 U
Dibromoethane-1,2				1300 U	11 U	11 U	11 U	12 U
Dichlorobenzene-1,2	50000		17000	5500	11 U	11 U	11 U	12 U
Dichlorobenzene-1,3	100000			1300 U	11 U	11 U	11 U	12 U
Dichlorobenzene-1,4	100000		2000	230 J	11 U	11 U	11 U	12 U
Dichlorobromomethane	1000		600	1300 U	11 U	. 11 · U	11 U	12 U
Dichlorodifluoromethane				1300 U	11 UJ	11 U	11 UJ	12 UJ
Dichloroethane-1,1	10000		23000	4700	11 U	11 U	11 U	12 U
Dichloroethane-1,2	1000		20	1300 U	11 U	11 U	11 U	12 U
Dichloroethene-1,2 trans	50000		700	350 J	11 U	11 U	11 U	12 U
Dichloroethylene-1,1	10000		60	1300 U	11 U	11 U	11 U	12 U
Dichloroethylene-1,2 cis	1000	1000000	400	3200 (AC)	11 U	11 U	11 U	12 U
Dichloropropane-1,2			30	1300 U	. 11 U	11 U	11 U	12 U
Dichloropropene-1,3 cis			4	1300 U	11 U	11 U	11 U	12 U
Dichloropropene-1,3 trans	-		4	1300 U	11 U	11 U	11 U	12 U
Ethylbenzene	100000	1000000	13000	2000	11 U	11 U	11 U	12 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				1300 U	11 U	11 U	11 U	12 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date	Ī ,		F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval			·	1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name								
Volatile Organic Compounds (ug/Kg	<u> </u>	1						
Hexanone-2				1300 U	11 U	11 U	11 U	12 U
Isopropylbenzene				1300 U	11 U	11 U	11 U	12 U
Methyl acetate				1300	11 U	11 U	11 U	12 U
Methyl cyclohexane				230 J	11 U	11 U	11 U	12 U
Methyl ethyl ketone (2-butanone)	50000			250 J	11 U	11 U	8 J	. 12 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			470 J	11 U	11 U	11 U	12 U
Methyl tertiary butyl ether (MTBE)				1300 UJ	11 U	11 U	11 U	12 U
Methylene chloride	1000		20	1300 U	11 U	14 U	13 U	32 U
Styrene	100000		4000	1300 U	11 U	11 U	11 U	. 12 U
Tetrachloroethane-1,1,2,2	1000		3	1300 U	11 U	11 U	11 U	12 U
Tetrachloroethylene	1000	6000	60	1200 ± (AC)	11 U	11 U	11 U	12 U
Toluene	500000	1000000	12000	7600	11 U	11 U	11 U	2 J
Trichlorobenzene-1,2,4	100000		5000	1300 U	11 U	11 U	11 U	12 U
Trichloroethane-1,1,1	50000		2000	2000 (c)	11 U	11 U	11 U	12 U
Trichloroethane-1,1,2	1000		20	1300 U	11 U	11 U	11 U	- 12 U
Trichloroethylene	1000	54000	60	710 J. (c)	11 U	11 U	11 U	12 U
Trichlorofluoromethane				1300 U	11 U	1 J	11 U	1 J
Vinyl chloride	10000	7000	10	320 J (c)	11 U	11 U	11 U	12 U
Xylenes, total	67000		210000	7500	11 U	11 U	11 U	12 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

3026

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC		MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval			[1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID			[B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name								
Volatile Organic Compounds (ug/Kg))				,			
Acetone	100000		16000	22 UJ	6 J	21	28 UJ	16 UJ
Benzene	1000	13000	30	11 U	18 U	12 U	. 11 U	13 U
Bromoform	1000		800	11 U	18 U	12 U	11 U	13 U
Bromomethane	1000	1000000	200	11 U	18 U	12 U	11 U	13 U
Carbon disulfide			32000	11 U	18 U	12 U	11 U	13 U
Carbon tetrachloride	1000		70	11 U	18 U	12 U	11 U	13 U
Chlorobenzene	1000		1000	11 U	18 U	12 U	11 U	13 U
Chloroethane				11 U	18 U	12 U	11 U	13 U
Chloroform	1000	28000	600	11 U	18 U	12 U	11 U	13 U
Chloromethane	10000	<u> </u>		11 U	18 U	12 U	11 U	13 U
Cyclohexane				11 U	18 U	12 U	11 U	13 U
DBCP (1,2-dibromo-3-chloropropane)				11 U	18 U	12 U	11 U	13 U
Dibromochloromethane	1000		400	11 U	18 U	12 U	11 U	13 U
Dibromoethane-1,2				11 U	18 U	12 U	11 U	13 U
Dichlorobenzene-1,2	50000		17000	11 U	18 U	12 U	11 U	13 U
Dichlorobenzene-1,3	100000			11 U	18 U	12 U	11 U	13 U
Dichlorobenzene-1,4	100000		2000	11 U	18 U	- 12 U	11 U	13 U
Dichlorobromomethane	1000		600	11 U	18 U	12 U	11 U	13 U
Dichlorodifluoromethane				11 UJ	18 U	12 U	11 UJ	13 UJ
Dichloroethane-1,1	10000		23000	11 U	18 U	12 U	11 U	13 U
Dichloroethane-1,2	1000		20	11 U	18 U	12 U	11 U	13 U
Dichloroethene-1,2 trans	50000		700	11 U	18 U	12 U	11 U	13 U
Dichloroethylene-1,1	10000		60	11 U	18 U	12 U	11 U	13 U
Dichloroethylene-1,2 cis	1000	1000000	400	11 U	18 U	12 U	11 U	13 U
Dichloropropane-1,2			30	11 U	- 18 U	12 U	11 U	13 U
Dichloropropene-1,3 cis			4	11 U	18 U	12 U	11 U	13 U
Dichloropropene-1,3 trans			4	11 U	18 U	12 U	11 U	13 U
Ethylbenzene	100000	1000000	13000	11 U	18 U	12 U	11 U	13 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				11 U	18 U	12 U	11 U	13 U

J - Reported value estimated in quantity

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval			Ì	1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name								
		<u> </u>	<u> </u>					
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				11 U	18 U	12 U	11 U	13 U
Isopropylbenzene				11 U	18 U	12 U	11 U	13 U
Methyl acetate				11 U	18 U	12 U	11 U	13 U
Methyl cyclohexane		<u> </u>		11 U	18 U	12 U	11 U	13 U
Methyl ethyl ketone (2-butanone)	50000			· 11 U	18 U	12 U	11 U	13 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			11 U	18 U	12 U	11 U	13 U
Methyl tertiary butyl ether (MTBE)				11 U	- 18 U	12 U	11 U	13 U
Methylene chloride	1000		20	12 U	18 U	12 U	13 U	16 U
Styrene	100000		4000	11 U	18 U	12 U	11 U	13 U
Tetrachloroethane-1,1,2,2	1000		3	11 U	18 U	12 U	11 U	13 U
Tetrachloroethylene	1000	6000	60	11 U	18 U	12 U	11 U	13 U
Toluene	500000	1000000	12000	11 U	18 U	12 U	11 U	13 U
Trichlorobenzene-1,2,4	100000		5000	11 U	18 U	12 U	11 U	13 U
Trichloroethane-1,1,1	50000	1	2000	11 U	18 U	12 U	11 U	13 U
Trichloroethane-1,1,2	1000		20	11 U	18 U	12 U	11 U	13 U
Trichloroethylene	1000	54000	60	11 U	18 U	12 U	11 U	13 U
Trichlorofluoromethane				11 U	18 U	12 U	11 U	13 U
Vinyl chloride	10000	7000	10	11 U	18 U	12 U	11 U	13 U
Xylenes, total	67000		210000	. 11 U	18 U	12 U	11 U	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date			F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval			[0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID]	B0DY5	B0DZ1	B0DE1	B0DD9	B0DE8
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	11 J	9 J	14 UJ	17 UJ	22 J
Benzene	1000	13000	30	10 U	11 U	14 U	17 U	38 U
Bromoform	1000		800	10 U	11 U	14 U	17 U	38 U
Bromomethane	1000	1000000	200	10 U	11 U	14 U	-17 U	38 U
Carbon disulfide			32000	10 U	11 U_	11 J	8 J	38 U
Carbon tetrachloride	1000		70	10 U	11 U	14 U	17 U	38 U
Chlorobenzene	1000		1000	10 U	11 U	14 U	17 U	38 U
Chloroethane				10 U	11 U	14 U	17 U	38 U
Chloroform	1000	28000	600	10 U	11 U	14 · U	17 U	38 U
Chloromethane	10000			10 U	11 U_	14 U	17 U	38 U
Cyclohexane				10 U	11 U	14 U	17 U	38 U
DBCP (1,2-dibromo-3-chloropropane)				10 U	11 U	14 UJ	17 U	38 U
Dibromochloromethane	1000		400	10 U	11 U	14 U	17 U	38 U
Dibromoethane-1,2				10 U	11 U	14 U	17 U	38 U
Dichlorobenzene-1,2	50000		17000	10 U	11 U	14 U	17 U	38 U
Dichlorobenzene-1,3	100000			10 U .	11 U	14 U	17 U	38 U
Dichlorobenzene-1,4	100000		2000	10 U	11 U	14 U	17 U	38 U
Dichlorobromomethane	1000		600	10 U	11 U	14 U	17 U	38 U
Dichlorodifluoromethane				10 UJ	11 U	4 U	17 U	38 U
Dichloroethane-1,1	10000		23000	10 U	11 U	14 U	17 U	38 U
Dichloroethane-1,2	1000		20	10 U	11 U	14 U	17 U	38 U
Dichloroethene-1,2 trans	50000		700	10 U	11 U	14 U	17 U	38 U
Dichloroethylene-1,1	10000		60	10 U	11 U	14 U	17 U	38 U
Dichloroethylene-1,2 cis	1000	1000000	400	10 U	11 U	14 U	17 U	38 U
Dichloropropane-1,2			30	10 U	11 U	14 U	17 U	38 U
Dichloropropene-1,3 cis			4	10 U	11 Ü	14 U	17 U	38 U
Dichloropropene-1,3 trans			4	10 U	11 U	14 U	17 U	38 U
Ethylbenzene	100000	1000000	13000	10 U	11 U	14 U	17 U	38 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				10 U	11 U	14 U	17 U	38 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID (A) (B) (C) MA-SB-78 MA-SB-79 MA-SB-81 MA-SB-81 MA-SB-82 Sample ID IGWSCC NRDCSCC EPASSLDA MA-SB78-SS-0.5 MA-SB79-SS-0.5 MA-SB81-SS MA-SB81-SS-D MA-SB82-SS F20 Sample Date 12/13/2001 12/13/2001 10/18/2001 10/18/2001 10/19/2001 Sample Interval 0.5 - 1 ft 0.5 - 1 ft 0.5 - 1 ft 0.5 - 1 ft 0.5 - 1 ft CLP Sample ID B0DY5 B0DZ1 B0DD9 B0DE8 B0DE1 Chemical Name Volatile Organic Compounds (ug/Kg) Hexanone-2 10 U 11 U 14 U.I 17 U 38 U 17 U Isopropylbenzene 10 U 11 U 14 U 38 U 11 U 17 U Methyl acetate 10 U 14 U 38 U Methyl cyclohexane 10 U 11 U 14 U 17 U 38 U Methyl ethyl ketone (2-butanone) 50000 10 U 11 U 14 U 17 U 38 U 10 U 14 U.J Methyl isobutyl ketone (4-methyl-2-penta 50000 11 U 17 U 38 U Methyl tertiary butyl ether (MTBE) 10 U 11 U 14 U 17 U 38 U Methylene chloride 1000 20 U 16 U 14 U 17. U 38 U 20 Styrene 4000 11 U 100000 10 U 14 U 17 U 38 U Tetrachloroethane-1.1.2.2 1000 3 11 U 17 11 38 U 10 U 14 11 64 (c) 84 (c) Tetrachloroethylene 1000 6000 60 10 U 11 U 58 14 U Toluene 500000 1000000 12000 10 U 11 U 17 U 38 U 100000 5000 17 U 38 U Trichlorobenzene-1.2.4 10 U 11 U 14 U Trichloroethane-1,1,1 50000 2000 10 U 11 U 14 U 17 U 38 U Trichloroethane-1.1.2 1000 20 10 U 11 U 14 U 17 U 38 U Trichloroethylene 1000 54000 60 10 Ü 11 U 4 J 14 U 38 U Trichlorofluoromethane · 11 U 17 U 38 U 10 U 14 U

Vinyl chloride

Xylenes, total

10000

67000

7000

10

210000

10 U

10 U

11 U

11 U

14 U

14 U

17 U

17 U

38 U

38 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date			F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID				B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name		Ī						
		ĺ						
Volatile Organic Compounds (ug/Kg)								
Acetone	100000		16000	11 U	13 UJ	8 J	9 J	1300 UJ
Benzene	1000	13000	30	11 U	13 UJ	16 U	16 UJ	4500 (AC)
Bromoform	1000		800	11 U	13 UJ	16 U	. 16 UJ	1300 U
Bromomethane	1000	1000000	200	11 U	13 UJ	16 U	16 UJ	1300 U
Carbon disulfide			32000	11 U	13 UJ	16 U	16 UJ	1300 U
Carbon tetrachloride	1000		70	11 U	13 UJ	16 U	16 UJ	1300 U
Chlorobenzene	1000		1000	11 U	13 UJ	16 U	16 UJ	1300 U
Chloroethane				11 U	13 UJ	16 U	16 UJ	1300 UJ
Chloroform	1000	28000	600	11 U	13 UJ	16 U	16 UJ	1400 (AC)
Chloromethane	10000	<u> </u>		11 U	13 UJ	16 U	16 UJ	1300 U
Cyclohexane				11 U	13 UJ	16 U	16 UJ	1300 U
DBCP (1,2-dibromo-3-chloropropane)				11 U	13 UJ	16 U	16 UJ	1300 U
Dibromochloromethane	1000		400	11 U	13 UJ	16 U	16 UJ	1300 U
Dibromoethane-1,2				11 U	13 UJ	16 U	16 UJ	1300 U
Dichlorobenzene-1,2	50000		17000	11 U	13 UJ	16 U	16 UJ	1000 J
Dichlorobenzene-1,3	100000			11 U	13 UJ	16 U	16 UJ	1300 U
Dichlorobenzene-1,4	100000		2000	11 U	13 UJ	16 U	16 UJ	170 J
Dichlorobromomethane	1000		600	11 U	13 UJ	16 U	16 UJ	1300 U
Dichlorodifluoromethane				11 U	13 UJ	16 U	16 UJ	1300 U
Dichloroethane-1,1	10000		23000	11 U	13 UJ	16 U	16 UJ	810 J
Dichloroethane-1,2	1000		20	11 U	13 UJ	16 U	16 UJ	1300 U
Dichloroethene-1,2 trans	50000		700	11 U	13 UJ	16 U	16 UJ	1300 U
Dichloroethylene-1,1	10000		60	11 U	13 UJ	16 U	16 UJ	1300 U
Dichloroethylene-1,2 cis	1000	1000000	400	11 U	13 UJ	16 U	16 UJ	740, J 3 (c)
Dichloropropane-1,2			30	11 U	13 UJ	16 U	16 UJ	1300 U
Dichloropropene-1,3 cis			4	11 U	13 UJ	16 U	16 UJ	1300 U
Dichloropropene-1,3 trans			4	11 U	13 UJ	16 U	16 UJ	1300 U
Ethylbenzene	100000	1000000	13000	11 U	13 UJ	16 U	16 UJ	7500
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				11 U	13 UJ	16 U	16 UJ	1300 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date			F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID	•.			B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				11 U	13 UJ	16 U	16 UJ	410 J
Isopropylbenzene				11 U	13 UJ	16 U	16 UJ	590 J
Methyl acetate				11 U	13 UJ	16 U	16 UJ	620 J
Methyl cyclohexane		1		11 U	13 UJ	16 U	16 UJ	730 J
Methyl ethyl ketone (2-butanone)	50000			11 U	13 UJ	16 U	16 UJ	1300 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			11 U	13 UJ	16 U	16 UJ	1300 U
Methyl tertiary butyl ether (MTBE)				11 U	13 UJ	16 U	16 UJ	1300 UJ
Methylene chloride	1000		20	11 U	13 UJ	16 U	16 UJ	1300 U
Styrene	100000		4000	11 U	13 UJ	16 U	16 UJ	1300 U
Tetrachloroethane-1,1,2,2	1000		3	11 U	13 UJ	16 U	16 UJ	1300 U
Tetrachloroethylene	1000	6000	60	11 U.	13 UJ	16 U	4 J	3700 🗽 (AC
Toluene	500000	1000000	12000	2· J	2 J	16 U	9 J	5600
Trichlorobenzene-1,2,4	100000		5000	11 U	13 UJ	16 U	16 UJ	5900 - c
Trichloroethane-1,1,1	50000		2000	11 U	13 UJ	16 U	16 UJ	1300 U
Trichloroethane-1,1,2	1000		20	11 U	13 UJ	16 U	16 UJ	1300 U
Trichloroethylene	1000	54000	60	11 U	13 UJ	16 U	15 J	7900 × (AC
Trichlorofluoromethane				1 J	13 UJ	16 U	16 ŲJ	1300 U
Vinyl chloride	10000	7000	10	.11 U	13 UJ	16 U	16 UJ	1300 U
Xylenes, total	67000		210000	2 J	13 UJ	16 U	16 UJ	48000

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date	1		F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval	1		 	1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID	1			B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
Volatile Organic Compounds (ug/Kg	1)							
Acetone	100000		16000	13 UJ	9 J	11 U	13 U	38
Benzene	1000	13000	30	13 U	15 U	11 U	13 U	10 U
Bromoform	1000		800	13 U	15 U	11 U	13 U	10 U
Bromomethane	1000	1000000	200	13_U	15 U	11 U	13 U	10 U
Carbon disulfide			32000	13 U	15 U	11 U	13 U	_ 2 J
Carbon tetrachloride	1000		70	13 U	15 U	11 U	13 U	10 U
Chlorobenzene	1000		1000	13_U	15 U	11 U	13 U	10 U
Chloroethane				13 U	15 U	11 U	13 U	10 U
Chloroform	1000	28000	600	13 U	9 J	11 U	13 U	10 U
Chloromethane	10000			13 U	15 U	11 U	13 U	10 U
Cyclohexane				13_U	15 U	11 U	13 U	10 U
DBCP (1,2-dibromo-3-chloropropane)				13 U	15 U	11 U	. 13 U	10 U
Dibromochloromethane	1000		400	13 U	15 U	11 U	13 U	10 U
Dibromoethane-1,2				13 U	15 U	11 U	13 U	10 U
Dichlorobenzene-1,2	50000		17000	13 U	15 U	11 U	13 U	10 U
Dichlorobenzene-1,3	100000			13 U	15 U_	11 U	13 U	. 10 U
Dichlorobenzene-1,4	100000		2000	13 U	15 U	11 U	13 U	10 U
Dichlorobromomethane	1000		600	13 U	15 U	11 U	13 U	10 U
Dichlorodifluoromethane				13 UJ	15 U	11 U	13 U	10 U
Dichloroethane-1,1	10000		23000	13 U	4 J	11 U	13 U	10 U
Dichloroethane-1,2	1000		20	13 U	15 U	11 U	13 U	. 10 U
Dichloroethene-1,2 trans	50000		700	13 U	15 U	11 U	13 U	10 U
Dichloroethylene-1,1	10000		60	13 U	15 U	11 U	13 U	10 U
Dichloroethylene-1,2 cis	1000	1000000	400	13 U	15 U	1 J	13 U	10 U
Dichloropropane-1,2			30	13 U	15 U	11 U	13 U	10 U
Dichloropropene-1,3 cis			4	13 U	15 U	11 U	13 U	10 U
Dichloropropene-1,3 trans			4	13 U	15 U	11 U	13 U	10 U
Ethylbenzene	100000	1000000	13000	13 U	15 U	11 U	13 U	10 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoro	€			13_U	15 U	11 U	13 U	10 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date			F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval]		[1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID			l I	B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
·								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				13 U	15 U	11 U	13 U	10 U
Isopropylbenzene				13 U	15 U	11 U	13 U	10 U
Methyl acetate				13 U	15 U	11 U	13 U	10 U
Methyl cyclohexane				13 U	15 U	11 U	13 U	10 U
Methyl ethyl ketone (2-butanone)	50000			13 U	15 U	11 U	13 U	3 J
Methyl isobutyl ketone (4-methyl-2-penta	50000			13 U	15 U	11 U	13 U	10 U
Methyl tertiary butyl ether (MTBE)				13 U	15 U	11 U	13 U	10 U
Methylene chloride	1000		20	27 U	15 U	11 U	13 U	10 U
Styrene	100000		4000	13 U	. 15 U	11 U	13 U	10 U
Tetrachloroethane-1,1,2,2	1000		3	13 U	15 U	11 U	13 U	10 U
Tetrachloroethylene	1000	6000	60	13 U	11 J	11 U	13 U	10 U
Toluene	500000	1000000	12000	2 J	15 Ų	2 J	2 J	10 U
Trichlorobenzene-1,2,4	100000		5000	13 U	15 U	11 U	13 U	10 U
Trichloroethane-1,1,1	50000		2000	13 U	10 J	11 U	13 U	10 U
Trichloroethane-1,1,2	1000		20	13 U	15 U	11 U	13 U	10 U
Trichloroethylene	1000	54000	60	13 U	4 J	1 J	13 U	11
Trichlorofluoromethane				2 J	15 U	2 J	2 J	10 U
Vinyl chloride	10000	7000	10	13 U	15 U	11 U	13 U	10 U
Xylenes, total	67000		210000	13 U	15 U	2 J	1 J	10 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date			F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DH6	B0DH8RE	B0FW3	B0FT2	B0FT4
Chemical Name								
Volatile Organic Compounds (ug/Kg))			٠,				-
Acetone	100000		16000	. 4 J	21 J	6 J	2 J	18 UJ
Benzene	1000	13000	30	15 U	18 U	12 U	12 U	18 U
Bromoform	1000		800	15 U	18 U	12 U	12 U	18 U
Bromomethane	1000	1000000	200	15 U	18 U	12 U	12 U	18 U
Carbon disulfide			32000	15 U	18 U	12 U	12 U	18 U
Carbon tetrachloride	1000		70	15 U	18 U	12 U	. 12 U	18 U
Chlorobenzene	1000		1000	15 U	18_UJ	12 U	12 U	18 U
Chloroethane				15 U	18 U	12 U	12 U	18 U
Chloroform	1000	28000	600	15 U	18 U	12 U	12 U	18 U
Chloromethane	10000			15 U	18 U	12 U	12 U	18 U
Cyclohexane				15 U	18 U	12 U	12 U	18 U
DBCP (1,2-dibromo-3-chloropropane)				15 U	18 UJ	12 U	12 U	18 U
Dibromochloromethane	1000		400	15 U	18 UJ	12 U	12 U	18 U
Dibromoethane-1,2				15 U	18 UJ	12 U	12 U	18 U
Dichlorobenzene-1,2	50000		17000	15 U	18 UJ	12 U	12 U	18 U
Dichlorobenzene-1,3	100000			15 U	. 18 UJ	12 U	12 U	18 U
Dichlorobenzene-1,4	100000		2000	15 U	18 UJ	12 U	12 U	18 U
Dichlorobromomethane	1000		600	15 U	18 U	12 U	12 U	18 U
Dichlorodifluoromethane				15 U	18 U	12 UJ	12 UJ	18 UJ
Dichloroethane-1,1	10000		23000	15 U	18 U	12 U	12 U	18 U
Dichloroethane-1,2	1000		20	15 U	18 U	12 U	12 U	18 U
Dichloroethene-1,2 trans	50000		700	15 U	18 U	12 U	12 U	18 U
Dichloroethylene-1,1	10000		60	15 U	18 U	12 U	12 U	18 U
Dichloroethylene-1,2 cis	1000	1000000	400	15 U	18 U	1 J	12 U	18 U
Dichloropropane-1,2			30	15 U	18 U	12 U	12 U	18 U
Dichloropropene-1,3 cis			4	15 U	18 U	12 U	12 U	18 U
Dichloropropene-1,3 trans			4	15 U	18 U	12 U	12 U	18 U
Ethylbenzene	100000	1000000	13000	15 U	18 UJ	12 U	12 U	18 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				15 U	18 U	12 U	12 U	18 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	· (A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date			F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DH6	B0DH8RE	B0FW3	B0FT2	B0FT4
Chemical Name								
Volatile Organic Compounds (ug/Kg	}							
Hexanone-2				15 U	18 UJ	12 U	12 U	18 U
Isopropylbenzene				15 U	18 UJ	12 U	12 U	18 U
Methyl acetate				15 U	18 U	12 U	12 U	18 U
Methyl cyclohexane				15 U	18 U	12 U	12 U	18 U
Methyl ethyl ketone (2-butanone)	50000			15 UJ	18 U	12 U	12 U	18 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			15 U	18 UJ	12 U	12 U	18 U
Methyl tertiary butyl ether (MTBE)				15 U	18 U	12 U	12 U	18 U
Methylene chloride	1000		20	15 U	18 U	16 U	12 U	24 U
Styrene	100000		4000	15 U	18 UJ	12 U	12 U	18 U
Tetrachloroethane-1,1,2,2	1000		3	15 U	18 UJ	12 U	12 U	18 U
Tetrachloroethylene	1000	6000	60	15 U	18 UJ	12 U	12 U	18 U
Toluene	500000	1000000	12000	15 U	18 UJ	2 J	1 J	3 J
Trichlorobenzene-1,2,4	100000		5000	15 ÚJ	18 UJ	12 U	12 U	18 U
Trichloroethane-1,1,1	50000		2000	15 U	18 U	12 U	12 U	18 U
Trichloroethane-1,1,2	1000		20	15 U	18 U	12 U	12 U	18 U
Trichloroethylene	1000	54000	60	15 U	18 U	12 U	12 U	18 U
Trichlorofluoromethane				15 U	18 U	1 J	12 U	18 U
Vinyl chloride	10000	7000	10	15 U	18 U	12 U	12 U	18 U
Xylenes, total	67000		210000	15 U	18 UJ	12 U	12 U	2 J

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-S0214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date			F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval]		1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name					-			
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	12 UJ	12 UJ	460 J	11 J	15 UJ
Benzene	1000	13000	30	12 UJ	12 U	2 J	14 U	15 U
Bromoform	1000		800	12 UJ	12 U	19 U	14 U	15 U
Bromomethane	1000	1000000	200	12 UJ	12 U	19 U	14 U	15 U
Carbon disulfide			32000	12 ŲJ	12 U	19 U	14 U	15 U
Carbon tetrachloride	1000		70	12 UJ	12 U	19 U	14 U	15 U
Chlorobenzene	1000		1000	12 R	12 U	19 UJ	14 U	15 U
Chloroethane				12 UJ	12 U	19 U	14 U	15 U
Chloroform	1000	28000	600	12 UJ	12 U	19 U	14 U	15 U
Chloromethane	10000			12 UJ	12 U	19 U	14 U	15 U
Cyclohexane		·		12 UJ	12 U	19 U	14 U	15 U
DBCP (1,2-dibromo-3-chloropropane)				12 R	12 U	19 UJ	14 U	15 U
Dibromochloromethane	1000		400	12 UJ	12 U	19 U	14 U	15 U
Dibromoethane-1,2				12 R	12 U	19 UJ	14 U	15 U
Dichlorobenzene-1,2	50000		17000	12 R	12 U	19 UJ	14 U	15 U
Dichlorobenzene-1,3	100000			12 R	12 U	19 UJ	14 U	15 U
Dichlorobenzene-1,4	100000		2000	12 R	12 U	19 UJ	14 U	15 U
Dichlorobromomethane	1000		600	12 UJ	12 U	19 U	14 U	15 U
Dichlorodifluoromethane				12 UJ	12 U	19 U	14 UJ	15 UJ
Dichloroethane-1,1	10000		23000	12 UJ	12 U	19 U	14 U	15 U
Dichloroethane-1,2	1000		20	12 UJ	12 U	19 U_	14 U	15 U
Dichloroethene-1,2 trans	50000		700	12 UJ.	12 U	19 U	14 U	15 U
Dichloroethylene-1,1	10000		60	12 UJ	12 U	19 U	14 U	15 U
Dichloroethylene-1,2 cis	1000	1000000	400	12 UJ	12 U	19 U	14 U	15 U
Dichloropropane-1,2			30	12 UJ	12 U	19 U	14 U	15 U
Dichloropropene-1,3 cis			4	12. UJ	12 U	19 U	14 U	15 U
Dichloropropene-1,3 trans			4	12 UJ	12 U	19 U	14 U	15 U
Ethylbenzene	100000	1000000	13000	12 R	12 U	19 UJ	14 U	15 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				12 UJ	12 UJ	19 U	14 U	15 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date			F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval	. ,			1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				12 R	12 U	19 UJ	14 U	15 U
Isopropylbenzene				12 R	12 U	19 UJ	14 U	15 U
Methyl acetate				12 UJ	12 U	19 U	14 U	15 U
Methyl cyclohexane				12 UJ	12 U	19 U	14 U	15 U
Methyl ethyl ketone (2-butanone)	50000			12 UJ	12 U	32	14 U	15 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			12 R	. 12 U	19 UJ	14 U	15 U
Methyl tertiary butyl ether (MTBE)				12 UJ	12 U	19 U	14 U	15 U
Methylene chloride	1000		20	28 UJ	13 U	19 U	14 U	15 U
Styrene	100000		4000	12 R	12 U	19 UJ	14 U	15 U
Tetrachloroethane-1,1,2,2	1000		3	12 R	12 U	19 UJ	14 U	15 U
Tetrachloroethylene	1000	6000	60	12 R	12 U	21 J	14 U	15 U
Toluene	500000	1000000	12000	3 J	12 U	16 J	14 U	15 U
Trichlorobenzene-1,2,4	100000		5000	12 R	12 U	19 UJ	14 U	15 U
Trichloroethane-1,1,1	50000		2000	12 UJ	12 U	19 U	14 U	15 U
Trichloroethane-1,1,2	1000		20	12 UJ	12 U	19 U	14 U	15 U
Trichloroethylene	1000	54000	60	12 UJ	12 U	3 J	14 U	15 U
Trichlorofluoromethane				12 UJ	12 UJ	19 U	14 U	15 U
Vinyl chloride	10000	7000	10	12 UJ	12 U	19 U	14 U	15 U
Xylenes, total	67000		210000	2 J	12 U	19 UJ	14 U	15 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	20 UJ	9 J	18	17	4 J
Benzene	1000	13000	30	15 U	13 U	14 U	14 U	13 U
Bromoform	1000		800	15 U	13 U	14 U	14 U	13 U
Bromomethane	1000	1000000	200	-15 U	13 U	14 U	14 U	13 U
Carbon disulfide			32000	15 U	13 U	14 U	2 J	13 U
Carbon tetrachloride	1000		70	15 U	13 U	14 U	14 U	13 U
Chlorobenzene	1000		1000	15 U	13 U	14 U	14 U	13 U
Chloroethane		-		15 U	13 U	14 U	14 U	13 U
Chloroform	1000	28000	600	15 U	13 U	14 U	2 J	2 J
Chloromethane	10000			15 U	13 U	14 U	14 U	13 U
Cyclohexane				15 U	13 U	14 U	14 U	13 U
DBCP (1,2-dibromo-3-chloropropane)				15 U	13 U	14 U	14 U	13 U
Dibromochloromethane	1000		400	15 U	13 U	14 U	14 U	13 U
Dibromoethane-1,2				15 U	13 U	14 U	14 U	13 U
Dichlorobenzene-1,2	50000		17000	15 U	. 13 U	14 U	14 U	13 U
Dichlorobenzene-1,3	100000			15 U	13 U	14 U	14 U	13 U
Dichlorobenzene-1,4	100000		2000	15 U	13 U	14 U	14 U	13 U
Dichlorobromomethane	1000		600	15 U	13 U	14 U	14 U	13 U
Dichlorodifluoromethane				15 UJ	13 U	14 U	14 U	13 U
Dichloroethane-1,1	10000		23000	15 U	13 U	14 U	14 U	13 ∙U
Dichloroethane-1,2	1000		20	15 U	13 U	14 U	14 U	13 U
Dichloroethene-1,2 trans	50000		700	15 U	13 U	14 U	14 U	13 U
Dichloroethylene-1,1	10000		60	15 U	13 U	14 U	14 U	13 U
Dichloroethylene-1,2 cis	1000	1000000	400	15 U	13 U	14 U	14 U	13 U
Dichloropropane-1,2			30	15 U	13 U	14 U	14 U	13 U
Dichloropropene-1,3 cis			4	15 U	13 U	14 U	14 U	13 U
Dichloropropene-1,3 trans			4	15 U	13 U	14 U	14 U	13 U
Ethylbenzene	100000	1000000	13000	15 U	13 U	14 U	14 U	13 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				15 U	13 U	14 U	14 U	13 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name								
							·	
Volatile Organic Compounds (ug/Kg)								
Hexanone-2				15 U	13 U	14 U	14 U	13 U
Isopropylbenzene				15 U	13 U	14 U	14 U	13 U
Methyl acetate				15 U	13 U	14 U	14 U	13 U
Methyl cyclohexane				15 U	13 U	14 U	14 U	13 U
Methyl ethyl ketone (2-butanone)	50000			15 U	13 U	14 U	14 U	13 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			15 U	13 U	14 U	14 U	13 U
Methyl tertiary butyl ether (MTBE)				15 U	13 U	14 U	14 U	13 U
Methylene chloride	1000	Ĭ	20	15 U	13 U	- 14 U	14 U	13 U
Styrene	100000		4000	15 U	13 U	14 U	14 U	13 U
Tetrachioroethane-1,1,2,2	1000		3	15 U	13 U	14 U	14 U	13 U
Tetrachloroethylene	1000	6000	60	- 15 U	13 U	14 U	14 U	13 U
Toluene	500000	1000000	12000	. 15 U	13 U	14 U	14 U	2 J
Trichlorobenzene-1,2,4	100000		5000	15 U	13 U	14 U	14 U	13 U
Trichloroethane-1,1,1	50000		2000	15 U	13 U	14 U	14 U	13 U
Trichloroethane-1,1,2	1000		20	15 U	13 U	14 U	14 U	13 U
Trichloroethylene	1000	54000	60	15 ·U	13 U	14 U	. 2 J	3 J -
Trichlorofluoromethane				15 U	13 U	14 UJ	14 UJ	2 J
Vinyl chloride	10000	7000	10	15 U	13 U	14 U	14 U	13 U
Xylenes, total	67000		210000	15 U	13 U	14 U	14 U	2 J

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date	1		F20	12/17/2001	12/17/2001
Sample Interval	1	[l [1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1		!	B0FX2	B0FX5
Chemical Name					
Volatile Organic Compounds (ug/Kg	1)				
Acetone	100000		16000	2 J	3 J
Benzene	1000	13000	30	12 U	17 U
Bromoform	1000		800	12 U	17 U
Bromomethane	1000	1000000	200	12 U	17 U
Carbon disulfide			32000	12 U	17 U
Carbon tetrachloride	1000		70	12 U	17 U
Chlorobenzene	1000		1000	12 U	17 U
Chloroethane				12 U	17 U
Chloroform	1000	28000	600	12 U	17 U
Chloromethane	10000			12 U	17 U
Cyclohexane				12 U	1 <u>7</u> U
DBCP (1,2-dibromo-3-chloropropane)				12 U	17 U
Dibromochloromethane	1000		400	12 U	17 U
Dibromoethane-1,2				12 U	.17 · U
Dichlorobenzene-1,2	50000		17000	12 U	17 U
Dichlorobenzene-1,3	100000			12 U	17 U
Dichlorobenzene-1,4	100000		2000	12 U	17 U
Dichlorobromomethane	1000		600	12 U	17 U
Dichlorodifluoromethane				12 U	17 U
Dichloroethane-1,1	10000		23000	12 U	17 U
Dichloroethane-1,2	1000		20	12 U	17 U
Dichloroethene-1,2 trans	50000		700	12 U	17 U
Dichloroethylene-1,1	10000		60	12 U	17 U
Dichloroethylene-1,2 cis	1000	1000000	400	12 U	17 U
Dichloropropane-1,2			30	12 U	17 U
Dichloropropene-1,3 cis			4	12 U	17 U
Dichloropropene-1,3 trans			4	12 U	17 U
Ethylbenzene	100000	1000000	13000	12 U	17 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoro	d			12 U	17 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.1 Surface Soil -Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

		•			•
Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date		1	F20	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	,			B0FX2	B0FX5
Chemical Name					
Volatile Organic Compounds (ug/Kg)		1	<u> </u>		
Hexanone-2				12 U	17 U
Isopropylbenzene				12 U	17 U
Methyl acetate				12 U	17 U
Methyl cyclohexane				12 U	17 U
Methyl ethyl ketone (2-butanone)	50000			12 U	17 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			12 U	17 U
Methyl tertiary butyl ether (MTBE)				12 U	17 U
Methylene chloride	1000		20	12 U	17 U
Styrene	100000		4000	12 U	17 U
Tetrachloroethane-1,1,2,2	1000		3	12 U	17 U
Tetrachloroethylene	1000	6000	60	12 U	17 U
Toluene	500000	1000000	12000	2 J	2 J
Trichlorobenzene-1,2,4	100000		5000	12 U	17 U
Trichloroethane-1,1,1	50000		2000	12 U	17 U
Trichloroethane-1,1,2	1000		20	12 U	17 U
Trichloroethylene	1000	54000	60	13	17 U
Trichlorofluoromethane				1 J	3 J
Vinyl chloride	10000	7000	10	12 U	17 U
Xylenes, total	67000		210000	1 J	. 2 J

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date			F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID		•		B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name					:			
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	17000 J	370 U	8400 J	. 200 J	130 J
Acenaphthylene	l .		4200000	1200 J	370 U	540 J	3700 U	87 J
Acetophenone				11000 UJ	370 U	10000 U	3700 U	360 U
Anthracene	100000		12000000	61000 J	14 J	23000	530 J	290 J
Atrazine				11000 UJ	370 U	10000 U	3700 U	360 U
Benzaldehyde				160 J	41 J	10000 U	3700 U	54 J
Benzo(a)anthracene	500000	4000	2000	120000 (J (BC)	57 J	21000 (BC)	1900 J	1000
Benzo(a)pyrene	100000	660	8000	110000 J24 (ABC)	64 J	20000 (BC)	2400: J (B)	1200 (B)
Benzo(b)fluoranthene	50000	4000	5000	110000 J (ABC)	80 J	*24000 (BC)	3000 J	1500
Benzo(g,h,l)perylene			4200000	58000 J	370 U	9500 J	1600 J	640
Benzo(k)fluoranthene	500000	4000	49000	271000 J (BC)	47 J	(B)	1900 J	880
Biphenyl				2000 J	370 U	10000 U	3700 U	54 J
Bromophenyl-4 Phenyl Ether	ŀ			11000 UJ	370 U	10000 U	3700 U	360 U
Butylbenzyl phthalate	100000		930000	11000 UJ	370 U	10000 U	3700 U	62 J
Caprolactam				11000 UJ	370 U	10000 U	3700 U	360 U
Carbazole			600	12000 J (c)	370 U	2400 J (c),	140 J	170 J
Chloroaniline-4			700	11000 UJ	370 U	10000 U	3700 U	360 U
Chloronaphthalene-2				11000 UJ	370 U	10000 U	3700 U	360 U
Chlorophenol-2	10000		4000	11000 UJ_	370 U	10000 U	3700 U	360 U
Chlorophenyl-4 phenyl ether				11000 UJ	370 U	10000 U	3700 U	360 U
Chrysene	500000	40000	160000	120000 J (B)	58 J	20000	1900 J	1000
Cresol-4,6-dinitro-ortho				28000 UJ	920 U	26000 U	9200 U	900 UJ
Cresol-o			15000	11000 UJ	370 U	10000 U	3700 U	52 J
Cresol-p				11000 UJ	370 U	10000 U	3700 U	120 J
Cresol-parachloro-meta	100000		4000	11000 UJ	370 U	10000 U	3700 U	360 U
Dibenzo(a,h)anthracene	100000	660	2000	19000 J , (BC)	12 J	5400 J (BC)	3. 7.10 J (8)	210 J
Dibenzofuran				10000 J	370 U	4500 J	120 J	81 J
Dichlorobenzidine-3,3	100000		7	11000 UJ	370 U	10000 U	3700 U	360 U
Dichlorophenol-2,4	10000		1000	11000 UJ	370 U	10000 U	3700 U	360 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria **Exceedences highlighted** IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date	7		F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval	7	· ·		0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID	7		ļ	B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	11000 UJ	370 U	10000 U	3700 U	65 J
Dinitrophenol-2,4	10000		300	28000 UJ	920 U	26000 U	9200 U	900 UJ
Dinitrotoluene-2,4			0.8	11000 UJ	370 U	10000 U	3700 U	360 U
Dinitrotoluene-2,6			0.7	11000 UJ	370 U	10000 U	3700 U	360 U
Ether, bis(2-chloroethyl)	10000		0.4	11000 UJ	370 U	10000 U	3700 U	360 U
Ether, bis-chloroisopropyl	10000			11000 UJ	370 U	10000 U	3700 U	360 U
Fluoranthene	100000	10000000	4300000	290000 J (A)	100 J	48000	3400 J	2200
Fluorene	100000		560000	22000 J	370 U	10000	200 J	190 J
Hexachlorobenzene	100000		2000	11000 UJ	370 U	10000 U	3700 U	360 U
Hexachlorobutadiene	100000		2000	11000 UJ	370 U	10000 U	3700 U	360 U
Hexachlorocyclopentadiene	100000		400000	11000 UJ	370 U	10000 U	3700 U	360 UJ
Hexachloroethane	100000		500	11000 UJ	370 U	10000 U	3700 U	360 U
Indeno(1,2,3-cd)pyrene	. 500000	4000	14000	59000 J (BC)	54 J	12000 (B)	2000 J	800
Isophorone	50000		500	11000 UJ	370 U	10000 U	3700 U	23 J
Methane, bis(2-chloroethoxy)				11000 UJ	370 U	10000 U	3700 U	360 U
Methylnaphthalene-2	1		[7200 J	370 U	730 J	3700 U	90 J
Naphthalene	100000	4200000	84000	10000 J	370 U	470 J	3700 U	400
Nitroaniline-2				28000 UJ	920 U	26000 U	9200 U	900 U
Nitroaniline-3		·		28000 UJ	920 U	26000 U	9200 U	900 U
Nitroaniline-4				28000 UJ	920 U	26000 U	9200 U	900 U
Nitrobenzene	10000		100	11000 UJ	370 U	10000 U	3700 U	360 U
Nitrophenol-2	1.			11000 UJ	370 U	10000 U	3700 U	360 U
Nitrophenol-4				28000 UJ	920 U	26000 U	9200 U	900 U
Nitroso-di-n-propyl-amine-N	10000		0.05	11000 UJ	370 U	10000 U	3700 U	360 U
Nitrosodiphenylamine-n	100000		1000	11000 UJ	370 U	10000 U	3700 U	360 U
PCP (Pentachlorophenol)	100000		30	28000 UJ	920 U	26000 U	9200 U	900 U
Phenanthrene			4200000	220000 J	57 J	51000	1700 J	1200
Phenoi	50000		100000	11000 UJ	370 U	10000 U	3700 U	360 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		1400 J	370 U	10000 U	8900	6200

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date]		F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID				B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name								
Semivolatile Organic Compounds (L	ıg/Kg)							
Phthalate, di-n-butyl	100000		2300000	11000 UJ	2300	10000 U	9100	170 J
Phthalate, di-n-octyl	100000		10000000	11000 UJ	370 U	10000 U	3700 U	280 J
Phthalate, diethyl	50000			11000 UJ	370 U	10000 U	3700 U	10 J
Phthalate, dimethyl	50000			11000 UJ	370 Ú	10000 U	3700 U	360 U
Pyrene	100000	10000000	4200000	230000 J(A)	87 J	37000	2600 J	2000 -
Trichlorophenol-2,4,5	50000		270000	28000 UJ	920 U	26000 U	9200 U	900 U
Trichlorophenol-2,4,6	10000		200	11000 UJ	370 U	10000 U	3700 U	360 U

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date			F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval	Ì		·	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID			ĺ	B0DG7	B0DF9	B0DG1	B0D99	B0DC4
Chemical Name				,				
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	380 U	68 J	390 U	930 J	1200 J
Acenaphthylene			4200000	380 U	59 J	.83 J	72 J	2200 J
Acetophenone				380 U	380 U	390 U	1800 U	5600 U
Anthracene	100000		12000000	67 J	250 J	300 J	1400 J	5700
Atrazine				380 U	380 U	390 U	1800 U	5600 U
Benzaldehyde				380 U	380 U	390 U	1400 J	5600 U
Benzo(a)anthracene	500000	4000	2000	410	1500	2100 - , · (c)	5100 (BC)	20000 (BC)
Benzo(a)pyrene	100000	660	8000	530	1200 (B)	1.900 (B)	5600 (B)	17000 (BC)
Benzo(b)fluoranthene	50000	4000	5000	470	1600	2400	6900 (BC)	22000 (BC)
Benzo(g,h,I)perylene			4200000	270 J	410 J	950 J	3100	6400
Benzo(k)fluoranthene	500000	4000	49000	360 J	1100	1400	3800	9200 (B)
Biphenyl				380 U	380 U	390 U	47 J	190 J
Bromophenyl-4 Phenyl Ether				380 U	380 U	390 U	1800 U	5600 U
Butylbenzyl phthalate	100000		930000	380 UJ	130 J	110 J	330 J	5600 U
Caprolactam				380 U	380 U	390 U	1800 U	5600 U
Carbazole			600	380 UJ	98 J	84 J	560 J	2500 J (c)
Chloroaniline-4			700	380 U	380 U	390 U	1800 U	5600 U
Chloronaphthalene-2				380 U	380 U	390 U	1800 U	5600 U
Chlorophenol-2	10000		4000	380 U	. 380 U	390 U	1800 U	5600 U
Chlorophenyl-4 phenyl ether				380 U	380 UJ	390 U	1800 U	5600 U
Chrysene	500000	40000	160000	610	1300	1900	4800	20000
Cresol-4,6-dinitro-ortho				950 R	970 U	990 R	4500 U	14000 U
Cresol-o			15000	380 U	380 Ü	390 U	1800 U	5600 U
Cresol-p				380 U	380 U	390 U	1800 U	5600 U
Cresol-parachloro-meta	100000		4000	380 U	380 U	390 U	1800 U	5600 U
Dibenzo(a,h)anthracene	100000	660	2000	78 J	290 J	470 J	860 J (B)	3500 Ji (BC)
Dibenzofuran				380 U	47 J	390 U	340 J	1100 J
Dichlorobenzidine-3,3	100000		7	380 R	380 R	390 R	1800 U	5600 U
Dichlorophenol-2,4	10000		1000	380 U	380 U	390 U	1800 U	5600 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date	}		F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0DG7	B0DF9	B0DG1	B0D99	B0DC4
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	380 U	380 U	390 U	1800 U	5600 U
Dinitrophenol-2,4	10000		300	_950 R	970 R	990 R	4500 U	14000 U
Dinitrotoluene-2,4			0.8	380 U	380 U	390 U	1800 UJ	5600 U
Dinitrotoluene-2,6		·	0.7	380 U	380 U	390 U	1800 U	5600 U
Ether, bis(2-chloroethyl)	10000		0.4	380 U	380 U	390 U	1800 U	5600 U
Ether, bis-chloroisopropyl	10000			380 U	380 U	390 U	1800 U	5600 U
Fluoranthene	100000	10000000	4300000	660	2100	2400	11000	33000
Fluorene	100000		560000	380 U	59 J	54 J	580 J	2200 J
Hexachlorobenzene	100000		2000	380 U	380 U	390 U	1800 U	5600 U
Hexachlorobutadiene	100000		2000	380 U	380 U	390 U	1800 U	5600 U
Hexachlorocyclopentadiene	100000		400000	380 U	380 U	390 U	1800 UJ	5600 UJ
Hexachloroethane	100000		500	380 U	380 U	390 U	1800 U	5600 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	260 J	900 J	1500 J	4200 (8)	9800] - (B)
Isophorone	50000		500	380 U	380 U	390 U	1800 U	5600 U
Methane, bis(2-chloroethoxy)				380 U	380 U	390 U	1800 U	5600 U
Methylnaphthalene-2				380 U	380 U	390 U	150 J	370 J
Naphthalene	100000	4200000	84000	380 U	380 U	390 U	250 J	1200 J
Nitroaniline-2				950 U	970 U	990 U	4500 U	14000 U
Nitroaniline-3	ļ			950 UJ	970 UJ	990 UJ	4500 U	14000 U
Nitroaniline-4				950 UJ	970 R	990 UJ	4500 U	14000 UJ
Nitrobenzene	10000		100	380 U	380 U	390 U	1800 U	5600 U
Nitrophenol-2	ļ <u>.</u>			380 U	380 U	390 Ú	1800 U	5600 U
Nitrophenol-4				950 U	970 U	990 U	4500 U	14000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	380 U	380 U	390 U	1800 UJ	5600 UJ
Nitrosodiphenylamine-n	100000		1000	380 U	380 U	390 U	1800 U	5600 U
PCP (Pentachlorophenol)	100000		30	950 U	970 UJ	990 UJ	4500 U	14000 UJ
Phenanthrene			4200000	460	1200	1200	5100	27000
Phenol	50000		100000	380 ປ	380 U	390 U	1800 U	5600 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		380 UJ	270 J	220 J	3400	5600 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date			F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval			1 [0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0DG7	B0DF9	B0DG1	B0D99	B0DC4
Chemical Name								
Semivolatile Organic Compound	s (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	48 J	110 J	110 J	1800 U	5600 U
Phthalate, di-n-octyl	100000		10000000	380 UJ	380 R	390 R	1800 U	5600 U
Phthalate, diethyl	50000			380 U	380 U	390 U	1800 UJ	5600 UJ
Phthalate, dimethyl	50000			380 U	380 U	390 U	1800 U	5600 U
Pyrene	100000	10000000	4200000	930	2700	4200	7800 ·	29000
Trichlorophenol-2,4,5	50000		270000	950 U	970 U	990 U	4500 U	14000 U
Trichlorophenol-2,4,6	10000		200	380 U	380 U	390 U	1800 U	5600 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC		MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date			F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval]			0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name							Ĭ	
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	2700 J	3700 U	14 J	1200 J	2500 J
Acenaphthylene			4200000	310 J	3700 U	28 J	440 J	640 J
Acetophenone				5700 U	3700 U	360 U	3900 U	7700 U
Anthracene	100000		12000000	4900 J	100 J	62 J	3100 J	9100
Atrazine				5700 U	3700 U	360 U	3900 U	7700 U
Benzaldehyde				5700 UJ	3700 U	360 U	260 J	140 J
Benzo(a)anthracene	500000	4000	2000	13000 (Bc)	600 J	260 J	7600 (BC)	19000 (BC)
Benzo(a)pyrene	100000	660	8000	13000 (BC)	670°J (B)	360 J	8000 (BC)	20000 (BC)
Benzo(b)fluoranthene	50000	4000	5000	19000 (BC)	830 J	530	1.0000 (BC)	25000 (BC)
Benzo(g,h,I)perylene			4200000	7200	3700 U	170 J	4700	9000
Benzo(k)fluoranthene	500000	4000	49000	7900 (B)	410 J	280 J	4100 (B)	11000 (B)
Biphenyl				180 J	3700 U	360 U	560 J	600 J
Bromophenyl-4 Phenyl Ether				5700 U	3700 U	360 U	3900 U	7700 U
Butylbenzyl phthalate	100000		930000	290 J	3700 U	360 U	220 J	7700 U
Caprolactam	_			5700 U	3700 U	360 U	3900 U	7700 U
Carbazole			600	2400 J (c)	3700 U	28 J	1500 J 🔭 (c)	2600 J (c)
Chloroaniline-4			700	5700 U	3700 U	360 U	3900 U	7700 U
Chloronaphthalene-2				5700 U	3700 U	360 U	3900 U	7700 U
Chlorophenol-2	10000		4000	5700 U	3700 U	360 U	3900 U	7700 U
Chlorophenyl-4 phenyl ether				5700 U	3700 U	360 U	3900 U	7700 U
Chrysene	500000	40000	160000	14000	660 J	350 J	9700	20000
Cresol-4,6-dinitro-ortho				14000 U	9300 U_	900 U	9800 UJ	19000 U
Cresol-o			15000	5700 U	3700 U	360 U	3900 U_	7700 Ü
Cresol-p				5700 U	3700 U	360 U	340 J	7700 U
Cresol-parachloro-meta	100000		4000	5700 U	3700 U	360 U	3900 U	7700 U
Dibenzo(a,h)anthracene	100000	660	2000	2200 J (BC)	130 J	90 J	2300 J (BC)	3300 J. (BC)
Dibenzofuran				1500 J	3700 U	360 U	920 J	1600 J
Dichlorobenzidine-3,3	100000		7	5700 U	3700 U	360 U	3900 UJ	7700 U
Dichlorophenol-2,4	10000		1000	5700 U	3700 U	360 U	3900 U	7700 U

J - Reported value estimated in quantity R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date			F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval	1			0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID	1			B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	5700 U	3700 U	360 U	3900 U	7700 U
Dinitrophenol-2,4	10000		300	14000 UJ	9300 U	900 U	9800 UJ	19000 U
Dinitrotoluene-2,4			0.8	5700 U	3700 U	360 U	3900 U	7700 U
Dinitrotoluene-2,6			0.7	5700 U	3700 U	360 U	3900 U	7700 U
Ether, bis(2-chloroethyl)	10000		0.4	5700 UJ	3700 U	360 U	3900 U	7700 U
Ether, bis-chloroisopropyl	10000			5700 UJ	3700 U	360 U	3900 U	7700 U
Fluoranthene	100000	10000000	4300000	32000	880 J	530	15000	35000
Fluorene	100000		560000	2000 J	3700 U	16 J	3900 U	3000 J
Hexachlorobenzene	100000		2000	5700 U	3700 U	360 U	3900 U	7700 U
Hexachlorobutadiene	100000		2000	5700 UJ	3700 U	360 U	3900 U	7700 U
Hexachlorocyclopentadiene	100000		400000	5700 U	3700 U	360 U	3900 UJ	7700 UJ
Hexachloroethane	100000		500	5700 UJ	3700 U	360 U	3900 U	7700 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	* 9000 (B)	490 J	240 J	5700 (B)	12000 (8)
Isophorone	50000		500	5700 U	3700 U	360 U	3900 U	7700 U
Methane, bis(2-chloroethoxy)				5700 U	3700 U	360 U	3900 U	7700 U
Methylnaphthalene-2				540 J	3700 U	360 U	550 J	670 J
Naphthalene	100000	4200000	84000	5700 U	170 J	89 J	1400 J	3500 J
Nitroaniline-2				14000 UJ	9300 U	900 U	9800 U	19000 U
Nitroaniline-3				14000 U	9300 U	900 U	9800 U	19000 U
Nitroaniline-4	<u></u>			14000 U	9300 U	900 U	9800 U	19000 UJ
Nitrobenzene	10000		100	5700 U	3700 U	360 U	3900 U	7700 U
Nitrophenol-2				5700 U	3700 U	360 U	3900 U	7700 U
Nitrophenol-4				14000 UJ	9300 U	900 U	9800 U	. 19000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	5700 U	3700 U	360 U	3900 UJ	7700 UJ
Nitrosodiphenylamine-n	100000		1000	5700 U	3700 U	360 U	3900 U	7700 U
PCP (Pentachlorophenol)	100000		30	14000 U	9300 U	900 U	9800 U	19000 UJ
Phenanthrene			4200000	23000	520 J	240 J	14000	28000
Phenol	50000		100000	160 J	3700 U	360 U	3900 U	7700 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000	<u> </u>	5700 U	3700 U	490 U	3900 U	7700 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date			F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval				0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID			L	B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name								
Semivolatile Organic Compoun	ds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	400 J	220 J	38 J	470 J	490 J
Phthalate, di-n-octyl	100000		10000000	5700 U	3700 U	30 J	3900 U	7700 U
Phthalate, diethyl	50000			5700 U	3700 U	360 U	290 J	7700 UJ
Phthalate, dimethyl	50000			5700 U	3700 U	360 U	3900 U	7700 U
Pyrene	100000	10000000	4200000	24000	880 J	380	13000	38000
Trichlorophenol-2,4,5	50000		270000	14000 U	9300 U	900 U	9800 U	19000 U
Trichlorophenol-2,4,6	10000		200	5700 U	3700 U	360 U	3900 U	7700 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	· (B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date	1		F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval	1			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID		l ·	,	B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name								
Semivolatile Organic Compounds (L	g/Kg)		•					
Acenaphthene	100000		570000	180 J	1100	350 U	13 J	11000 UJ
Acenaphthylene			4200000	120 J	86 J	350 U	16 J	11000 UJ
Acetophenone				340 U	37 J	350 U	390 U	11000 UJ
Anthracene	100000		12000000	490	1500	350 U	41 J	11000 UJ
Atrazine				340 U	350 U	350 U	390 U	11000 UJ
Benzaldehyde				340 UJ	41 J	350 UJ	31 J	11000 UJ
Benzo(a)anthracene	500000	4000	2000	1800	3700 (c)	28 J	170 J	11000 UJ
Benzo(a)pyrene	100000	660	8000	1600 (B)	* 3200 * (B)	40 J	210 J	11000 UJ
Benzo(b)fluoranthene	50000	4000	5000	2600	# 4000 (B)	65 J	280 J	11000 UJ
Benzo(g,h,l)perylene			4200000	850	1600	350 U	160 J	11000 UJ
Benzo(k)fluoranthene	500000	4000	49000	800	1900	23 J	170 J	11000 UJ
Biphenyl				16 J	72 J	350 U	390 U	11000 UJ
Bromophenyl-4 Phenyl Ether				340 U	350 U	350 U	390 U	11000 UJ
Butylbenzyl phthalate	100000		930000	340 UJ	110 J	350 UJ	43 J	11000 UJ
Caprolactam				340 U	350 U	350 U	390 U	11000 UJ
Carbazole			600	350	790 (c)	350 U	. 23 J	11000 UJ
Chloroaniline-4			700	340 U	350 U	350 U	390 U	11000 UJ
Chloronaphthalene-2				340 U	350 U	350 U	390 U	11000 UJ
Chlorophenol-2	10000		4000	340 U	350 U	350 U	390 U	11000 UJ
Chlorophenyl-4 phenyl ether				340 U	350 U	350 U	390 U	11000 UJ
Chrysene	500000	40000	160000	.1700	3500	38 J	170 J	11000 UJ
Cresol-4,6-dinitro-ortho				860 U	880 UJ	870 U	990 UJ	28000 UJ
Cresol-o	<u> </u>		15000	340 U	47 J	350 U	390 U	11000 UJ
Cresol-p				340 U	43 J	350 U	390 U	11000 UJ
Cresol-parachloro-meta	100000		4000	340 U	350 U	350 U	390 U	11000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	280 J	570	350 U	42 J	11000 UJ
Dibenzofuran				160 J	510	350 U	390 U	11000 UJ
Dichlorobenzidine-3,3	100000		7	340 U	350 UJ	350 U	390 U	11000 UJ
Dichlorophenol-2,4	10000	<u> </u>	1000	340 U	350 U	350 U	390 U	11000 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval	1			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID			İ	B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)				·		,	
Dimethylphenol-2,4	10000	I	9000	340 U	350 U	350 U	390 U	11000 UJ
Dinitrophenol-2,4	10000		300	860 UJ	880 UJ	870 UJ	990 UJ	28000 UJ
Dinitrotoluene-2,4			0.8	340 U	350 U	350 U	390 U	11000 UJ
Dinitrotoluene-2,6			0.7	340 U	350 U	350 U	390 U	11000 UJ
Ether, bis(2-chloroethyl)	10000	_	0.4	340 UJ	350 U	350 UJ	390 U	11000 UJ
Ether, bis-chloroisopropyl	10000			340 UJ .	350 U	350 UJ	390 U	11000 UJ
Fluoranthene	100000	10000000	4300000	4300	6800	43 J	350 J	11000 UJ
Fluorene	100000		560000	200 J	830	350 U	390 U	11000 UJ
Hexachlorobenzene	100000		2000	340 Ü	350 U	350 U	390 U	11000 UJ
Hexachlorobutadiene	100000		2000	340 UJ	350 U	. 350 UJ	390 U	11000 UJ
Hexachlorocyclopentadiene	100000	_	400000	340 U	350 UJ	350 U	390 UJ	11000 UJ
Hexachloroethane	100000		500	340 UJ	350 U	350 UJ	390 U	11000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	1000	2200	35 J	170 J	11000 UJ
Isophorone	50000		500	340 U	350 U	350 U	390 U	11000 UJ
Methane, bis(2-chloroethoxy)				340 U	350 U	350 U	390 U	11000 UJ
Methylnaphthalene-2				56 J	170 J	350 U	390 U	11000 UJ
Naphthalene	100000	4200000	84000	17.0 J	470	350 U	17 J	11000 UJ
Nitroaniline-2				860 UJ	880 U	870 UJ	990 U	28000 UJ
Nitroaniline-3				860 U	880 U	870 U	990 U	28000 UJ
Nitroaniline-4	L			860 U	880 U	870 U	990 U	28000 UJ
Nitrobenzene	10000		100	340 U	350 U	350 U	390 U	11000 UJ
Nitrophenol-2				340 U	350 U	350 U	390 U	11000 UJ
Nitrophenol-4				860 UJ	880 U	870_UJ	990 U	28000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	340 U	350 UJ	350 U	390 U	11000 UJ
Nitrosodiphenylamine-n	100000		1000	340 U	350 U	350 U	390 U	11000 UJ
PCP (Pentachlorophenol)	100000		30	860 U	880 U	870 U	990 U	28000 UJ
Phenanthrene			4200000	3000	6100	16 J	160 J	11000 UJ
Phenol	50000		100000	16 J	350 U	350 U	390 U	11000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		340 U	3400	350 U	390 U	11000 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

				•	•			
Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name								
Semivolatile Organic Compo	ounds (ug/Kg)	I						
Phthalate, di-n-butyl	100000		2300000	340 U	150 J	44 J	53 J	11000 UJ
Phthalate, di-n-octyl	100000		10000000	33 J	350 U	350 U	390 U	11000 UJ
Phthalate, diethyl	50000			340 U	12 J	350 U	390 U	11000 UJ
Phthalate, dimethyl	50000			340 U	350 U	350 U	390 U	11000 UJ
Pyrene	100000	10000000	4200000	3300	5500	43 J	280 J	11000 UJ
Trichlorophenol-2,4,5	50000		270000	860 U	880 U	870 U	990 U	28000 UJ
Trichlorophenol-2,4,6	10000		200	340 U	350 U	350 U	390 U	11000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID			-	B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name								
					-			
Semivolatile Organic Compounds	(ug/Kg)	<u> </u>	•					
Acenaphthene	100000	1	570000	1300 J	350 U	400 U	1600 J	140 J
Acenaphthylene			4200000	4100 U	350 U	400 U	310 J	38 J
Acetophenone				2900 J	11 J	57 J	4000 U	420 U
Anthracene	100000		12000000	990 J	350 U	29 J	3200 J	290 J
Atrazine				4100 U	350 U	400 U	4000 U .	420 U
Benzaldehyde				4100 U	350 U	74 J	4000 U	420 U
Benzo(a)anthracene	500000	4000	2000	1400 J	. 350 U	92 J	11000 (BC)	1400
Benzo(a)pyrene	100000	660	8000	1200 J (B)	350 U	90 J	9400 (BC)	1100) 4 (B)
Benzo(b)fluoranthene	50000	4000	5000	1500 J	350 U	130 J	11000 - (BC)	1600
Benzo(g,h,l)perylene			4200000	560 J	350 U	400 U	3800 J	450
Benzo(k)fluoranthene	500000	4000	49000	1300 J	350 U	. 92 J	5400 (B)	420 U
Biphenyl				2000 J	350 U	400 U	110 J	12 J
Bromophenyl-4 Phenyl Ether				4100 U	350 U	400 U	4000 U	420 U
Butylbenzyl phthalate	100000		930000	4100 U	350 U	400 U	4000 U	420 U
Caprolactam				4100 U	350 U	400 U	4000 U	28 J
Carbazole			600	630±J; (c)	350 U	12 J	1500 J 44 (C)	93 J
Chloroaniline-4			700	4100 U	350 U	400 U	4000 U	420 U
Chloronaphthalene-2				4100 U	350 U	400 U	4000 U	420 U
Chlorophenol-2	10000		4000	4100 U	350 U	400 U	4000 U	420 U
Chlorophenyl-4 phenyl ether				4100 U	350 U	400 U	4000 U	420 U
Chrysene	500000	40000	160000	2300 J	350 U	140 J	13000	1600
Cresol-4,6-dinitro-ortho				10000 UJ	890 U	1000 U	10000 U	· 1100 U
Cresol-o			15000	4100 U	350 U	400 U	4000 U	420 U
Cresol-p				4100 U	350 U	400 U	4000 U	420 U
Cresol-parachloro-meta	100000		4000	4100 U	350 U	400 U	4000 U	420 U
Dibenzo(a,h)anthracene	100000	660	2000	150 J	350 U	23 J	2500 J (BC)	270 J
Dibenzofuran				620 J	350 U	400 U	750 J	47 J
Dichlorobenzidine-3,3	100000		7	4100 UJ	350 UJ	400 U	4000 U	420 U
Dichlorophenol-2,4	10000		1000	4100 U	350 U	400 U	4000 U	420 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date	1 .		F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval	1			1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID	1			B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name								
Semivolatile Organic Compounds (L	ıg/Kg)							
Dimethylphenol-2,4	10000		9000	4100 U	350 U	400 U	4000 U	420 U
Dinitrophenol-2,4	10000		300	10000 UJ	890 U	1000 U	10000 U	1100 U
Dinitrotoluene-2,4			0.8	4100 U	350 U	400 U	4000 U	420 U
Dinitrotoluene-2,6			0.7	4100 U	350 U	400 U	4000 U	420 U
Ether, bis(2-chloroethyl)	10000		0.4	4100 U	350 U	400 U	4000 U	420 U
Ether, bis-chloroisopropyl	10000			4100 U	350 U	400 U	4000 U	420 U
Fluoranthene	100000	10000000	4300000	3700 J	350 U	150 J	18000	2100
Fluorene	100000		560000	1900 J	350 U	400 U	4000 U	140 J
Hexachlorobenzene	100000		2000	4100 U	350 U	400 U	4000 U	420 U
Hexachlorobutadiene	100000		2000	4100 U	350 U	400 U	4000 U	420 U
Hexachlorocyclopentadiene	100000		400000	4100 UJ	350 U	400 UJ	4000 U	420 U
Hexachloroethane	100000	I	500	4100 U	350 U	400 U	4000 U	420 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	820 J	350 U	65 J	5200 (B)	570
Isophorone	50000		500	4100 U	350 U	400 U	4000 U	420 U
Methane, bis(2-chloroethoxy)				4100 U	350 U	400 U	4000 U	420 U
Methylnaphthalene-2				7400	350 U	400 U	370 J	55 J
Naphthalene	100000	4200000	84000	4900	350 U	21∈J	930 J	380 J
Nitroaniline-2				10000 U	890 U	1000 U	10000 U	1100 U
Nitroaniline-3				10000 U	890 U	1000 U	10000 U	1100 U
Nitroaniline-4				10000 U	890 U	1000 UJ	10000 U	1100 U
Nitrobenzene	10000		100	4100 U	350 U	400 U	4000 U	420 U
Nitrophenol-2				4100 U	350 U	400 U	4000 U	. 420 U
Nitrophenol-4				10000 U	890 U	1000 U	10000 U	1100 U
Nitroso-di-n-propyl-amine-N	10000		0.05	4100 UJ	350 UJ	400. UJ	4000 U	420 U
Nitrosodiphenylamine-n	100000		1000	4100 U	350 U	400 U	4000 U	420 U
PCP (Pentachlorophenol)	100000		30	1100 J (c)	890 U	1000 UJ	10000 U	1100 U
Phenanthrene			4200000	6700	350 U	120 J	18000	2300
Phenol .	50000		100000	4100 U	350 U	400 U	4000 U	420 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		35000	350 U	2400	4000 U	420 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval			[1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name								
·								
Semivolatile Organic Compounds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	4100 U	350 U	500	180 J	390 J
Phthalate, di-n-octyl	100000		10000000	4100 U	350 U	400 U	4000 U	420 U
Phthalate, diethyl	50000			4100 U	350 U	400 UJ	4000 U	420 U
Phthalate, dimethyl	50000			4100 U	350 U	400 U	4000 U	420 U
Pyrene	100000	10000000	4200000	3500 J	350 U	170 J	17000	2200
Trichlorophenol-2,4,5	50000		270000	10000 U	890 U	1000 U	10000 U	1100 U
Trichlorophenol-2,4,6	10000		200	4100 U	350 U	400 UJ	4000 U	420 U

J - Reported value estimated in quantity

R - Rejected Result

302647

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date	, .		F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval				1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Acenaphthylene			4200000	610 J	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Acetophenone				350 J	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Anthracene	100000		12000000	980 J	240 J	1900 UJ	660 J	410 J
Atrazine				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Benzaldehyde				490 J	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Benzo(a)anthracene	500000	4000	2000	4500 J. (8c)	910 J	200 J	2200 J (c)	1500 J
Benzo(a)pyrene	100000	660	8000	5700 J.L3. (B)	780 J (B)	200 J	1700 J (B)	1500 J (B)
Benzo(b)fluoranthene	50000	4000	5000	7700 J (BC)	720 J	380 J	1500 J	1500 J
Benzo(g,h,l)perylene			4200000	3400 J	370 J	1900 UJ	530 J	790 J
Benzo(k)fluoranthene	500000	4000	49000	4100 Ji (B)	820 J	370 J	1800 J	1100 J
Biphenyl				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Bromophenyl-4 Phenyl Ether				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Butylbenzyl phthalate	100000		930000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Caprolactam				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Carbazole			600	760 J (c)	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Chloroaniline-4			700	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Chloronaphthalene-2				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Chlorophenol-2	10000		4000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Chlorophenyl-4 phenyl ether				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Chrysene	500000	40000	160000	6700 J	1100 J	350 J	2100 J	1600 J
Cresol-4,6-dinitro-ortho				28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Cresol-o			15000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Cresol-p				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Cresol-parachloro-meta	100000		4000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Dibenzo(a,h)anthracene	100000	660	2000	1700 J (B)	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Dibenzofuran				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Dichlorobenzidine-3,3	100000		7	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Dichlorophenol-2,4	10000	<u></u>	1000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

302649

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-60	MA-\$B-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date			F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval	}	1		1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name						· · · · · · · · · · · · · · · · · · ·		
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Dinitrophenol-2,4	10000		300_	28000 UJ	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Dinitrotoluene-2,4			0.8	11000 U	1900 <u>UJ</u>	1900 UJ	3700 UJ	3600 UJ
Dinitrotoluene-2,6			0.7	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Ether, bis(2-chloroethyl)	10000		0.4	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Ether, bis-chloroisopropyl	10000			11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Fluoranthene	100000	10000000	4300000	8800 J	1700 J	310 J	3600 J	2700 J
Fluorene	100000		560000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Hexachlorobenzene	100000		2000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Hexachlorobutadiene	100000		2000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Hexachlorocyclopentadiene	100000		400000	11000 UJ	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Hexachloroethane	100000		500	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	4300 J (B)	430 J	1900 UJ	770 J	800 J
Isophorone	50000		500	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Methane, bis(2-chloroethoxy)				11000 U	1900 UJ	1900. UJ	3700 UJ	3600 UJ
Methylnaphthalene-2				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Naphthalene	100000	4200000	84000	18000	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Nitroaniline-2				28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Nitroaniline-3				28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Nitroaniline-4				28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Nitrobenzene	10000		100	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Nitrophenol-2				11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Nitrophenol-4				28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Nitrosodiphenylamine-n	100000		1000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
PCP (Pentachlorophenol)	100000		30	28000 UJ	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Phenanthrene			4200000	4600 J	1300 J	1900 UJ	2500 J	1800 J
Phenol	50000		100000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		900 J	240 J	1900 UJ	3700 UJ	3600 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date	7	ļ ·	F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval			Ī	1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	.1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name						•		
Semivolatile Organic Compounds	(ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Phthalate, di-n-octyl	100000		10000000	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Phthalate, diethyl	50000			11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Phthalate, dimethyl	50000			11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ
Pyrene	100000	10000000	4200000	7200 J	1900 J	260 J	3100 J	2600 J
Trichlorophenol-2,4,5	50000		270000	28000 U	4700 UJ	4700 UJ	9100 UJ	9000 UJ
Trichlorophenol-2,4,6	10000		200	11000 U	1900 UJ	1900 UJ	3700 UJ	3600 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date	7		F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval	1			1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1 .			B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name								
Semivolatile Organic Compounds (ıg/Kg)							
Acenaphthene	100000		570000	47 J	370 UJ	380 J	3600 UJ	39000 UJ
Acenaphthylene			4200000	59 J	370 UJ	380 J	3600 UJ	39000 UJ
Acetophenone				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Anthracene	100000		12000000	120 J	370 UJ	1700 J	420 J	39000 UJ
Atrazine				360 UJ	370 UJ.	3600 UJ	3600 UJ	39000 UJ
Benzaldehyde				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Benzo(a)anthracene	500000	4000	2000	350 J	44 J	5200 J (80)	1800 J	39000 UJ
Benzo(a)pyrene	100000	660	8000	340 J	370 UJ	. 4400 J (B)	- 1800 J	39000 UJ
Benzo(b)fluoranthene	50000	4000	5000	370 J	47 J	4400 Jr. (B)	1800 J	39000 UJ
Benzo(g,h,l)perylene			4200000	160 J	370 UJ	1400 J	1100 J	39000 UJ.
Benzo(k)fluoranthene	500000	4000	49000	350 J	48 J	24400 J (B)	1600 J	39000 UJ
Biphenyl				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Bromophenyl-4 Phenyl Ether				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Butylbenzyl phthalate	100000		930000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Caprolactam				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Carbazole			600	100 J	370 UJ	590 J	3600 UJ	39000 UJ
Chloroaniline-4			700	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Chloronaphthalene-2				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Chlorophenol-2	10000		4000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Chlorophenyl-4 phenyl ether				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Chrysene	500000	40000	160000	460 J	63 J	5200 J	2200 J	39000 UJ
Cresol-4,6-dinitro-ortho				900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Cresol-o			15000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Cresol-p				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Cresol-parachloro-meta	100000		4000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	61 J	370 UJ	550 J	380 J	39000 UJ
Dibenzofuran				78 J	370 UJ	3600 UJ	3600 UJ	39000 UJ
Dichlorobenzidine-3,3	100000		7	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Dichlorophenol-2,4	10000		1000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	7			B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)	-						
Dimethylphenol-2,4	10000		9000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Dinitrophenol-2,4	10000		300	900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Dinitrotoluene-2,4			0.8	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Dinitrotoluene-2,6			0.7	360 UJ	370. UJ	3600 UJ	3600 UJ	39000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Ether, bis-chloroisopropyl	10000			360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Fluoranthene	100000	10000000	4300000	840 J	95 J	13000 J	3600 J	39000 UJ
Fluorene	100000		560000	96 J	370 UJ	610 J	3600 UJ	39000 UJ
Hexachlorobenzene	100000		2000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Hexachlorobutadiene	100000		2000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Hexachlorocyclopentadiene	100000		400000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Hexachloroethane	100000		500	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	200 J	370 UJ	1700 J	1100 J	39000 UJ
Isophorone	50000		500	360 UJ	370 UJ	3600 UJ	· 3600 UJ	39000 UJ
Methane, bis(2-chloroethoxy)				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Methylnaphthalene-2				69 J	370 UJ	3600 UJ	3600 UJ	39000 UJ
Naphthalene	100000	4200000	84000	91 J	370 UJ	3600 UJ	3600 UJ	39000 UJ
Nitroaniline-2				900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Nitroaniline-3				900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Nitroaniline-4				900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Nitrobenzene	10000		100	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Nitrophenol-2				360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Nitrophenol-4				900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Nitrosodiphenylamine-n	100000		1000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
PCP (Pentachlorophenol)	100000		30	900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Phenanthrene			4200000	820 J	52 J	8200 J	2100 J	39000 UJ
Phenol	50000		100000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		46 J	370 UJ	3600 UJ	3600 UJ	39000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date	1	i	F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Phthalate, di-n-butyl	100000		2300000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Phthalate, di-n-octyl	100000		10000000	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Phthalate, diethyl	50000			360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Phthalate, dimethyl	50000		-	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ
Pyrene	100000	10000000	4200000	750 J	77 J	8800 J	3300 J	39000 UJ
Trichlorophenol-2,4,5	50000		270000	900 UJ	940 UJ	9100 UJ	9100 UJ	97000 UJ
Trichlorophenol-2,4,6	10000		200	360 UJ	370 UJ	3600 UJ	3600 UJ	39000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date			F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DY5	B0DZ1	B0DE1	B0DD9	B0DE8
Chemical Name								
Semivolatile Organic Compound	ls (ug/Kg)	-						
Acenaphthene	100000		570000	750 UJ	3700 UJ	410 U	400 U	380 J
Acenaphthylene			4200000	750 UJ	3700 UJ	13 J	400 U	240 J
Acetophenone				750 UJ	3700 UJ	410 U	400 U	1900 U
Anthracene	100000		12000000	750 UJ	3700 UJ	15 J	13 J	980 J
Atrazine				750 UJ	3700 UJ	410 U	400 U_	1900 U
Benzaldehyde	i i		, ,	750 UJ	3700 UJ	· 8 J	400 UJ	1900 UJ
Benzo(a)anthracene	500000	4000	2000	240 J	3700 UJ	92 J	72 J	**-3400 ****
Benzo(a)pyrene	100000	660	8000	240 J	3700 UJ	91 J	50 J	≈3300 ° (B)
Benzo(b)fluoranthene	50000	4000	5000	270 J	3700 UJ	150 J	94 J	4400 (B)
Benzo(g,h,l)perylene			4200000	100 J_	3700 UJ	94 J	400 U	1800 J
Benzo(k)fluoranthene	500000	4000	49000	210 J	3700 UJ	63 J	33 J	1700 J
Biphenyl				750 UJ	3700 UJ	410 U	400 U	1900 U
Bromophenyl-4 Phenyl Ether				750 UJ	3700 UJ	410 U	400 U	1900 U
Butylbenzyl phthalate	100000		930000	750 UJ	3700 UJ	410 UJ	400 UJ	1900 UJ
Caprolactam				750 UJ	3700 UJ	.410 UJ	400 UJ	1900 U
Carbazole			600	750 UJ	3700 UJ	410 U	400 U	550 J
Chloroaniline-4			700	750 UJ	3700 UJ	410 U	400 U	1900 U
Chloronaphthalene-2				750 UJ	3700 UJ	410 U	400 U	1900 U
Ĉhlorophenol-2	10000	ł	4000	750 UJ	3700 UJ	410 U	400 U	1900 U
Chlorophenyl-4 phenyl ether		1		750 UJ	3700 UJ	410 U	400 U	1900 U
Chrysene.	500000	40000	160000	270 J	3700 UJ	120 J	80 J	3400
Crésol-4,6-dinitro-ortho				1900 UJ	9200 UJ	1000 U	1000 U	4800 U
Cresol-o			15000	750 UJ	3700 UJ	410 U	400 U	1900 U
Cresol-pæ				750 UJ	3700 UJ	410 U	400 U	1900 U
Cresol-parachloro-meta	100000		4000	750 UJ	3700 UJ	410 U	400 U	1900 U
Dibenzo(a,h)anthracene	100000	_660	2000	750 UJ	3700 UJ	18 J	400 U	560 J
Dibenzofuran				750 UJ	3700 UJ	410 U	400 U	240 J
Dichlorobenzidine-3,3	100000		7	750 UJ	3700 UJ	410 U	400 U	1900 U
Dichlorophenol-2.4	10000		1000	750 UJ	3700 UJ	410 U	400 U	1900 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date	1		F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval	1	ļ		0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID	1			B0DY5	B0DZ1	B0DE1	B0DD9	B0DE8
Chemical Name								
Semivolatile Organic Compounds (u	ıg/Kg)							
Dimethylphenol-2,4	10000		9000	750 UJ	3700 UJ	410 U	400 U	1900 U
Dinitrophenol-2,4	10000		300	1900 UJ	9200 UJ	1000 U	. 1000 U	4800 UJ
Dinitrotoluene-2,4			0.8	750 UJ	3700 UJ	410 U	400 U	1900 U
Dinitrotoluene-2,6			0.7	750 UJ	3700 UJ	410 U	400 U	1900 U
Ether, bis(2-chloroethyl)	10000		0.4	750 UJ	3700 UJ	410 U	400 UJ	1900 UJ
Ether, bis-chloroisopropyl	10000			750 UJ.	3700 UJ	410 UJ	400 UJ	1900 UJ
Fluoranthene	100000	10000000	4300000	410 J	550 J	180 J	150 J	7000
Fluorene	100000		560000	750 UJ	37 <u>0</u> 0 UJ	410 U	400 U	440 J
Hexachlorobenzene	100000		2000	750 UJ	3700 UJ	410 U	400 U	1900 U
Hexachlorobutadiene	100000		2000	750 UJ	3700 UJ	410 U	400 U	1900 UJ
Hexachlorocyclopentadiene	100000		400000	750 UJ	3700 UJ	410 U	400 U	1900 U
Hexachloroethane	100000		500	750 UJ	3700 UJ	410 UJ	400 UJ	1900 UJ
indeno(1,2,3-cd)pyrene	500000	4000	14000	130 J	3700 UJ	59 J	31 J	2200
Isophorone	50000		500	750 UJ	3700 UJ	410 U	400 U	1900 U
Methane, bis(2-chloroethoxy)				750 UJ	3700 UJ	410 U	400 U	1900 U
Methylnaphthalene-2				750 UJ	3700 UJ	410 U	400 U	130 J
Naphthalene	100000	4200000	84000	750 UJ	3700 UJ	410 U	400 U	1900 U
Nitroaniline-2				1900 UJ	9200 UJ	1000 UJ	1000 UJ	4800 UJ
Nitroaniline-3				1900 UJ	9200 UJ	1000 U	1000 U	4800 U 😇
Nitroaniline-4				1900 UJ	9200 UJ	1000 U	1000 U	4800 U 🚆
Nitrobenzene	10000		100	750 UJ	3700 UJ	410 U	400 U	1900, Ú 🅞
Nitrophenol-2				750 UJ	3700 UJ	410 U	400 U	1900 U 🤻 _
Nitrophenol-4				1900 UJ	9200 UJ	1000 UJ	1000 UJ	4800 UJ 🤏
Nitroso-di-n-propyl-amine-N	10000		0.05	750 UJ	3700 UJ	410 U	400 U	1900 U 🤭 🛜 _
Nitrosodiphenylamine-n	100000		1000	750 UJ	3700 UJ	410 U	400 U	1900 [.] Ü.
PCP (Pentachlorophenol)	100000		30	1900 UJ	9200 UJ	1000 U	1000 U	4800 U
Phenanthrene			4200000	200 J	3700 UJ	66 J	85 J	5700
Phenol	50000		100000	750 UJ	3700 UJ	410 U	400 U	1900 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		110 J	3700 UJ	410 U	400 U	1900 U

J - Reported value estimated in quantity R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date			F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DY5	B0DZ1	B0DE1	B0DD9	B0DE8
Chemical Name								
Semivolatile Organic Compo	unds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	750 UJ	3700 UJ	410 U	400 U	72 J
Phthalate, di-n-octyl	100000		10000000	750 UJ	3700 UJ	410 U	400 U	1900 U
Phthalate, diethyl	50000			750 UJ	3700 UJ	410 U	400 U	1900 U
Phthalate, dimethyl	50000			750 UJ	3700 UJ	410 U	400 U	1900 U
Pyrene	100000	10000000	4200000	410 J	460 J	150 J	130 J	6800
Trichlorophenol-2,4,5	50000		270000	1900 UJ	9200 UJ	1000 U	1000 U	4800 U
Trichlorophenol-2,4,6	10000		200	750 UJ	3700 UJ	410 U	400 U	1900 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date	7	, i	F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval]		1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID	7			B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name		· -	į					
Semivolatile Organic Compounds	ug/Kg)	•	•					
Acenaphthene	100000	1 .	570000	5200 J	370 U	400 U	. 380 U	210 J
Acenaphthylene			4200000	11000 U	370 U	400 U	380 U	120 J
Acetophenone				11000 U	370 U	400 U	380 U	410 U
Anthracene	100000		12000000	7800 J	58 J	400 U	380 U	1700
Atrazine				11000 U	370 U	400 U	380 U	410 U
Benzaldehyde				11000 UJ	370 U	400 U	380 U	410 U
Benzo(a)anthracene	500000	4000	2000	21000 (BC)	390	230 J	61 J	1000
Benzo(a)pyrene	100000	660	8000	17000 (BC)	360 J	190 J	50 J	. 860 (B)
Benzo(b)fluoranthene	50000	4000	5000	15000 (BC)	450	250 J	82 J	1200
Benzo(g,h,l)perylene			4200000	5500 J	140 J	.95 J	380 UJ	570
Benzo(k)fluoranthene	500000	4000	49000	19000 (B).	300 J	180 J	55 <u>J</u>	710
Biphenyl				11000 U	370 U	400 U	380 U	4600 J
Bromophenyl-4 Phenyl Ether				11000 U	370 U	400 U	380 U	410 U
Butylbenzyl phthalate	100000		930000	11000 U	370 U	400 UJ	380 UJ	9200
Caprolactam				11000 U	370 U	400 U	380 U	410 U
Carbazole			600	4100 J (C)	370 UJ	400 UJ	380 UJ	410 U
Chloroaniline-4			700	11000 U	370 U	400 U	380 U	410 U
Chloronaphthalene-2				11000 U	.370 U	400 U	380 U	410 U
Chlorophenol-2	10000		4000	11000 U	370 U	400 U	380 U	410 U
Chlorophenyl-4 phenyl ether				11000 U	370 U	400 U	380 U	410 U
Chrysene	500000	40000	160000	21000	400	300 J	120 J	1100
Cresol-4,6-dinitro-ortho				28000 U	930 R	1000 R	940 R	1000 UJ
Cresol-o			15000	11000 U	370 U	400 U	380 U	1000
Cresol-p				11000 U	370 U	400 U	380 U	940
Cresol-parachloro-meta	100000		4000	11000 U	370 U	400 U	380 U	410 U
Dibenzo(a,h)anthracene	100000	660	2000	2400 J (BC)	84 J	400 U	380 U	290 J
Dibenzofuran				2500 J	370 U	400 U	380 U	160 J
Dichlorobenzidine-3,3	100000		7	11000 U	370 R	400 R	380 R	410 UJ
Dichlorophenol-2,4	10000		1000	11000 U	370 U	400 U	380 U	410 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date			F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID	7			B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name	1 .					<u> </u>		
			-					
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	11000 U	370 U	400 U	380 U	410 U
Dinitrophenol-2,4	10000		300	28000 U	930 R	1000 R	940 R	1000 UJ
Dinitrotoluene-2,4			0.8	11000 U	370 U	400 U	380 U	410 U
Dinitrotoluene-2,6			0.7	11000 U	370 U	400 U	380 U	410 U
Ether, bis(2-chloroethyl)	10000		0.4	11000 U	370 U	400 U	380 U	410 U
Ether, bis-chloroisopropyl	10000			11000 U	370 U	400 U	380 U	410 U
Fluoranthene	100000	10000000	4300000	40000	580	330 J	78 J	1400
Fluorene	100000		560000	4700 J	370 U	400 U	380 U	410 U
Hexachlorobenzene	100000		2000	11000 U	370 U	400 U	380 U	410 U
Hexachlorobutadiene	100000		2000	11000 U	370 U	400 U	380 U	410 U
Hexachlorocyclopentadiene	100000	<u> </u>	400000	11000 U	370 U	400 U	380 U	410 UJ
Hexachloroethane	100000		500	11000 U	370 U	400 U	380 U	410 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	6400 (U) (B)	240 J	120 J	380 UJ	650
Isophorone	50000		500	11000 U	370 U	400 U	380 U	410 U
Methane, bis(2-chloroethoxy)				11000 U	370 U	400 U	380 U	410 U
Methylnaphthalene-2				11000 U	370 U	400 U	380 U	2900
Naphthalene	100000	4200000	84000	11000 U	370 U	400 U	380 U	34000
Nitroaniline-2				28000 U	930 U	1000 U	940 U	1000 U
Nitroaniline-3	· · · · · · · · · · · · · · · · · · ·		·	28000U	930 UJ	1000 _UJ	940_UJ	1000_U
Nitroaniline-4				28000 U	930 UJ	1000 UJ	940 UJ	1000 U
Nitrobenzene	10000		100	11000 U	370 U	400 U	380 U	410 U
Nitrophenol-2				· 11000 U	370 U	400 U	380 U	410 U
Nitrophenol-4				28000 U	930 U	1000 U	940 U	1000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	11000 U	370 U	400 U	380 U	410 UJ
Nitrosodiphenylamine-n	100000		1000	11000 U	370 U	400 U	380 U	1300 (c)
PCP (Pentachlorophenol)	100000		30	28000 Ü	930 UJ	1000 U	940 U	1000 U
Phenanthrene			4200000	32000	250 J	230 J	92 J	1800
Phenol	50000		100000	11000 U	370 U	400 U	380 U	3200
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		11000 U	100 J	400 UJ	82 J	59000

J - Reported value estimated in quantity

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date			F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval			1	1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID			[B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name								
Semivolatile Organic Compounds (u	l ɪg/Kg)		1					
Phthalate, di-n-butyl	100000		2300000	11000 U	79 J	72 J	110 J	8300
Phthalate, di-n-octyl	100000		10000000	11000 U	370 R	400 UJ	380 UJ	410 U
Phthalate, diethyl	50000			11000 U	370 U	400 U	380 U	5700 J
Phthalate, dimethyl	50000			11000 U	370 U	400 U	380 U	410 U
Pyrene	100000	10000000	4200000	30000	650	410	110 J	1900
Trichlorophenol-2,4,5	50000		270000	28000 U	930 U	1000 U	940 U	1000 U
Trichlorophenol-2,4,6	10000		200	11000 U	370 U	400 U	380 U	410 U

302659

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date] -		F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval	1			1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
Semivolatile Organic Compounds (ıg/Kg)							
Acenaphthene	100000		570000	520 J	. 16 J	3700 UJ	2000 U	110 J
Acenaphthylene			4200000	3500 UJ	· 61 J	3700 UJ	2000 U	360 U
Acetophenone				3500 UJ	15 J	3700 UJ	2000 U	360 U
Anthracene	100000		12000000	1200 J	86 J	3700 UJ	2000 U	430
Atrazine				3500 UJ	370 U	3700 UJ	2000 U	360 U
Benzaldehyde				3500 UJ	12 J	3700 UJ	2000 U	360 U
Benzo(a)anthracene	500000	4000	2000	3700 J (c)	900	580 J	760 J	1500
Benzo(a)pyrene	100000	660	8000	3100 (J) (B)	990 (B)	490 J	650 J	
Benzo(b)fluoranthene	50000	4000	5000	2300 J	1700	3700 UJ	700 J	1100
Benzo(g,h,l)perylene			4200000	920 J	470	3700 UJ	400 J	420 J
Benzo(k)fluoranthene	500000	4000	49000	3800 J	570	560 J	550 J	990
Biphenyl				3500 UJ	370 U	3700 UJ	2000 U	360 U
Bromophenyl-4 Phenyl Ether				3500 UJ	370 U	3700 UJ	2000 U	360 U
Butylbenzyl phthalate	100000		930000	3500 UJ	370 UJ	3700 UJ	2000 U	360 UJ
Caprolactam				3500 UJ 、	370 U	3700 UJ	2000 U	360 U
Carbazole			600	7,503 J) (C)	21 J	3700 UJ	2000 U	130 J
Chloroaniline-4			700	3500 UJ	370 U	3700 UJ	2000 U	360 U
Chloronaphthalene-2				3500 UJ	370 U	3700 UJ	2000 U	360 U
Chlorophenol-2	<u> </u>		4000	3500_UJ	37.0_U	3700 UJ	2000 U	360 U
Chlorophenyl-4 phenyl ether	<u> </u>			3500 UJ	370 U	3700 UJ	2000 U	360 U
Chrysene	500000	40000	160000	4100 J	1100	650 J	1100 J	1500
Cresol-4,6-dinitro-ortho	<u> </u>			8700 UJ	930 U	9300 UJ	4900 UJ	910 R
Cresol-o	<u> </u>		15000	3500 UJ	22 J	3700 UJ	2000 U	360 U
Cresol-p				3500 UJ	370 U	3700. UJ .	2000 U	360 U
Cresol-parachloro-meta	100000		4000	3500 UJ	370 U	3700 UJ	2000 U	360 U
Dibenzo(a,h)anthracene	100000	660	2000	3500 UJ	190 J	3700 UJ	2000 U	200 J
Dibenzofuran	ļ			3500 UJ	12 J	3700 UJ	2000 U	56 J
Dichlorobenzidine-3,3	100000		7	3500 UJ	370 U	3700 UJ	2000 U	360 R
Dichlorophenol-2,4	10000		1000	3500 UJ	370 U	3700 UJ	2000 U	360 U

J - Reported value estimated in quantity

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date	1		F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval	1	\		1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID	1.			B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	3500 UJ	370 U	3700 UJ	2000 U	360 U
Dinitrophenol-2,4	10000		300	8700 UJ	930 UJ	9300 UJ	4900 U	910 R
Dinitrotoluene-2,4			0.8	3500 UJ	370 U	3700 UJ	2000 U	360 U
Dinitrotoluene-2,6			0.7	3500 UJ	370 U	3700 UJ_	2000 U	360 U
Ether, bis(2-chloroethyl)	10000		0.4	3500 UJ	370 UJ	3700 UJ	2000 U	360 U
Ether, bis-chloroisopropyl	10000			3500 UJ	370 UJ	3700 UJ	2000 UJ	360 U
Fluoranthene	100000	10000000	4300000	8700 J	1200	1300 J	1600 J	2500
Fluorene	100000		560000	3500 UJ	370 U	3700 UJ	2000 U	97 J
Hexachlorobenzene	100000		2000	3500 UJ	370 U	3700 UJ	2000 U	360 U
Hexachlorobutadiene	100000		2000	3500 UJ	370 UJ	3700 UJ	2000 U	360 U
Hexachlorocyclopentadiene	100000		400000	3500 UJ	370 <u>U</u> .	3700 UJ	2000 U	360 U
Hexachloroethane	100000		500	3500 UJ	370 UJ	3700 UJ	2000 U	360 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	1100 J	640	3700 UJ	360 J	610 J
Isophorone	50000		500	3500 UJ	370 U	3700 UJ	2000 U	360 U
Methane, bis(2-chloroethoxy)				3500 UJ	370 U	3700 UJ	2000 U	360 U
Methylnaphthalene-2				3500 UJ	22 J	3700 UJ	2000 U	360 U
Naphthalene	100000	4200000	84000	3500 UJ	370 U	3700 UJ	2000 U	100 J
Nitroaniline-2				8700 UJ	930 UJ	9300 UJ	4900 U	910 U
Nitroaniline-3				8700 UJ	930 U	9300 UJ	4900 U	910 UJ
Nitroaniline-4				8700 UJ	930 U	9300 UJ	4900 U	910 UJ
Nitrobenzene	10000		100	3500 UJ	370 U	3700 UJ	2000 U	360 U
Nitrophenol-2				3500 UJ	370 U	3700 UJ	2000 U	360 U
Nitrophenol-4				8700 UJ	930 UJ	9300 UJ	4900 U	910 U
Nitroso-di-n-propyl-amine-N	10000		0.05	3500 UJ	370 U	3700 UJ	2000 U	360 U
Nitrosodiphenylamine-n	100000		1000	3500 UJ	370 U	3700 UJ	2000 U	360 U
PCP (Pentachlorophenol)	100000		30	8700 UJ	930 U	9300 UJ	4900 U	910 U
Phenanthrene			4200000	6600 J	400	800 J	1500 J	2000
Phenol	50000		100000	3500 UJ	370 U	3700 UJ	2000 U	360 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		3500 UJ	430 U	3700 UJ	2000 U	47 J

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(c)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date			F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
Semivolatile Organic Compo	ounds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	3500 UJ	370 U	3700 UJ	2000 U	73 J
Phthalate, di-n-octyl	100000		10000000	3500 UJ	370 U	3700 UJ	2000 U	360 UJ
Phthalate, diethyl	50000			3500 UJ	370 U	3700 UJ	2000 U	360 U
Phthalate, dimethyl	50000			3500 UJ	` 370 U	3700 UJ	2000 U	360 U
Pyrene	100000	10000000	4200000	5200 J	1500	1100 J	1700 J	2900
Trichlorophenol-2,4,5	50000		270000	8700 UJ	930 U	9300 UJ	4900 U	910 U
Trichlorophenol-2,4,6	10000		200	3500 UJ	370 U	3700 UJ	2000 U	360 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date	1		F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval]			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0DH6	B0DH8	B0FW3	B0FT2	B0FT4
Chemical Name			·					
Semivolatile Organic Compounds (ıg/Kg)							
Acenaphthene	100000		570000	260 J	380 U	570 J	3800 UJ	1900 UJ
Acenaphthylene			4200000	71 J	380 U	1800 UJ	3800 UJ	1900 UJ
Acetophenone		<u> </u>		380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Anthracene	100000		12000000	740	380 U	710 J	3800 UJ	260 J
Atrazine				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Benzaldehyde				380 U	89 J	1800 UJ	3800 UJ	1900 UJ
Benzo(a)anthracene	500000	4000	2000	1900	100 J_	18 <u>0</u> 0 J	460 J	970 J
Benzo(a)pyrene	100000	660	8000	1300 (B)	79 J	1600 J	3800 UJ	900 J (B)
Benzo(b)fluoranthene	50000	4000	5000	2000	110 J	1900 J	_3800 UJ	980 J
Benzo(g,h,l)perylene	<u> </u>		4200000	510 J	380 UJ	930 J	3800 UJ	290 J
Benzo(k)fluoranthene	500000	4000	49000	1000	92 J	1300 J	3800 UJ	990 J
Biphenyl				-380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Bromophenyl-4 Phenyl Ether	<u></u>			380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Butylbenzyl phthalate	100000		930000	380 U	380 UJ	1800 UJ	3800 UJ	1900 UJ
Caprolactam				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Carbazole	L		600	260 J	380 UJ	450 J	3800 UJ	1900 UJ
Chloroaniline-4	ļ <u>.</u>		700	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Chloronaphthalene-2				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Chlorophenol-2	10000	<u> </u>	4000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Chlorophenyl-4 phenyl ether				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Chrysene	500000	40000	160000	1700	170 J	1900 J	590 J	1100 J
Cresol-4,6-dinitro-ortho	<u> </u>			940 R	970 R	4500 UJ	9600 UJ	4800 UJ
Cresol-o			15000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Cresol-p				380 U	380 U	1800 UJ	3800 ÚJ	1900 UJ
Cresol-parachloro-meta	100000]	4000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Dibenzo(a,h)anthracene	100000	660	2000	290 J	380 U	360 J	3800 UJ	1900 UJ
Dibenzofuran				270 J	380 U	210 J	3800 UJ	1900 UJ
Dichlorobenzidine-3,3	100000		7	380 R	380 R_	1800 UJ	3800 UJ	1900 UJ
Dichlorophenol-2,4	10000	L	1000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date	1		F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval	٦.			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	٦			B0DH6	B0DH8	B0FW3	B0FT2	B0FT4
Chemical Name								,
Semivolatile Organic Compounds	ug/Kg)							
Dimethylphenol-2,4	10000		9000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Dinitrophenol-2,4	10000		300	940 R	970 R	4500 UJ	9600 UJ	4800 UJ
Dinitrotoluene-2,4			0.8	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Dinitrotoluene-2,6			0.7	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Ether, bis(2-chloroethyl)	10000		0.4	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Ether, bis-chloroisopropyl	10000			380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Fluoranthene	100000	10000000	4300000	3100	190 J	3800 J	820 J	1900 J
Fluorene	100000		560000	360 J	380 U	320 J	3800 UJ	1900 UJ
Hexachlorobenzene	100000		2000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Hexachlorobutadiene	100000		2000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Hexachlorocyclopentadiene	100000		400000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Hexachloroethane	100000		500	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	860 J	54 J	1000 J	3800 UJ	320 J
Isophorone	50000		500	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Methane, bis(2-chloroethoxy)				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Methylnaphthalene-2				110 J	380 U .	1800 UJ	3800 UJ	1900 UJ
Naphthalene	100000	4200000	84000	130 J	380 U	1800 UJ	3800 UJ	1900 UJ
Nitroaniline-2				940 U	970 U	4500 UJ	9600 UJ	4800 UJ
Nitroaniline-3				940_UJ	970 UJ	4500_UJ	9600 UJ	4800 UJ
Nitroaniline-4				940 UJ	970 UJ	4500 UJ	9600 UJ	4800 UJ
Nitrobenzene	10000		100	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Nitrophenol-2				380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Nitrophenol-4				940 U	970 U	4500 UJ	9600 UJ	4800 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Nitrosodiphenylamine-n	100000		1000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
PCP (Pentachlorophenol)	100000		30	940 UJ	970 U	4500 UJ	9600 UJ	4800 UJ
Phenanthrene			4200000	3400	210 J	3100 J	590 J	1400 J
Phenol	50000		100000	380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		140 J	380 UJ	1800 UJ	3800 UJ	1100 J

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SQ-211	MA-SQ-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date			F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID			1	B0DH6	B0DH8	B0FW3	B0FT2	B0FT4
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)	<u> </u>						
Phthalate, di-n-butyl	100000		2300000	110 J	380 U	1800 UJ	3800 UJ	1900 UJ
Phthalate, di-n-octyl	100000		10000000	380 R	380 UJ	1800 UJ	3800 UJ	1900 UJ
Phthalate, diethyl	50000			380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Phthalate, dimethyl	50000			380 U	380 U	1800 UJ	3800 UJ	1900 UJ
Pyrene	100000	10000000	4200000	3900	230 J	3100 J	. 710 J	1700 J
Trichlorophenol-2,4,5	50000		270000	940 U	970 U	4500 UJ	9600 UJ	4800 UJ
Trichlorophenol-2,4,6	10000		200	380 U	380 U	1800 UJ	3800 UJ	1900 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date			F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval]			1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name								
						•		
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	2000 UJ	1900 UJ	340 J	120000 UJ	34000 J
Acenaphthylene			4200000	2000 UJ	1900 UJ	1100 J	120000 UJ	120000 UJ
Acetophenone				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Anthracene	100000		12000000	360 J	1900 UJ	1900 J	22000 J	65000 J
Atrazine				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Benzaldehyde				2000 UJ	1900 UJ	74 J	120000 UJ	120000 UJ
Benzo(a)anthracene	500000	4000	2000	1600 J	1200 J	# 6900 (BC)	#50000 J (BC)	130000 J
Benzo(a)pyrene	100000	660	8000	1500 J (B)	870 J 👉 (8)	7300 (B)	39000 J (BC);	97000\$J (BC)
Benzo(b)fluoranthene	50000	4000	5000	1500 J	870 J	10000 (BC)	37000 J (BC)	.97000 J (ABC)
Benzo(g,h,l)perylene			4200000	370 J	210 J	2900	13000 J	34000 J
Benzo(k)fluoranthene	500000	4000	49000	1600 J	990 J	4200 (B)	:45000.J (8)	110000 J (BC)
Biphenyl				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Bromophenyl-4 Phenyl Ether				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Butylbenzyl phthalate	100000		930000	290 J	1900 UJ	2100 U	120000 UJ	120000 UJ
Caprolactam				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Carbazole			600	2000 UJ	1900 UJ	810 J (C)	2 - 14000 J (c)	43000 J (c)
Chloroaniline-4			700	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Chloronaphthalene-2				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Chlorophenol-2—	10000		4000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Chlorophenyl-4 phenyl ether		<u> </u>		2000 UJ	1900 UJ	2100 U	120000 ŪJ	120000-UJ
Chrysene	500000	40000	160000	1700 J	1200 J	7400	51000 J (B)	130000 J (B)
Cresol-4,6-dinitro-ortho		1		4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Cresol-o	L		15000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Cresol-p				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Cresol-parachloro-meta	100000		4000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	2000 UJ	1900 UJ	1400 J (B)		120000 UJ
Dibenzofuran				2000 UJ	1900 UJ	300 J	120000 UJ	27000 J
Dichlorobenzidine-3,3	100000		7	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Dichlorophenol-2,4	10000		1000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date]		F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval]			1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Dinitrophenol-2,4	10000		300	4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Dinitrotoluene-2,4			0.8	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Dinitrotoluene-2,6			0.7	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Ether, bis-chloroisopropyl	10000			2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Fluoranthene	100000	10000000	4300000	3000 J	2000 J	11000	120000 J (A)	330000 J = 4 (A)
Fluorene	100000		560000	2000 UJ	1900 UJ	590 J	13000 J	42000 J
<u>Hexachlorobenzene</u>	100000		2000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Hexachlorobutadiene	100000		2000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Hexachlorocyclopentadiene	100000		400000	2000 UJ	1900 UJ	2100 UJ	120000 UJ	120000 UJ
Hexachloroethane	100000		500	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	440 J	260 J	(a) 41,00 mg as (B)	. 15000 J → (BC)	_40000 J (BC)
Isophorone	50000		500	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Methane, bis(2-chloroethoxy)				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Methylnaphthalene-2				2000 UJ	1900 UJ	130 J	120000 UJ	120000 UJ
Naphthalene	100000	4200000	84000	2000 UJ	1900 UJ	270 J	120000 UJ	120000 UJ
Nitroaniline-2				4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Nitroaniline-3				4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Nitroaniline-4				4900 UJ	4800 UJ	5300 UJ	300000 UJ	290000 UJ
Nitrobenzene	10000		100	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Nitrophenol-2				2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Nitrophenol-4				4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	2000 UJ	1900 UJ	2100 UJ	120000 UJ	120000 UJ
Nitrosodiphenylamine-n	100000		1000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
PCP (Pentachiorophenol)	100000		30	4900 UJ	4800 UJ	5300 UJ	300000 UJ	290000 UJ
Phenanthrene			4200000	1900 J	780 J	7700	110000 J	340000 J
Phenol	50000		100000	2000 UJ	1900 UJ	99 J	120000 UJ	120000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004
NRDCSCC - Nonresidentital Direct Contact Soil Cleanu
Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date			F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval				. 1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name								
Semivolatile Organic Compou	unds (ug/Kg)	<u> </u>	1					
Phthalate, di-n-butyl	100000		2300000	2000 UJ	1900 UJ	78 J	120000 UJ	120000 UJ
Phthalate, di-n-octyl	100000		10000000	2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Phthalate, diethyl	50000			2000 UJ	1900 UJ	2100 UJ	120000 UJ	120000 UJ
Phthalate, dimethyl	50000			2000 UJ	1900 UJ	2100 U	120000 UJ	120000 UJ
Pyrene	100000	10000000	4200000	2700 J	1900 J	11000	82000 J	220000 J (A)
Trichlorophenol-2,4,5	50000		270000	4900 UJ	4800 UJ	5300 U	300000 UJ	290000 UJ
Trichlorophenol-2,4,6	10000		200	2000 UJ	1900 UJ	2100 UJ	120000 UJ	120000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2

Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000		570000	1900 UJ	1100 J	11000 UJ	1300 J	12000 UJ
Acenaphthylene			4200000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Acetophenone				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Anthracene	100000		12000000	1900 UJ	2500 J	2800 J	3700 J	2900 J
Atrazine				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Benzaldehyde				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Benzo(a)anthracene	500000	4000	2000	750 J	6100 J (BC)	5900 J (BC)	8700 J (BC)	6600 J (BC)
Benzo(a)pyrene	100000	660	8000	650 J	5200 J (B)	4700 J (B)	1 7400 J (8)	5100 J. (B)
Benzo(b)fluoranthene	50000	4000	5000	760 J	5500 J (BC)	3700 J	6400 J (BC)	3800 J
Benzo(g,h,l)perylene			4200000	350 J	1500 J	11000 UJ	11000 UJ	2800 J
Benzo(k)fluoranthene	500000	4000	49000	710 J	3800 J	5500£J(B)	』また。9200 J ここで(B)	55007ULLAGE (B)
Biphenyl				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Bromophenyl-4 Phenyl Ether		}		1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Butylbenzyl phthalate	100000		930000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Caprolactam				1900 UJ	.3700 UJ	11000 UJ	11000 UJ	12000 UJ
Carbazole			600	240 J	1000 J (c)	_1200;U+ (c)	1600 J (c)	12000 UJ
Chloroaniline-4			700	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Chloronaphthalene-2				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Chlorophenol-2	10000		4000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Chlorophenyl-4 phenyl ether				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Chrysene	500000	40000	160000	960 J	6300 J	6000 J	8900 J	7000 J
Cresol-4,6-dinitro-ortho				4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Cresol-o			15000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Cresol-p				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Cresol-parachloro-meta	100000		4000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	1900 UJ	800 J (B)	11000 UJ	11000 UJ	12000 UJ
Dibenzofuran				1900 UJ	800 J	11000 UJ	1300 J	12000 UJ
Dichlorobenzidine-3,3	100000		7	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Dichlorophenol-2,4	10000		1000	1900 UJ	3700 UJ_	11000 UJ	11000 UJ	12000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004
NRDCSCC - Nonresidentital Direct Contact Soil Cleanu
Criteria
EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date		ţ	F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval	1			1 - 1.5 ft	1 - 1.5 ft.	1 - 1.5 ft	1 - 1.5 ft	1 - 1,5 ft
CLP Sample ID]			B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name						···		
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Dinitrophenol-2,4	10000		300	4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Dinitrotoluene-2,4			0.8	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Dinitrotoluene-2,6			0.7	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Ether, bis-chloroisopropyl	10000			1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Fluoranthene	100000	10000000	4300000	2100 J	11000 J	10000 J	15000 J	13000 J
Fluorene	100000		560000	1900 UJ	1300 J	1100 J	1500 J	12000 UJ
Hexachlorobenzene	100000		2000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Hexachlorobutadiene	100000		2000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Hexachlorocyclopentadiene	100000		400000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Hexachloroethane	100000		500	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	. 370 J	2100 J	11000 UJ	11000 UJ	2900 J
Isophorone	50000		500	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Methane, bis(2-chloroethoxy)				1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Methylnaphthalene-2				1900 UJ	410 J	11000 UJ	11000 UJ	12000 UJ
Naphthalene	100000	4200000	84000	1900 UJ	650 J	1400 J	2200 J	5900 J
Nitroaniline-2				4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Nitroaniline-3				4700 UJ-	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Nitroaniline-4				4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Nitrobenzene	10000		100	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Nitrophenol-2		Ī		1900 UJ	3700 UJ	11000 UJ	11000 UJ	. 12000 UJ
Nitrophenol-4	Ī			4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Nitrosodiphenylamine-n	100000		1000	1900 UJ	3700 UJ	11000 UJ	11000 W	12000 W
PCP (Pentachlorophenol)	100000		30	4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Phenanthrene			4200000	1700 J	9800 J	11000 J	14000 J	12000 J
Phenol	50000		100000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name								
Semivolatile Organic Compounds	s (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Phthalate, di-n-octyl	100000		10000000	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Phthalate, diethyl	50000			1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Phthalate, dimethyl	50000			1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ
Pyrene	100000	10000000	4200000	1700 J	10000 J	9100 J	13000 J	11000 J
Trichlorophenol-2,4,5	50000		270000	4700 UJ	9400 UJ	27000 UJ	28000 UJ	29000 UJ
Trichlorophenol-2,4,6	10000		200	1900 UJ	3700 UJ	11000 UJ	11000 UJ	12000 UJ

302671

J - Reported value estimated in quantity

R - Rejected Result

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval			14 4 14 14 14 14 14 14 14 14 14 14 14 14 14 1	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FX2	B0FX5
Chemical Name					
Semivolatile Organic Compound	ls (ug/Kg)				
Acenaphthene	100000		570000	560 J	6700 J
Acenaphthylene			4200000	1500 J	12000 U
Acetophenone				3800 U	12000 U
Anthracene	100000		12000000	2500 J	15000
Atrazine				3800 U	12000 U
Benzaldehyde				3800 UJ	12000 UJ
Benzo(a)anthracene	500000	4000	2000	8200 (BC)	24000 (BC)
Benzo(a)pyrene	100000	660	8000	6300 J 💮 (B)	18000 (BC)
Benzo(b)fluoranthene	50000	4000	5000	4700 J (B)	16000 (BC).
Benzo(g,h,l)perylene]	4200000	1200 J	5100 J
Benzo(k)fluoranthene	500000	4000	49000	8200 J (B)	18000 (B)
Biphenyl				3800 U	12000 U
Bromophenyl-4 Phenyl Ether				3800 U .	12000 U
Butylbenzyl phthalate	100000		930000	3800 U	12000 U
Caprolactam				3800 U	12000 U
Carbazole			600	720 J 👫 (c)	7200 J (c)
Chloroaniline-4			700	3800 U	12000 U
Chloronaphthalene-2		1		3800 U	12000 U
Chlorophenol-2	10000		4000	3800_U	12000 U
Chlorophenyi-4 phenyl ether				3800 Ü	12000 U
Chrysene	500000	40000	160000	7800	23000
Cresol-4,6-dinitro-ortho				9500 U	29000 U
Cresol-o			15000	3800 U	12000 U
Cresol-p				3800 U	12000 U
Cresol-parachloro-meta	100000		4000	3800 U	12000 U
Dibenzo(a,h)anthracene	100000	660	2000		2000 J (BC)
Dibenzofuran				500 J	5300 J
Dichlorobenzidine-3,3	100000		7	3800 U	12000 U
Dichlorophenol-2,4	10000		1000	3800 U	12000 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FX2	B0FX5
Chemical Name				######################################	
			·		
Semivolatile Organic Compounds	(ug/Kg)				
Dimethylphenol-2,4	10000		9000	3800 U .	12000 U
Dinitrophenol-2,4	10000		300	9500 U	29000 U
Dinitrotoluene-2,4			0.8	3800 U	12000 U
Dinitrotoluene-2,6]	0.7	3800 U	12000 U
Ether, bis(2-chloroethyl)	10000		0.4	3800 U	12000 U
Ether, bis-chloroisopropyl	10000			3800 U	12000 U
Fluoranthene	_100000	10000000	4300000	17000	57000
Fluorene	100000	1	560000	780 J	8000 J
Hexachlorobenzene	100000		2000	3800 U	12000 U
Hexachlorobutadiene	100000		2000	3800 U	12000 U
Hexachlorocyclopentadiene	100000		400000	3800 U	12000 U
Hexachloroethane	100000		500	3800 U	12000 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	1700 J	5700 J (B)1
Isophorone	50000		500	3800 U	12000 U
Methane, bis(2-chloroethoxy)				3800 U	12000 U
Methylnaphthalene-2		1		3800 U	2200 J
Naphthalene	100000	4200000	84000	1700 J	2700 J
Nitroaniline-2				9500 U	29000 U
Nitroaniline-3				9500 U	29000 U
Nitroaniline-4				9500 U	29000 U
Nitrobenzene	10000		100	3800 U	12000 U
Nitrophenol-2				3800 U	12000 U
Nitrophenol-4				9500 UJ	29000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	3800 U	12000 U
Nitrosodiphenylamine-n	100000		1000	3800 U	12000 U
PCP (Pentachlorophenol)	100000		30	9500 U	29000 U
Phenanthrene			4200000	9200	72000
Phenol	50000		100000	3800 U	12000 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		3800 U	12000 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.2 Surface Soil -Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

				_	•
Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0FX2	B0FX5
Chemical Name					
Semivolatile Organic Compo	ounds (ug/Kg)		<u> </u>	·	
Phthalate, di-n-butyl	100000		2300000	3800 U	12000 U
Phthalate, di-n-octyl	100000		10000000	3800 U	12000 U
Phthalate, diethyl	50000			3800 U	12000 U
Phthalate, dimethyl	50000			3800 U	12000 U
Pyrene	100000	10000000	4200000	8600	48000
Trichlorophenol-2,4,5	50000		270000	9500 U	29000 U
Trichlorophenol-2.4.6	10000		200	3800 U	12000 U

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date	7	l	F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval	7			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID	7		1	MB0CJ5	MB0CG1	MB0CF2	MB0CF9	MB0CE7
Chemical Name								
Metals (mg/Kg)	<u></u>				,			
Aluminum	T	1		7290	2650	5720	4920	2990
Antimony		340	5	0.84 UJ	0.81 UJ	2.8 BJ	2.9 BJ	0.79 UJ
Arsenic		20	29		1945 = 39!8 # 32 € (BC)			11.3
Barium		47000	1600	475	111	717	2440 (c)	4320 (c)
Beryllium			63	0.6 B	0.35 B	0.51 B	0.52 B	0.17 B
Cadmium	1	100	8	0.51 B	0.38 B	4.8	3.2	1.1
Calcium				23400	865 B	15000	25900	7970
Chromium		20	38	28.3 (B)	18.3	93.2 (BC)	107 (BC)	13
Cobalt				5.2 B	2 B	8.7 B	5.8 B	2.7 B
Copper		600		38.1	6.3	107_	65	18.6
Iron				15000	10300	36000	14100	19300
Lead		600		139	8.5	521	410	121
Magnesium				3340 J	710 B	6030	7290	1330
Manganese				213	53.6 J	362 J	237 J	152 J
Mercury		270		0.22	0.06 U	1.5	1.3	1.2
Nickel		2400	130	12.7	3.2 B	22.8	29.8	5.9 B
Potassium				1370 J	841 B	883 B	828 B	359 B
Selenium			5	1.1 U	1 U	1.6	1 U	1 U
Silver		4100	34	0.23 U	0.22 U	1,8 B	0.36 B	1 B
Sodium				1720 J	400 BJ	948 BJ	1100 J	397 BJ
Thallium		2		1.2 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
Vanadium		7100	6000	24	13.9	24.7	13.5	21.4
Zinc		1500	12000	110	98.8 J	328 J	331 J	153 J

B - Analyte detected in associated blank J - Reported value estimated in quantity

NA - Not analyzed R - Rejected value

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date	· .		F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID	7			MB0CL9	MB0CL2	MB0CL4	MB0CF3	MB0CH5
Chemical Name								
Metals (mg/Kg)		<u> </u>	<u> </u>		·			
Aluminum	T			5160	6310	6740	4290	4940
Antimony		340	5	0.98 B	3.3 B	1.9 B	1.8 BJ	0.8 UJ
Arsenic		20	29	23.6		19.6	9.5	5.6
Barium		47000	1600			15400 J (c)	224	90.4
Beryllium			63	0.67 B	0.6 B	0.87 B	0.25 B	0.32 B
Cadmium		100	8	0.98 B	4.5	3.7	1.4	1.1
Calcium				4350	30200	16600	6340	32000
Chromium		20	38	21-41-53 (B)	sc _22.8 (B)	17.3	26.3. (B)	18.1
Cobalt				7.7 B	10.4 B	9.8 B	3.4 B	3.1 B
Copper		600		50.8	115	52.9	281	27.6
Iron				38100	21900	15900	16600	9370
Lead		600		508	3190 (B)	11110 (6)	286	132
Magnesium				475 BJ	16700 J	2250 J	3010	9100 J
Manganese				137	309	394	744 J	231
Mercury		270		0.59	0.59	0.47	0.58	0.79
Nickel		2400	130	12.8	19.9	15.5	13.1	8 B
Potassium				517 B	795 B	701 B	375 B	968 B
Selenium			5	3.8 J	1.6 J	1.3 J	1 U .	1 U
Silver		4100	34 -	0.21 UJ	0.21 UJ	0.21. UJ .	0.7 B	0.22 U
Sodium				181 B	417 B	306 B	586 BJ	748 BJ
Thallium ·		2		1.6 B	1.1 U	1.7 B	1.1 UJ	1.1 UJ
Vanadium		7100	6000	21.5	21.6	19.6	19.5	17
Zinc		1500	12000	976	1290	1260	238 J	168

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date]		F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval	7			0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID	7			MB0CJ6	MB0CG3	MB0CG5	мвосно	MB0CG7
Chemical Name								
Metals (mg/Kg)]					
Aluminum		T	I	4420	5290	6560	8990	7290
Antimony	†	340	5	1.7 BJ	1.2 BJ	2.1 BJ	1.7 BJ	1.8 BJ
Arsenic	<u> </u>	20	29	32'8 J (BC)	11.9	217 (BC)		
Barium	1	47000	1600	3230 (c)	414		5600 (c)	3140 (c)
Beryllium			63	0.37 B	0.3 B	0.48 B	0.86 · B	0.79 B
Cadmium		100	8	1.8	1 B	1.2	4.1	3.8
Calcium				13000	25000	16600	15500	19700
Chromium		20	38	61-4- (BC);	23:2 (B)) 205 (BC)	1080 (BC)	1080 (BC)
Cobalt				4.5 B	3.5 B	5.8 B	42	32.2
Copper		600		160	50.1	61.3	446	282
lron				32300	15100	18500	28100	22500
Lead		600		612) (B)	155	241	14507 (B)	607 (8)
Magnesium				2970	2430	5490	4230 J	4540 J
Manganese				228	156 J	213 J	361	302
Mercury		270		1.5 J	0.42	0.61	1.8	1.6
Nickel		2400	130	17.6	10.4	15.1	43.9	28.1
Potassium	<u> </u>			392 B	626 B	987 B	1240 J	1020 B
Selenium			5	1.8	1 U	1.4	1.4	1.1 U
Silver		4100	34	0.5 B	0.22 U	0.95 B	1.3 B	0.43 B
Sodium				817 B	784 BJ	1450 J	1310 J	1200 J
Thallium		2		1.2 UR	1.1 UJ	1.1 UJ	1.2 UJ	1.2 UJ
Vanadium		7100	6000	22.4	19.2	20.6	27.1	21.1
Zinc		1500	12000	522	213 J	421 J	773	714

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date	1	İ	F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval	1		. [0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID] .			MB0CL0	MB0CH2	MB0CK8	MB0CE9	MB0CZ6
Chemical Name								
Metals (mg/Kg)						· · · · · · · · · · · · · · · · · · ·		
Aluminum	1	Ι		5410	5490	4190	6320	5800
Antimony	 	340	5	1.1 UJ	7.1 BJ (c)	0.77 UJ	2.3 BJ	0.8 UJ
Arsenic	 	20	29	5.6 J	1:79 (BC)	2.1 J	36.3 (BC)	
Barium	 	47000	1600	160	4010 (C)	30.6 B	5470 (c)	
Beryllium	·	47000	63	0.12 B	0.62 B	0.12 B	0.43 B	0.16 B
Cadmium	 	100	8	0.12 U	7.4	0.083 U	3.3	1.1
Calcium	 	100		1180 B	9200	400 B	9350	5070
Chromium	<u> </u>	20	38	19	422 (BC)	9.8	73.3 (BC)	18.5 J
Cobalt	 			0.72 B	11.1	0.69 B	7.9 B	5.8 B
Copper	1.	600		20.1	1400 (B)	6.8	92.3	105
Iron				10700	92500	7880	57800	15500
Lead	1	600		69	1480 (B)	25	380	390
Magnesium				390 B	2770 J	302 B	4300	2870
Manganese				24.8	577	26.4	409 J	192 J
Mercury		270		0.55 J	NA NA	0.069 BJ	0.5	0.62
Nickel		2400	130	3.4 B	87.2	2 B	21.6	12.1 R
Potassium				133 B	390 B	211 B	709 B	629 B
Selenium			5	1.4 U	2.4	0.99 U	1.1	1 B
Silver		- 4100 -	. 34	0.29-U	- 0.72 B	0.21 U	12.9	2 J .
Sodium				315 B	2690 J	254 B	866 BJ	1060 BJ
Thallium		2		1.5 UR	1.1 UJ	1.1 UR	1.2 UJ	1.1 UJ
Vanadium		7100	6000	20.7	34.9	11.4	21.7	27.3
Zinc		1500	12000	38.4	2270 (B)	13.4	553 J	413 R

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval			Ī	1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				MB0CH6	MB0CJ0	MB0CJ1	MB0CF7	MB0CF4
Chemical Name								
Metals (mg/Kg)								
Aluminum	 	1	[6430	3230	8410	3710	13300
Antimony		340	5	7:6#BU = (C)		1.9 BJ	5.9 BÚ# 24(c)	1.1 BJ
Arsenic	·····	20	29	8.3			74.8 (BC)	
Barium		47000	1600	1230	18.5 B	189		33400 (c)
Beryllium		1.000	63	0.55 B	0.3 B	0.61 B	0.48 B	1 B
Cadmium		100	8	110 (BC)	0.09 U	31.8 (c)	1.3	1.1 B
Calcium		1		32100	6210	54300	4000	2650
Chromium		20	38	27.2 (BC)			197 (BC)	
Cobalt				28	0.3 B	8.3 B	4.3 B	5.1 B
Copper		600		646 (F) (B)	4 B	78.6	598	453
Iron				77700	11800	21300	17100	31300
Lead		600	1	853 (B)	8.3	511	502	140
Magnesium				5430 J	1030 BJ	6710 J	1020 B	575 B
Manganese				452	21.3	187	161 J	214 J
Mercury		270		NA.	0.06 U	0.31	3.1	0.56
Nickel		2400	130	576 (C)	1.5 B	35.5	11	12.8
Potassium				927 B	367 B	1920 J	379 B	1050 B
Selenium			5	4.3	1 U	1,1 B	2.6	1.7
Silver		4100	34	45.7 * (C)	0.22 U	0.9 B	0.35 B	0.33 B
Sodium				3500 J	290 BJ	1850 J	706 BJ	837 BJ
Thallium		2		1.4 UJ	1.1 UJ	1.2 UJ	1.2 UJ	1.3 UJ
Vanadium		7100	6000	40.6	29	24.9	20.1	29.1
Zinc		1500	12000	1460	9.9	632	380 J	504 J

302679

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date	7		F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval	7			1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	_			MB0CG0	MB0CZ1	MB0D15	MB0CZ8	MB0D06
Chemical Name								
Metals (mg/Kg)	1							
Aluminum	T	[3510	4520	4620	4840	9000
Antimony	_	340	5	3.3 BJ	0.88 J	0.81 BJ	0.78 UJ	0.76 UJ
Arsenic		20	29	766 s (BC)		21.7 J. (B)	8.1	3.3
Barium	 	47000	1600	1260	646 J	3050(c)	144 J	165 J
Beryllium			63	0.33 B	0.2 B	0.4 B	0.22 B	0.53 B
Cadmium		100	8	4.1	1 B	1.9	0.49 B	0.33 B
Calcium				29900	5380	6320	1220	34100
Chromium		20	38	65.4 (BC)	24 J (B)	75 (BC)	11.7 J	9.8 J
Cobalt				5.1 B	3.4 B	2.7 B	3.8 B	3.2 B
Copper		600		106	63.4	39.1	49.4	11.4
lron .				32100	14200	9820	10800	17400
Lead		600		450	979 (B)	356	132	34.6
Magnesium				16900	1210	1190	1060	829 B
Manganese				242 J	126 J	103 J	112 J	127 J
Mercury		270		1.1	0.53	0.68	0.37	0.08 R
Nickel		2400	130	21.4	9.1 R	10	6.8 R	8.1 B
Potassium				856 B	414 B	646 B	476 B	486 B
Selenium			5 -	1,1 B	1.1	1 U	1 U	0.98 U
Silver		4100 _	34	0.37 B	0.38 J	0.21 U	0.21 UJ	0.21 UJ
Sodium				1400 J	675 BJ	582 J	283 BJ	666 BJ
Thallium		2		1.2 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
Vanadium		7100	6000	27	17.5	28.2	16	14.8
Zinc		1500	12000	974 J	343 R	339_	63 R	62.6 R

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date		Į.	F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				MB0979	MB0D16	MB0D13	MB0981	MB0D00
Chemical Name				· · · · · · · · · · · · · · · · · · ·				
		l						
Metals (mg/Kg)		···						
Aluminum				5010	3250	4280	3980	4400
Antimony		340	5	0.8 UJ	0.78 UJ	2.6 BJ	1.9 J	0.99 J
Arsenic		20	29	6.6	6.3 J	15 J	33.1 (BC)	20.3 (B)
Barium		47000	1600	396 J	3. 4410 (c)	567	2460 J (c)	333 J
Beryllium			63	0.32 B	0.28 B	0.4 B	0.27 B	0.2 B
Cadmium		100	8	0.64 B	0.32 B	1 B	4.4	0.5 B
Calcium				1840	4350	4010	5010	13400
Chromium		20	38	15.2 J	8.5	20:1 (B)	189 J (BC);	24:9 (B)
Cobalt				4.4 B	1.7 B	3.3 B	6.5 B	6.2 B
Copper		600		36.4	18.7	80.5	90.6	68.1
Iron				11200	12800	16000	14400	16400
Lead		600		140	61.4	758 (B)	872 (B)	236
Magnesium	1	1		1430	529 B	732 B	1040 B	3330
Manganese			-	115 J	47.8 J	488 J	139 J	205 J
Mercury		. 270		0.39	0.12	0.68	1.5	0.21
Nickel		2400	130	13.6 R	5.1 B	9.6 B	11.8 R	15.8 R
Potassium				619 B	355 B	405 B	663 B	655 B
Selenium			5	1 U	1.2	3.3 U	1.4	1.1 U
Silver		4100	34	0.22 J	0.21 U	0.33 U	0.41 J	0.24 UJ
Sodium				390 BJ	354 J	789 BJ	1470 J	689 BJ
Thallium		2	1	1.1 UJ	1.1 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Vanadium		7100	6000	21.9	14.7	22.6	22.7	28.3
Zinc	T	1500	12000	104 R	84.4	473	945 R	185 R

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date		1	F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0,5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				MB0D09	MB0D10	MB0CJ9	MB0CJ7	MB0CK5
Chemical Name								
Metals (mg/Kg)		<u> </u>	<u> </u>					
Aluminum		1]	6640	4040	11400	13000	4240
Antimony		340	5	1.1 BJ	0.81 UJ	0.9 UJ	0.91 UJ	0.86 UJ
Arsenic		20	29	8.7 J	4.6 J	24.2 J (B)	24.6 J. (B)	18.8 J
Barium		47000	1600	5070 (c)	62.4		1/37900 ± (c)	2030:(c)
Beryllium			63	0.56 B	0.33 B	1.2 B	1.2 J	0.54 B
Cadmium		100	8	2.2	0.09 U	41.8 (c)	24:4: (C)	2.1
Calcium				9980	1700	3490	3700	13200
Chromium		20	38	23.7 (8)	11.4	24.4 (B)	22.21 (B)	30.1. (B)
Cobalt				5.8 B	2.8 B	10.3 B	12.5	5 B
Copper		600		92.5	23.3	74.9	75.8	56
Iron ·				22000	14100	21900	28500	14100
Lead		600		588	140	541	7.07	377
Magnesium				1680	697 B	723 B	739 B	1390
Manganese				232 J	107 J	535	669	90.3
Mercury		270		0.38	0.31	0.7 J	0.76 J	0.43 J
Nickel		2400	130	10.6	7.7 B	14.5	14.9	16.4
Potassium				791 B	424 B	1000 B	1130 B	792 B
Selenium			5	1.1 U	1.1	1.5	1.5	1.6
Silver		-4100 —	34-	0.23 U	0,22: U ₋	0.24 U	0.25 U	0.23 U
Sodium				1000 BJ	235 BJ	4770 J	4340 J	1020 B
Thallium		2		1.2 UJ	1.1 UJ	1.3 UR	1.3 UR	1.2 UR
Vanadium		7100	6000	22.4	16	31	33.4	33.9
Zinc		1500	12000	550	54.1	6640 (B)	5530 (B)	553

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date			F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID				MB0ES7	MB0CL7	MB0CL5	MB0CM3	MB0CH1
Chemical Name								·
Metals (mg/Kg)								,
Aluminum				37.20 J	4510	.5570	3630	8340
Antimony		340	5	3.5 BJ	2.7 B	3.2 B	1.6 B	3.5 BJ
Arsenic		20	29	24 (B)	63 (BC)	18.7	2.466.8 (BC)	83 5 and (BC)
Barium		47000	1600	.241	13200 J ; (c)	18200 J : (c)	5030 J (c)	16600 (c)
Beryllium			63	0.43 B	0.48 B	0.66 B	0.82 B	0.53 B
Cadmium		100	8	1.5 J	2.9	4.7	0.8 B	5.2
Calcium				18400	4520	31900	15000	23500
Chromium		20	38	25.5 (B)	£ 113 (BC)	23.9 (B)	9.8	444 (BC)
Cobalt				3.5 B	7.5 B	9.3 B	4.9 B	12 B
Copper		600		134	86.3	162	43.7	607 (# # 57 (B)
lron		_		22400	18800	20800	13000	103000
Lead		600		559	952 (B)	3310 - (8)	419	515
Magnesium				7170	1300 J	16400 J	1920 J	11600 J
Manganese		-		287 J	177	364	185	667
Mercury		270		0.46 J	0.56	0.61	0.75	0.64
Nickel		2400	130	18.5	16.4	20.4	10.6	102
Potassium				500 B	490 B	721 B	497 B	589 B
Selenium			5	1.5	1.5 J	1.2 J	1.5 J_	1.8
Silver		4100	34	0.24 B	0.89 BJ	0.21 UJ	0.21 UJ	0.25 U
Sodium				606 BJ	137 B	260 B	273 B	1350 J
Thallium		2		1.2 UJ	1.1 Ü	1.1 U	1.1 U	1.3 UJ
Vanadium		7100	6000	30.2	15.9	22.5	13.6	41.4
Zinc		1500	12000	347	721	1320	324	859

NA - Not analyzed

B - Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected value

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date		,	F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval				. 1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				MB0D18	МВОСК9	MB0ES5	MB0D19	MB0CM4
Chemical Name								
Metals (mg/Kg)				•				
Aluminum				2210 J	1900	5190 J	4060 J	3330
Antimony	<u> </u>	340	5	3.4 BJ	1.8 BJ	0.81 UJ	2.1 BJ	1.1 B
Arsenic	l	20	29	7.4	30.6 J = (BC)	3.2	15.3	365 (BC)
Barium		47000	1600	888	6980	80.5	601	9020 J (c)
Beryllium			63	0.22 B	0.37 B	0.4 B	0.46 B	0.43 B
Cadmium		100	8	2.2 J	1 B	0.09 UJ	0.47 BJ	0.27 B
Calcium				3880	2560	45800	4560	3010
Chromium		20	38	413: (BC)	81.4: (BC)	12.3	17.2	160 (BC)
Cobalt	ļ			2.2 B	3.4 B	2.3 B	4.1 B	4.7 B
Copper		600		159	410	18.8	72.8	13.5
iron				13800	13100	8350	18100	9700
Lead		600		552	1140 (B)	53.2	461	124
Magnesium				950 B	559 B	11800	715 B	1310 J
Manganese				111 J	76.9	121 J	140 J	61.7
Mercury		270		5.7 J	0.49 J	0.11 J	1.5 J	0.22 J
Nickel		2400	130	7.2 B	30	7.3 B	9.5	6.5 B
Potassium				236 B	305 B	760 B	486 B	330 B
Selenium			5	11	1.6	1.1 U	1.6	0.99 BJ
-Silver.		4100	34	1.7 B	0:23-U	0.22 U	0.22 U	0.2 UJ
Sodium				771 BJ	595 B	358 BJ	583 BJ	94.9 B
Thallium		2		1.1 UJ	1.2 UR	1.1 UJ	1.2 UJ	1.1 U
Vanadium		7100	6000	8.1 B	47	12.8	17.1	10 B
Zinc		1500	12000	492	252	71.1	263	426

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date			F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				MB0CM6	MB0CM8	MB0ER4	MB0ES1	MB0ER7
Chemical Name								
Metals (mg/Kg)								
Aluminum	'			10000	5220	4550	5930	4600
Antimony		340	5	37.2 (c)	7.6 B (c)	0.82 UJ	1.5 BJ	4.1 BJ
Arsenic		20	29	103 (CBC)		5.1 J	17.8 J	27:7 J (B)
Barium		47000	1600	5680 J (c)	19100 J (c)	6680 (C)	16000 (c)	13000 (0)
Beryllium			63	1.1 B	0.54 B	0.3 B	0.4 B	0.38 B
Cadmium		100	8	37 (c)	36.6 (c)	1.7	4.8	
Calcium				8990	1380	25000	10800	7920
Chromium		20	38	16.2	14.5	18.3	14.5	16.2
Cobalt				14.4	12.2	2.3 B	3.4 B	4.9 B
Copper		600		269	144	21.8	49.9	99.7
Iron				43400	18900	10300	32800	19100
Lead		600		7 10600 (B)	112000 (B)	198	989 (B)	2140 (B)
Magnesium				3660 J	327 BJ	3020	991 B	1140
Manganese				506	270	134 J	219 J	141 J
Mercury		270		7.7	0.24	1.3	0.39	2.2
Nickel		2400	130	26.2	9.5	7.8 B	8.8 B	9.7
Potassium				2750 J	371 B	558 E	738 B	711 E
Selenium			5	5.9 J (c)	2.7 J	1,1 U	1.6	1.3
Silver		4100	34	2 BJ	0.2 UJ	0.22 U	0.25 U	0.53 B
Sodium				256 B	119 B	891 BJ	1660 J	2280 J
Thallium		2		3.9 (B)	6.4 (B)	1.2 UJ	1.3 UJ	1.2 UJ
Vanadium		7100	6000	25.3	16.1	17.1	18.4	17.1
Zinc		1500	12000	23900 (8C)	1880. (8)	573	. 1200	1880 No.4≠ (B)

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date]		F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval	1			1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			MB0ER9	MB0ES0	MB0CJ2	MB0D04	MB0D05
Chemical Name								
Metals (mg/Kg)							·	
Aluminum				4990	4390	2460	4360	4420
Antimony		340	5	3.2 BJ	0.84 UJ	2.8 BJ	1.2 J	1.9 J
Arsenic		20	29	21. J. (8).	7.7 J	14.9	17.5	23 (B)
Barium		47000	1600	13800 (C)	12100 (c)	3660 (c)	3290 J (c)	3360 J (c)
Beryllium			63	0.41 B	0.26 B	0.46 B	0.34 B	0.35 B
Cadmium		100	8	18:3 (c)	0.62 B	2	0.75 B	1.1 B
Calcium				8970	5880	12500	7710	6380
Chromium		20	38	15.1	9.6	53:8 (BC)	31 J (B)	34.7 J (B)
Cobalt				4.3 B	3.5 B	9.2 B	6.8 B	8.3 B
Copper		600		90.7	21	64.2	93.7	160
Iron				15500	12800	12700	19000	27200
Lead		600		1620 (B)	278	497	502	1110 (B)
Magnesium				1210	929 B	2520 J	1630	1650
Manganese				123 J	142 J	65.9	128 J	172 J
Mercury		270		2.4	1.3	0.25	0.86	1.2
Nickel		2400	130	10.8	6.5 B	15.4	16.4 R	23.3 R
Potassium				705 B	421 B	713 B	453 B	453 B
Selenium			5	1.2	1.1 U	1.2	2	2.5
Silver		4100	34 ₋ -	0.49B	0.23 U	0.25 U	0.24 UJ	0.26 J
Sodium				2040 J	739 BJ	992 BJ	637 BJ	802 BJ
Thallium		2		1.2 UJ	1.2 UJ	1.3 UJ	1.2 UJ	1.3 UJ
Vanadium		7100	6000	16.8	11.8	25.6	17.4	19.9
Zinc		1500	12000	:1650 (B)	446	453	296 R	405 R

B - Analyte detected in associated blank J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				MB0CZ2	MB0D02	MB0ET3	MB0ET4	MB0ET2
Chemical Name								
Metals (mg/Kg)								
Aluminum				6620	3150	3430 J	3280 J	5650 J
Antimony		340	5	1.4 J	1.9 J	1.9 BJ	1.5 BJ	1.1 BJ
Arsenic		20	29	17.7	33.8 (BC)		321 (BC)	
Barium		47000	1600	1080 J	796	12600 (c)	10900 (c)	7030: £5 (c)
Beryllium			63	0.4 B	0.33 J	0.51 B	0.46 B	0.74 B
Cadmium		100	8	5.1	0.86 B	4.6 J	3.9 J	2.3 J
Calcium				7220	5930	6740	5110	33000
Chromium		20	38	24.5 J	13 J	- 256 - Luc (BC)	(BC)	261 (BC)
Cobalt				5.4 B	3.5 B	4.8 B	4.5 B	3.4 B
Copper		600		358	67.5	58.7	57.5	44.5
Iron				27600	16900	14700	13500	12100
Lead		600		1020 (B)	541	512	4.4 (661) 3.4 (B)	548
Magnesium	·			999 B	1410	1120	1170	3120
Manganese				234 J	124 J	104 J	103 J	211 J
Mercury		270		0.76	0.51	0.65 J	0.62 J	0.99 J
Nickel		2400	130	12.4 R	11.3 R	15.5	13.6	10.7
Potassium				646 B	323 B	376 B	354 B	561 B
Selenium			5	2.1	. 1.5	1.6	1.6	1.2
Silver		4100	34	0.88 J	0.23 UJ	0.22 U	0.22 U	0.24 U
Sodium				1360 J	703 BJ	2320 J	1890 J	1360 J
Thallium		2		1.1 UJ	1.2 UJ	1.2 UJ	1.1 UJ	1.2 UJ
Vanadium		7100	6000	33.6	16.5	19.4	. 17.3	16.7
Zinc		1500	12000	675 R	354 R	1740 (B)	1670 (B)	900

302687

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

Table G.3 Surface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval	7		•	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	7			MB0ET6	MB0ET5
Chemical Name					
Metals (mg/Kg)		<u> </u>	<u> </u>		
Aluminum	1	Γ	·	4140 J	5810 J
Antimony	1	340	5	1.2 BJ	1.6 BJ
Arsenic		20	29	246 (8C)	
Barium		47000	1600		22600 (0
Beryllium			63	0.41 B	0.54 B
Cadmium		100	8	0.91 BJ	1.6 J
Calcium				23700	16600
Chromium		20	38	326 (BC)	
Cobalt	-		·	5.2 B	6.6 B
Copper		600		52.9	33.4
Iron				16300	27700
Lead		600		526	505
Magnesium				2740	1880
Manganese		·		154 J.	180 J
Mercury		270		1.3 J	0.46 J
Nickel		2400	130	12.4	12
Potassium				511 E	416 B
Selenium			5	1.7	1.4
Silver		4100	34	0.23	0.23 U
Sodium				838 BJ	1050 BJ
Thallium		2		1.2 UJ	1.2 UJ
Vanadium		7100	6000	14.3	16.5
Zinc		1500	12000	507	738

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected value

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-02	MA-SB-04	MA-SB-06	MA-SB-08	MA-SB-09
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB02-SS	MA-SB04-SS	MA-SB06-SS	MA-SB08-SS	MA-SB09-SS
Sample Date]		F20	10/18/2001	10/16/2001	10/15/2001	10/16/2001	10/15/2001
Sample Interval]			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	0.5 - 1 ft
CLP Sample ID				B0DD7	B0DA6	B0D96	B0DA9	B0D91
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.9 U	1.9 R	3.6 U	28	1.8_U
BHC, alpha			0.5	1.9 U	1.9 R	3.6 U	19 U	1.8 U
BHC, beta			3	1.9 U	1.9 R	3.6 U	19 U	1.8 U
BHC, delta			9	1.9 U	1.9 R	3.6 U	19 U	1.8 U
BHC, gamma (Lindane)	50000		9	1.9 UJ	1.9 R	3.6 UJ	19 UJ	1.8 UJ
Chlordane - alpha			23000	19 J	18 J	960	1300 JN	58
Chlordane - gamma (technical mixture)			10000	47 J	19 J	1200	1500 J	- 51
DDD-4,4	50000		16000	3.8 U	3.7 R	6.9 U	37 U	3.6 U
DDE-4,4	50000	9000	54000	68 J	10 J	630	420	260
DDT-4,4	500000	9000	32000	3.8 UJ	3.7 R	98 R	37 UJ	25 R
Dieldrin	50000	180	4	15 J (c)	3.7 R	73 JN (c)	37 U	3.6 U
Endosulfan I (alpha)			18000	5.9 R	1.9 R	14 R	19 U	1.8 U
Endosulfan II (beta)				3.8 U	3.7 R	6.9 U	37 U	4.1 R
Endosulfan Sulfate			1000	76 J	3.7 R	180 JN	37 U	16 J
Endrin	50000		1000	24 JN	3.7 R	190 J	37 U	3.6 U
Endrin Aldehyde			1000	3.8 U	3.7 R	6.9 U	37 U	3.6 U
Endrin ketone			1000	64 J	3.7 R	6.9 U	37 U	3.6 U
Heptachlor	50000	650	23000	1.9 U	1.9 R	260 J	19 U	1.8 U
Heptachlor Epoxide			700	1.9 U	1.9 R	3.6 U	19 U	1.8 U
Methoxychlor	50000		160000	19 U	19 R	1800 J	190 U	18 U
Pcb-araclor 1016				38 U	37 R	69 U	370 U	36 U
Pcb-araclor 1221				76 U	74 R	140 U	740 U	73 U
Pcb-araclor 1232				38 U	37 R	69 U	370 U	36 U
Pcb-araclor 1242				38 U	37 R	69 U	370 U	36 U
Pcb-araclor 1248				38 U	37 R	69 U	370 U	36 U
Pcb-araclor 1254		2000		38 U	290 J	69 U	10000 J (B)	36 U
Pcb-araclor 1260		2000		38 U	170 J	69 U	7200 J.J. (B)	36 U
Toxaphene	50000		31000	190 U	190 R	360 U	1900 U	180 U

J - Reported value estimated in quantity

N-

R - Rejected value

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-106	MA-SB-108	MA-SB-108	MA-SB-11	MA-SB-112
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB106-SS	MA-SB108-SS	MA-SB108-SS-D	MA-SB11-SS	MA-SB112-SS
Sample Date			F20	10/22/2001	10/22/2001	10/22/2001	10/15/2001	10/17/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID				B0DG7	B0DF9	B0DG1	B0D99	B0DC4
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2 U	2 U	2 U	9.1 U	1.9 U
BHC, alpha			0.5	2 U .	2 U	2 U	9.1 U	1.9 U
BHC, beta			3	2 U	2 U	2 U	9.1 U	1.9 U
BHC, delta			9	2 U	2 U	2 U	9.1 U	1.9 U
BHC, gamma (Lindane)	50000		9	2 U	2 U	2 U	9.1 UJ	1.9 UJ
Chlordane - alpha			23000	2 U	5.9	5.1 NJ	34 JN	1.9 U
Chlordane - gamma (technical mixture)			10000	2 U	7 NJ	9.7 J	9.1 U	58 R
DDD-4,4	50000		16000	3.8 U	3.8 U	3.9 U	18 U	3.8 U
DDE-4,4	50000	9000	54000	3.8 U	11 NJ	11 NJ	80	3.8 U
DDT-4,4	500000	9000	32000	4.9 NJ	30 NJ	32 NJ	18 UJ	24 J
Dieldrin	50000	180	4	6.6 J (c)	13 (0)	15 J (c)	24 R	3.8 U
Endosulfan I (alpha)			18000	2 U	2 U	2 U	9.1 U	1.9 U
Endosulfan II (beta)				- 3.8 U	3.8 U	3.9 U	18 U	3.8 U
Endosulfan Sulfate			1000	3.8 U	3.8 U	3.9 U	18 U	3.8 U
Endrin	50000		1000	3.8 U	3.8 U	3.9 U	18 U	3.8 U
Endrin Aldehyde			1000	7.5 J	14 NJ	3.9 U	18 U	40
Endrin ketone			1000	14 J	19 NJ	36 J	18 U	3.8 U
Heptachlor	50000	650	23000	2 U	2 U	2 U	9.1 U	1.9 U
Heptachlor Epoxide			7.00	2-U	2:5-NJ	2∪	- 9.1 U	1.9 U
Methoxychlor	50000		160000	20 UJ	20 UJ	20 UJ	91 U	310 J
Pcb-araclor 1016				38 U	38 U	39 U	180 U	38 U
Pcb-aracior 1221				77 U	78 U	80 U	360 U	76 U
Pcb-araclor 1232				38 U	38 U	39 U	180 U	38 U
Pcb-araclor 1242				38 U .	38 U	39 Ú	180 U	38 U
Pcb-araclor 1248				38 U	38 U	39 U	180 U	38 U
Pcb-araclor 1254		2000		38 U	240 J	220 J	180 U	38 U
Pcb-araclor 1260		2000		38 U	200 NJ	240 NJ	180 U	38 U
Toxaphene	50000		31000	200 U	200 U	200 U	910 U	190 U

J - Reported value estimated in quantity

N -

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB118-SS	MA-SB120-SS	MA-SB122-SS	MA-SB124-SS	MA-SB124-SS-D
Sample Date]	:	F20	10/18/2001	10/16/2001	10/16/2001	10/17/2001	10/17/2001
Sample Interval	}	\		0.5 - 1 ft	1 - 2.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DD8	B0DB0	B0DB3	B0DB7	B0DB4
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2 U	1.9 U	1.8 U	160 J	90
BHC, alpha			0.5	2 U	1.9 U	1.8 U	4 U	4 U
BHC, beta			3	3.1 R	1.9 U	1.8 U	10 R	94 JN (c)
BHC, delta			9	2 U	1.9· U	1.8 U	4 U	4 U
BHC, gamma (Lindane)	50000		9	2 U	1.9 UJ	1.8 UJ	4 UJ	4 UJ
Chlordane - alpha			23000	2 U	50 JN	120 J	300 J	120 J
Chlordane - gamma (technical mixture)			10000	2 U	52	140	750	360
DDD-4,4	50000		16000	3.8 U	3.7 U	3.6 U	7.8 U	7.7 U
DDE-4,4	50000	9000	54000	81 J	15 J	30	260	130 J
DDT-4,4	500000	9000	32000	3.8 U	8.2 R	3.6 UJ	100 R	150 JN
Dieldrin	50000	180	4	3.8 U	5.7 JN (c)	15 JN (0)	1300 (BC)	640 (BC)
Endosulfan I (alpha)			18000	2 U	1.9 U	1.8 U	4 U	4 U
Endosulfan II (beta)			_	3.8 U	3.7 U	3.6 U	25 J	7.7 U
Endosulfan Sulfate			1000	3.8 U	3.7 U	9.5 JN	73 J	45
Endrin	50000		1000	3.8 U	8.6	12 JN	81 JN	7.7 U
Endrin Aldehyde			1000	3.8 U	3.7 U	3.6 U	7.8 U	7.7 U
Endrin ketone			1000	3.8 U	3.7 U	3.6 U	95 JN	61 JN
Heptachlor	50000	650	23000	2 U	1.9 U	1.8 U	160 R	120
Heptachlor Epoxide			700	4.1 R	1.9 U	10 JN	33 R	20 JN
Methoxychlor	50000		160000	20 U	19 U	18 U	120 R	64 R
Pcb-araclor 1016				38 U	37 U	36 U	78 U	77 U
Pcb-araclor 1221				77 U	75 U	73 U	160 U	160 U
Pcb-araclor 1232				38 U	37 U	36 U	78 U	77 U
Pcb-araclor 1242				38 U	37 U	36 U	78 U	77 U
Pcb-araclor 1248				38 U	37 U	36 U	78 U	- 77 U
Pcb-araclor 1254		2000		2000 (B)	37 U	36 U	78 U	77 U
Pcb-araclor 1260		2000		38 U	37 U	36 U	78 U	77 U
Toxaphene	50000		31000	200 U	190 U	180 U	400 U	400 U

J - Reported value estimated in quantity

N -

R - Rejected value

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

302691

U - Analyte not detected above reporting limit

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-SS	MA-SB130-SS	MA-SB131-SS	MA-SB14-SS	MA-SB29-SS-1.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval] .			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0DF5	B0DC0	B0DF3	B0D93	B0DX6
Chemical Name							·	
Pesticides and PCBs (ug/Kg)	1	1	l .					
Aldrin	50000	170	500	1.8 U	3.6 U	1.8 U	2.6 JN	1.9 UJ
BHC, alpha			0.5	1.8 U	3.6 U	1.8 U	2 U	1.9 UJ
BHC, beta			3	1.8 U	20 R	1.8 U	2 U	1.9 UJ
BHC, delta			9	1.8 U	3.6 U	1.8 U	2 U	1.9 UJ
BHC, gamma (Lindane)	50000		9	1.8 U	3.6 UJ	1.8 U	2 UJ	1.9 UJ
Chlordane - alpha			23000	1.8 U	3.6 U	6.8 JN	160 JN	1.9 UJ
Chlordane - gamma (technical mixture)			10000	3.5 R	3.6 U	8.5	190	4.8 J
DDD-4,4	50000		16000	3.4 U	.7 U	3.5 U	3.9 U	3.8 UJ
DDE-4,4	50000	9000	54000	3.4 U	290	3.5 U	94	3.8 UJ
DDT-4,4	500000	9000	32000	3.4 U	2600	3.5 U	3.9 UJ	3.8 UJ
Dieldrin	50000	180	4	3.5 JN	7 U	3.5 U	6.9. JN (c)	3.8 UJ
Endosulfan I (alpha)			18000	1.8 U	3.6 U	1.8 U	2 U	- 1.9 UJ
Endosulfan II (beta)				3.4 U	7 U	3.5 U	3.9 U	3.8 UJ
Endosulfan Sulfate			1000	3.4 U	42 JN	3.5 U	3.9 U	3.8 UJ
Endrin	50000		1000	3.4 U	. 7 U	3.5 U	3.9 U	3.8 UJ
Endrin Aldehyde			1000	3.4 U	7 U	3.5 U	3.9 U	3.8 UJ
Endrin ketone			1000	3.4 U	7 U	3.5 U	3.9 U	3.8 UJ
Heptachlor	50000	650	23000	1.8 U	3.6 U	1.8 U	2 U	1.9 UJ
Heptachlor Epoxide			700	1.8_U	3.6 U	1.8, U	2.U	1.9. UJ
Methoxychlor	50000		160000	18 U	36 U	18 U	20 U	19 UJ
Pcb-araclor 1016				34 U	70 U	35 U	39 U	38 UJ
Pcb-araclor 1221				69 U	140 U	71 U	80 U	77 UJ
Pcb-araclor 1232				34 U	70 U	35 U	39 U	38 UJ
Pcb-araclor 1242				34 U	70 U	35 U	39 U	38 UJ
Pcb-araclor 1248				34 U	70 U	35 U	39 U	38 UJ
Pcb-araclor 1254		2000		34 U	1800 R	35 U	370 J	38 UJ
Pcb-araclor 1260		2000		250	70 U	35 U	39 U	38 UJ
Toxaphene	50000		31000	180 U	360 U	180 U	200 U	190 UJ

J - Reported value estimated in quantity

N-

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-56
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-SS	MA-SB42-SS	MA-SB47-SS	MA-SB56-SS	MA-SB56-SS-D
Sample Date		ļ	F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval	1			1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DC5	B0DD0	B0DD1	B0DA3	B0DA0
Chemical Name							'''	,
						-		
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	4.2 U	1.8 U	2.1 U	2 U	2.2 U
BHC, alpha			0.5	4.2 U	1.8 U	2.1 U	2 U	2.2 U
BHC, beta			3	4.2 U	1.8 U	2.1_U	2 U	2.2 U
BHC, delta			9	4.2 U	1.8 U	2.1_U	2 U	2.2 U
BHC, gamma (Lindane)	50000		9	4.2 UJ	1.8 UJ	2.1 UJ .	2 UJ	2.2 UJ
Chlordane - alpha			23000	76	1.8 U	35 J	2 U	2.2 U
Chlordane - gamma (technical mixture)			10000	59 J	1.8 U	38 J	2 U	2.2 U
DDD-4,4	50000		16000	8.2 U	3.5 U	4 .U	4 U	8.7
DDE-4,4	50000	9000	54000	310 J	3.5 U	28	9.4 JN	4.2 U
DDT-4,4	500000	9000	32000	43 JN	3.5 UJ	21 JN	33 JN	7.1 JN
Dieldrin	50000	180	4	8.2 U	3.5 U	13 (0)	8.4 R	4.2 U
Endosulfan I (alpha)			18000	4.2 U	1.8 U	2.1 U	2 U	2.2 U
Endosulfan II (beta)				8.2 U	3.5 U	5.1 JN	4 U	4.2 U
Endosulfan Sulfate			1000	8.2 U	3.5 U	5.4 R	4 U	4.2 U
Endrin	50000		1000	8.2 U	3.5 U	4 U	29 JN	12
Endrin Aldehyde			1000	8.2 U	3.5 U	4 U	15 R	_ 22 JN
Endrin ketone			1000	8.2 U	3.5 U	4 U	. 68 J.	4.8 JN
Heptachlor	50000	650	23000	4.2 U	1.8 U	2.1 U	2 U	2.2 U
Heptachlor Epoxide			700	19 J	1.8 U	2:1 U	2.3 R	2.2 U
Methoxychior	50000		160000	42 U	18 U	21 U	160 J	38 JN
Pcb-araclor 1016				82 U	35 U	40 U	40 U	42 U
Pcb-araclor 1221				170, U	72 U	82 U	81 U	86 U
Pcb-araclor 1232				82 U	35 U	40 U	. 40 U	42 U
Pcb-araclor 1242				82 U	35 U	40 U	40 U	42 U
Pcb-araclor 1248				82 Ü	35 U	40 U	40 U	42 U
Pcb-araclor 1254		2000		82 U	35 U	40 U	40 U	42 U
Pcb-araclor 1260	L	2000		82 U	35 U	280	40 U	42 U
Toxaphene	50000		31000	420 U	180 U	210 U	200 U	220 U

J - Reported value estimated in quantity

N-

302693

R - Rejected value

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-60	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB60-SS	MA-SB62-SS-1	MA-SB66-SS-0.5	MA-SB67-SS-1.0	MA-SB68-SS-1.0
Sample Date]		F20	10/16/2001	12/12/2001	12/13/2001	12/12/2001	12/13/2001
Sample Interval				1.5 - 2 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DA4	B0DX1	B0DZ5	B0DX4	B0DY7
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1300 (BC)	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
BHC, alpha			0.5	19 U	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
BHC, beta			3	37. (c)	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
BHC, delta			9	19 U	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
BHC, gamma (Lindane)	50000		9	19 UJ	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
Chlordane - alpha			23000	8100 JN	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
Chlordane - gamma (technical mixture)			10000	8900	2.5 R	1.9 UJ	1.9 UJ	1.8 UJ
DDD-4,4	50000		16000	38 U	3.7 UJ	5 J	3.7 UJ	3.6 UJ
DDE-4,4	50000	9000	54000	850 J	6.1 J	4.9 J	3.7 UJ	3.6 UJ
DDT-4,4	500000	9000	32000	38 UJ	3.8 J	6.8 J	3.7 UJ	3.6 UJ
Dieldrin	50000	180	4	230 J 🖟 (BC)-	3.7 UJ	3.7 UJ	3.7 UJ	3.6 UJ
Endosulfan I (alpha)			18000	120	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
Endosulfan II (beta)				38 U	3.7 UJ	3.7 UJ	3.7 UJ	3.6 UJ
Endosulfan Sulfate			1000	38 U	3.7 UJ	3.7 UJ	3.7 UJ	3.6 UJ
Endrin	50000		1000	38 U	3.7 UJ	3.7 UJ	3.7 UJ	3.6 UJ
Endrin Aldehyde			1000	38 U	3.7 UJ	3.7 UJ	3.7 UJ	3.6 UJ
Endrin ketone			1000	38 U	4 J	3.7 UJ	8.4 J	3.6 UJ
Heptachlor	50000	650	23000	19 U	1.9 UJ	1.9 UJ	1.9 UJ	1.8 UJ
Heptachlor Epoxide	-		- 700 -		1.9 ·UJ·	- 1.9 UJ	1.9 UJ	1.8 UJ
Methoxychior	50000		160000	190 U	19 UJ	19 UJ	19 UJ	18 UJ
Pcb-araclor 1016				380 U	37 UJ	37 UJ	37 UJ	36 UJ
Pcb-aracior 1221				760 U	75 UJ	75 UJ	74 UJ	73 UJ
Pcb-araclor 1232				380 U	37 UJ	37 UJ	37 UJ	36 UJ
Pcb-araclor 1242				380 U	37 UJ	37 UJ	37 UJ	36 UJ
Pcb-araclor 1248				380 U	37 UJ	37 UJ	37: UJ	36 UJ
Pcb-araclor 1254		2000		47.00 (B)	37 UJ	37 UJ	37 UJ	36 UJ
Pcb-araclor 1260		2000		380 U	37 UJ	37 UJ	. 37 UJ	36 UJ
Toxaphene	50000		31000	1900 U	190 UJ	190 UJ	190 UJ	180 UJ

J - Reported value estimated in quantity

N-

R - Rejected value

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-69	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB69-SS-1.0	MA-SB71-SS-0.5	MA-SB72-SS-0.5	MA-SB75-SS-1.0	MA-SB77-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/13/2001	12/12/2001	12/12/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID				B0DW7	B0DZ3	B0DY9	B0DW6	B0DX8
Chemical Name	1			", p====				
			: "					
Pesticides and PCBs (ug/Kg)		•						
Aldrin	50000	170	500	1.9 UJ	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
BHC, alpha			0.5	1.9 UJ	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
BHC, beta			3	1.9 UJ	1.9 UJ	1.9 UJ	. 1.9 UJ	2 UJ
BHC, delta			9	1.9 UJ	1.9 UJ	. 1.9 UJ	1.9 UJ	2 UJ
BHC, gamma (Lindane)	50000		9	1.9 UJ	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
Chlordane - alpha			23000	2 J	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
Chlordane - gamma (technical mixture)			10000	1.9 UJ	1.9 UJ	3 R	1.9 UJ	2 UJ
DDD-4,4	50000		16000	3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
DDE-4,4	50000	9000	54000	3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
DDT-4,4	500000	9000	32000	3.7 UJ	3.7 UJ	3.6 UJ	5.6 J	3.9 UJ
Dieldrin	50000	180	4	3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
Endosulfan I (alpha)			18000	2.3 J	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
Endosulfan II (beta)				3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
Endosulfan Sulfate			1000	3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
Endrin	50000		1000	3.7 UJ	3.7 ÜJ	3.6 UJ	3.6 UJ	3.9 UJ
Endrin Aldehyde			1000	3.7 UJ	3.7 UJ	3.6 UJ	3.6 UJ	3.9 UJ
Endrin ketone			1000	3.7 UJ	3.7 UJ	3.6 UJ	6.2 J	3.9 UJ
Heptachlor	50000	650	23000	1.9 UJ	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
Heptachlor Epoxide			700	1.9 UJ	1.9 UJ	1.9 UJ	1.9 UJ	2 UJ
Methoxychlor	50000		160000	19 UJ	19 UJ	19 UJ	19 UJ	20 UJ
Pcb-aracior 1016				37 UJ	37 UJ	36 UJ	36 UJ	39 UJ
Pcb-araclor 1221				74 UJ	75 UJ	74 UJ	74 UJ	79 UJ
Pcb-araclor 1232				37 UJ	37 UJ	36 UJ	36 UJ	39 UJ
Pcb-araclor 1242				37 UJ	37 UJ	36 UJ	36 UJ	39 UJ
Pcb-araclor 1248				37 UJ	37 UJ	36 UJ	36 UJ	39 UJ
Pcb-araclor 1254		2000		37 UJ	37 UJ	. 36 UJ	. 36 UJ	39 UJ
Pcb-araclor 1260		2000		37 UJ	37 UJ	36 UJ	36 UJ	39 UJ .
Toxaphene	50000		31000	190 UJ	190 UJ	190 UJ	190 UJ	200 UJ

J - Reported value estimated in quantity

N -

30269

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-78	MA-SB-79	MA-SB-81	MA-SB-81	MA-SB-82
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB78-SS-0.5	MA-SB79-SS-0.5	MA-SB81-SS	MA-SB81-SS-D	MA-SB82-SS
Sample Date	1		F20	12/13/2001	12/13/2001	10/18/2001	10/18/2001	10/19/2001
Sample Interval				0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft
CLP Sample ID				B0DY5	B0DZ1	B0DE1	B0DD9	B0DE8
Chemical Name								
		<u> </u>						
Pesticides and PCBs (ug/Kg)		,		<u></u>				
Aldrin	50000	170	500	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
BHC, alpha			0.5	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
BHC, beta	<u> </u>	<u> </u>	3	1.9 UJ	1.9 UJ	3:8 JN (c)	6:8°J (c)	3.9 U
BHC, delta			9	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
BHC, gamma (Lindane)	50000		9	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
Chlordane - alpha			23000	. 1.9 UJ	1.9 UJ	2.1 U	2.1 U	66 J
Chlordane - gamma (technical mixture)			10000	1.9 UJ	1.9 UJ	2.1 U	2.1 U	110
DDD-4,4	50000		16000	3.7 UJ	3.6 UJ	4.1 U	4 Ų	7.6 U
DDE-4,4	50000	9000	54000	3.7 UJ	3.6 UJ	4.1 U	8.2 J	140 R
DDT-4,4	500000	9000	32000	3.7 UJ	3.6 UJ	4.1 U	4 U	730 J
Dieldrin Dieldrin	50000	180	4	3.7 UJ	3.6 UJ	4.1 U	4 U	7.6 U
Endosulfan I (alpha)			18000	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
Endosulfan II (beta)				3.7 UJ	3.6 UJ	4.1 U	4 U	8.1 R
Endosulfan Sulfate			1000	3.7 UJ	3.6 UJ	4.1 U	4 U	7.6 U
Endrin	50000		1000	3.7 UJ	3.6 UJ	4.1 U	4 U	130
Endrin Aldehyde			1000	3.7 UJ	3.6 UJ	4.1 U	4 U	7.6 U
Endrin ketone			1000	3.7 UJ	3.6 UJ	4.1 U	4 U	7.6 U
Heptachlor	50000	650	23000	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
Heptachlor Epoxide			700	1.9 UJ	1.9 UJ	2.1 U	2.1 U	3.9 U
Methoxychlor	50000		160000	19 UJ	19 UJ	21 U	21 U	39 U
Pcb-araclor 1016				37 UJ	36 UJ	41 U	40 U	76 U
Pcb-aracior 1221				76 UJ	73 UJ	83 U	82 U	150 U
Pcb-araclor 1232				37 UJ	36 UJ	41 U	40 U	76 U
Pcb-araclor 1242				37 UJ	36 UJ	41 U	40 U	76 U
Pcb-araclor 1248				37 UJ	36 UJ	41 U	840 J	76 U
Pcb-araclor 1254		2000		37 UJ	36 UJ	47	40 U	76 U
Pcb-araclor 1260		2000		37 UJ	36 UJ	41 U	40 U	76 U
Toxaphene	50000	<u> </u>	31000	190 UJ	190 UJ	210 U	210 U	390 U

J - Reported value estimated in quantity

Ν-

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-85	MA-SB-96	MA-SB-97	MA-SB-98	MA-SO-201
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB85-SS-1.0	MA-SB96-SS	MA-SB97-SS	MA-SB98-SS	MA-SO201-SS
Sample Date]		F20	12/17/2001	10/22/2001	10/22/2001	10/22/2001	10/17/2001
Sample Interval				1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft
CLP Sample ID	İ		ļ i	B0FW1	B0DG5	B0DG3	B0DH2	B0DB8
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.9 U	1.9 U	2.1 U	1.9 U	42 U
BHC, alpha			0.5	1.9 U	1.9 U	2.1 U	1.9 U	42 U
BHC, beta			3	1.9 U	1.9 U	2.1 U	1.9 U	42 U
BHC, delta			9	1.9 U	1.9 U	2.1 U	1.9 U	42 U
BHC, gamma (Lindane)	50000		9	1.9 U	1.9 U	2.1 U	1.9 U	42 UJ
Chlordane - alpha			23000	1.9 U	1.9 U	2.1 Ú	1.9 U	310 J
Chlordane - gamma (technical mixture)			10000	1.9 U	5.8 NJ	2.9 J	1.9 U	42 U
DDD-4,4	50000		16000	7.1 J	3.7 · U	4 U	3.8 U	81 U
DDE-4,4	50000	9000	54000	26	7.2 NJ	4 U	3.8 U	15000 J (B)
DDT-4,4	500000	9000	32000	56	27 J	4.7	3.8 U	990 R
Dieldrin	50000	180	4	3.7 U	3.7 U	4 U	3.8 U	81 U
Endosulfan I (alpha)	Ī		18000	1.9 U	1.9 U	2.1 U	1.9 U	42 U
Endosulfan II (beta)				8.4 NJ	3.7 U	. 4 U	3.8 U	81 U
Endosulfan Sulfate			1000	3.7 U	3.7 U	4 U	3.8 U	390 R
Endrin	50000		1000	11	3.7 U	4 U	3.8 U	, 81 U
Endrin Aldehyde			1000	4.2 R	10 J	4 U	14 NJ	81 U
Endrin ketone			1000	3.7 U	6.8 NJ	8 NJ	10 NJ	120 R
Heptachlor	50000	650	23000	1.9 U	1.9 U	2.1 U	1.9 U	42 U
Heptachlor Epoxide			700	2	1.9 U	2.1 U	1.9 U	42 U
Methoxychlor	50000		160000	19 U	19 UJ	20 UJ	19 UJ	420 U
Pcb-araclor 1016				37 U	37 U	40 U	38 U	810 U
Pcb-araclor 1221				76 U	75 U	81 U	76 U	1600 U
Pcb-araclor 1232				37 U	37 U	40 U	38 U	810 U
Pcb-araclor 1242				37 U	37 U	40 U	38 U	810 U
Pcb-araclor 1248				37 U	37 U	40 U	38 U	810 U
Pcb-araclor 1254		2000		37 U	150 NJ	40 U	38 U	- 19000 (B)
Pcb-araclor 1260		2000		37 U	110 NJ	40 U	38 U	810 U
Toxaphene	50000		31000	190 U	190 U	200 U	190 U	4200 U

J - Reported value estimated in quantity

N-

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidentital Direct Contact Soil Cleanu EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

302697

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)-	MA-SO-202	MA-SO-203	MA-SO-204	MA-SO-206	MA-SO-207
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO202-SS-1	MA-SO203-SS	MA-SO204-SS-0.5	MA-SO206-SS-1.5	MA-SO207-SS
Sample Date			F20	12/14/2001	10/19/2001	12/17/2001	12/17/2001	10/22/2001
Sample Interval		· ·		1 - 1.5 ft	0.5 - 1 ft	0.5 - 1 ft	1.5 - 2 ft	0.5 - 1 ft
CLP Sample ID]			B0FT0	B0DF4	B0FW4	B0FT8	B0DH3
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.8 U	1.9 U	73 JN	2 U	1.9 U
BHC, alpha			0.5	1.8 U	1.9 U	1.9 U	2 U	1.9 U
BHC, beta			. 3	1.8 U	1.9 U	6.9 R	2 U	1.9 U
BHC, delta			9	1.8 U	1.9 U	1.9 U	2 U	1.9 U
BHC, gamma (Lindane)	50000		9	1.8 U	1.9 U	1.9 U	· 2 U	1.9 U
Chlordane - alpha			23000	1.8 U	1.9 U	22 R	2 U	1.9 U
Chlordane - gamma (technical mixture)			10000	1.8 U	19	27 J	2 U	1.9 U
DDD-4,4	50000		16000	3.4 U	3.7 U	3.7 U	3.9 U	3.6 U
DDE-4,4	50000	9000	54000	3.4 U	3.7 U	170	3.9 U	3.6 U.
DDT-4,4	500000	9000	32000	3.5 J	3.7 U	21 NJ	3.9 U	3.6 U
Dieldrin	50000	180	4	3.4 U	4 JN (c)	120 JN. (c)	3.9 U	3.6 U
Endosulfan I (alpha)			18000	1.8 U	1.9 U	1.9 U	2 U	1.9 U
Endosulfan II (beta)				5.3 NJ	3.7 U	3.7 U	3.9 U	3.6 U
Endosulfan Sulfate			1000	3.4 U	3.7 U	3.7 U	3.9 U	3.6 U
Endrin	50000		1000	8.2	3.7 U	3.7 ∪	2.9 J	3.6 U
Endrin Aldehyde			1000	3.4 U	3.7 U	14 R	3.9 U	3.6 U
Endrin ketone			1000	10 NJ	3.7 U	3.7 U	4.2 NJ	9.4
Heptachior	50000	650	23000	1.8 U	1.9 U	9.7 J	2 U	1.9 U
Heptachlor Epoxide —			700	1.4 J	1.9 U	1.9 U	2 U .	1.9 U
Methoxychlor	50000		160000	18 U	19 U	19 U	20 U	19 UJ
Pcb-araclor 1016				34 U	37 U	37 U	39 U	36 U
Pcb-araclor 1221				70 U	75 U	76 U	79 U	74 U
Pcb-aracior 1232				34 U	37 U	37 U	39 U	36 U
Pcb-araclor 1242				34 U	37 U	37 U	39 U	36 U
Pcb-araclor 1248				34 U	37 U	37 U	39 U	36 U
Pcb-araclor 1254		2000		34 U	37 U	3200 J. (B)	39 U	36 U
Pcb-araclor 1260		2000		34 U	1300	37 U	39 U	36 U -
Toxaphene	50000		31000	180 U	190 U	190 U	200 U	190 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Ν-

R - Rejected value

U - Analyte not detected above reporting limit

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	_(A)	(B)	(C)	MA-SO-208	MA-SO-209	MA-SO-210	MA-SO-211	MA-SO-212
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO208-SS	MA-SO209-SS	MA-SO210-SS-0.5	MA-SO211-SS-1.0	MA-SO212-SS-1.0
Sample Date]		F20	10/22/2001	10/22/2001	12/14/2001	12/14/2001	12/14/2001
Sample Interval	1			0.5 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0DH6	B0DH8	B0FW3	B0FT2	B0FT4
Chemical Name								
Pesticides and PCBs (ug/Kg)			-					
Aldrin	50000	170	500	1.9 U	1.8 U	1.8 U	2 U	1.9 U
BHC, alpha			0.5	1.9 U	1.8 U	1.8 U	2 U	1.9 U
BHC, beta			3	. 1.9 · U	1.8 U	1.8 U	. 2 U	1.9 U
BHC, delta			9	1.9 U	1.8 U	1.8 U	2 U	1.9 U
BHC, gamma (Lindane)	50000		9	1.9 U	1.8 U	1.8 U	2 U	1.9 NJ
Chlordane - alpha			23000	3.5 J	1.8 U	41	. 1.2 J	· 1.9 U
Chlordane - gamma (technical mixture)			10000	13 J	1.8 U	41 J	2 U _	1.9 U
DDD-4,4	50000		16000	3.8 U	3.6 U	3.6 U	3.8 U	3.8 U
DDE-4,4	50000	9000	54000	16 J	3.6 U	4.7 J	3.8 U	3.6 J
DDT-4,4	500000	9000	32000	30 NJ	3.6 U	22	3.8 U	9.2
Dieldrin	50000	180	4	18 NJ 1 (c)	3.6 U	3.6 U	3.8 U	3.8 U
Endosulfan I (alpha)			18000	1.9 U	1.8 U	1.8 U	2 U	1.9 U
Endosulfan II (beta)				3.8 U	3.6 U	3.6 U	3.8 U	3.8 U
Endosulfan Sulfate			1000	3.8 U	3.6 U	3.6 U	3.8 U	3.8 U
Endrin	50000		1000	5.1 NJ	3.6 U	3.6 U	3.8 U	2.6 J
Endrin Aldehyde			1000	33 J	5.4	3.6 U	3.8 U	3.8 U
Endrin ketone			1000	20 NJ	3.6 U	3.6 U	3.8 U	8 NJ
Heptachlor	50000	650	23000	1.9 U	1.8 U	1.8 U	2 U	1.9 U
Heptachlor Epoxide			700	1.9 U	1.8 U	1.8 U	2 U	1.9 U
Methoxychlor	50000		160000	19 UJ	18 UJ	11 J	11 J	19 U
Pcb-araclor 1016				38 U	35 U	36 U	38 U	38 U
Pcb-araclor 1221			·.	76 U	72 U	73 U	78 U	77 U
Pcb-araclor 1232				38 U	35 U	. 36 U	38 U	38 U
Pcb-araclor 1242				38 U	35 U	36 U	38 U	38 U
Pcb-araclor 1248				38 U	35 U	36 U	38 U	38 U
Pcb-araclor 1254		2000		410	35 U	36 U	38 U	38 U
Pcb-araclor 1260		2000		220 NJ	. 35 U	36 U	38 U	38 U
Toxaphene	50000	·	31000	190 U	180 U	180 U	200 U	190 U

J - Reported value estimated in quantity

N-

302699

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO212-SS-1.0D	MA-SO213-SS-1.0	MA-SO214-SS	MA-SO301-SS-1.0	MA-SO301-SS-1.0D
Sample Date			F20	12/14/2001	12/14/2001	10/18/2001	12/13/2001	12/13/2001
Sample Interval	1		ĺ [1 - 1.5 ft	1 - 1.5 ft	0.5 - 1 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0FT7	B0FT5	B0DD2	B0DY2	B0DY3
Chemical Name								
Pesticides and PCBs (ug/Kg)	1	l						
Aldrin	50000	170	500	2 U	2 U	4.4 U	2 UJ.	1.9 UJ
BHC, alpha			0.5	2 U	2 U	4.4 U	2 UJ	1.9 UJ
BHC, beta			3	2 U	.2 U	4.4 U	2 UJ	1,9 UJ
BHC, delta			9	2 U	2 U	4.4 U	2 UJ	1.9 UJ
BHC, gamma (Lindane)	50000		9	2 U	2 U	4.4 UJ	2 UJ .	1.9 UJ
Chlordane - alpha			23000	2 U	1 J	22 R	2 UJ	1.9 UJ
Chlordane - gamma (technical mixture)			10000	2 U	2 U	4.4 U	3.5 R	3.1 R
DDD-4,4	50000		16000	3.9 U	3.9 U	8.5 U	3.9 UJ	3.8 UJ
DDE-4,4	50000	9000	54000	3.9 U	3.9 U	11 R	6.2 R	9.1 R
DDT-4,4	500000	9000	32000	4.8 NJ	2 J	22 JN	3.9 UJ	3.8 UJ
Dieldrin	50000	180	4	3.9 U	3.9 U	8.5 U	3.9 UJ	3.8 UJ
Endosulfan I (alpha)			18000	2 U	2 U	4.4 U	2 UJ	1.9 UJ
Endosulfan II (beta)				3.9 U	3.9 U	8.5 U	3.9 UJ	3.8 UJ
Endosulfan Sulfate			1000	3.9 U	3.9 U	8.5 U	5.4 R	3.8 UJ
Endrin	50000		1000	3 J	5.3	36 J	3.9 ÚJ	49 J
Endrin Aldehyde			1000	3.9 U	3.9 U	12 JN	3.9 UJ	3.8 ÚJ
Endrin ketone		T	1000	6.1 NJ	3.9 U	120	3.9 UJ	3.8 UJ
Heptachlor	50000	650	23000	2 U	2 U	6.8 JN	4.4 J	4.9 J
Heptachlor Epoxide			700	2 U	2 U	4.4 U	2 UJ	1.9 UJ
Methoxychior	50000		160000	20 U	20 U	140 R	20 UJ	19 UJ
Pcb-araclor 1016				39 U	39 U	85 U	39 UJ	38 UJ
Pcb-araclor 1221				79 U	79 U	170 U	80 UJ	77 UJ
Pcb-araclor 1232		,		39 U	39 U	85 U	39 UJ	38 UJ
Pcb-araclor 1242				39 U	39 U	85 U	39 UJ	38 UJ
Pcb-araclor 1248				39 U	39 U	85 U	39 UJ	38 UJ
Pcb-araclor 1254		2000		39 U	39 U	85 U	39 UJ	38 UJ
Pcb-araclor 1260		2000		39 U	39 U	85 U	39 UJ	38 UJ
Toxaphene	50000		31000	200 U	200 U	440 U	200 UJ	190 UJ

J - Reported value estimated in quantity

Ν-

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-SS-1.0	MA-SO303-SS-1.0	MA-SO401-SS-1.0	MA-SO401-SS-1.0D	MA-SO402-SS-1.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	[B0DW9	B0DY0	B0FX7	B0FW8	B0FX6
Chemical Name						:		
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
BHC, alpha			0.5	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
BHC, beta			3	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
BHC, delta			9	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
BHC, gamma (Lindane)	50000	. **	9	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
Chlordane - alpha			23000	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
Chlordane - gamma (technical mixture)			10000	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
DDD-4,4	50000		16000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
DDE-4,4	50000	9000	54000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
DDT-4,4	500000	9000	32000	3.7 UJ	4.9 NJ	3.6 UJ	4.6	8.2 J
Dieldrin	50000	180	4	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
Endosulfan I (alpha)			18000	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
Endosulfan II (beta)				3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
Endosulfan Sulfate			1000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	4.1 J
Endrin	50000		1000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
Endrin Aldehyde			1000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
Endrin ketone			1000	3.7 UJ	3.8 UJ	3.6 UJ	3.6 U	3.9 U
Heptachlor	50000	650	23000	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2.3
Heptachlor Epoxide			700	1.9 UJ	1.9 UJ	1.8 UJ	1.9 U	2 U
Methoxychlor	50000		160000	19 UJ	19 UJ	18 UJ	19 U	20 U
Pcb-araclor 1016				37 UJ	38 UJ	36 UJ .	36 U	39 U
Pcb-araclor 1221				76 UJ	77 UJ	73 UJ	74 U	79 U
Pcb-araclor 1232				37 UJ	38 UJ	.36 UJ	36 U	39 U
Pcb-araclor 1242				37 UJ	38 UJ	36 UJ	. 36 U	39 U
Pcb-araclor 1248				37 UJ	38 UJ	36 UJ	36 U	39 U
Pcb-araclor 1254		2000		37 UJ .	38 UJ	36 UJ	36 U	39 U
Pcb-araclor 1260		2000		37 UJ	38 UJ	36 UJ	36 U	39 U
Toxaphene	50000		31000	190 UJ	190 UJ	180 UJ	_ 190 U	200 U

J - Reported value estimated in quantity

Ν-

302701

R - Rejected value

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.4 Surface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-SS-1.0	MA-SO404-SS-1.0
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval				1 - 1.5 ft	1 - 1.5 ft
CLP Sample ID	1			B0FX2	B0FX5
Chemical Name					
Pesticides and PCBs (ug/Kg)					
Aldrin	50000	170	500	1.9 U	1.8 U
BHC, alpha			0.5	2.3. R	1.8 U
BHC, beta			3	1.9 U	1.8 U
BHC, delta			9	1.9 U	1.8 U
BHC, gamma (Lindane)	50000		. 9	2.1 R	1.8 U
Chlordane - alpha			23000	1 J	1.8 U
Chlordane - gamma (technical mixture)		-	10000	1.9 U	1.8 U
DDD-4,4	50000		16000	3.7 U	3.5 U
DDE-4,4	50000	9000	54000	3.7 U	3.5 U
DDT-4,4	500000	9000	32000	6.1 J	3.5 U
Dieldrin	50000	180	. 4	3.7 U	3.5 U
Endosulfan I (alpha)			18000	1.9 U	1.8 U
Endosulfan II (beta)				3.7 U	3.5 U
Endosulfan Sulfate			1000	3.7 U	3.5 U
Endrin	50000		1000	13 J	7, J
Endrin Aldehyde			1000	4.6 R	3.5 U
Endrin ketone			1000	3.7 U	3.5 U
Heptachlor	50000	650	23000	2.6 NJ	1.8 U
Heptachlor Epoxide			700	2.6 NJ	1.8 U
Methoxychlor	50000		160000	19 U	18 U
Pcb-araclor 1016				37 U	35 U
Pcb-araclor 1221				76 U	70 U
Pcb-araclor 1232				37 U	35 U
Pcb-araclor 1242				37 Ų	35 U
Pcb-araclor 1248		<u></u>		. 37 U	35 U
Pcb-araclor 1254		2000		37 U	35 U
Pcb-araclor 1260		2000		37 U	35 U
Toxaphene	50000		31000	190 U	180 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

N -

R - Rejected value

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date		1	F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID				B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	97	100 B	14 UJ	19 U	49 B
Benzene	1000	13000	30	. 2 J	210 (c)	14 U	19 U	1 J
Bromoform	1000		800	15 U	12 U	14 U	19 U	11 U
Bromomethane	1000	1000000	200	15 U	12 U	14 U	19 U	11 U
Carbon disulfide			32000	4 J	16	14 U	19 U	15
Carbon tetrachloride	1000		70	15 U	. 12 U	14 UJ	19 U	11 U
Chlorobenzene	1000		1000	15 U	12 U	14 U	19 U	11 U
Chloroethane				15 U	12 U	14 U	19 U	11 U
Chloroform	1000	28000	600	15 U	12 U	14 U	19 U	11 U
Chloromethane	10000			15 U	12 U	14 U	19 U	11 U
Cyclohexane				15 U	4 J	14 · U	19 U	11 U
DBCP (1,2-dibromo-3-chloropropane)				15 U	12 U	14 U	19 U	11 U
Dibromochloromethane	1000		400	15 U	12 U	14 U	19 U	11 U
Dibromoethane-1,2				15 U	12 U	14 U	19 U	11 U
Dichlorobenzene-1,2	50000		17000	4 J	4 J	14 U	19 U	11 U
Dichlorobenzene-1,3	100000			15 U	12 U	14 U	19 U	11 U .
Dichlorobenzene-1,4	100000		2000	15 U	12 U	14 U	19 U	11 U
Dichlorobromomethane	1000		600	15 U	12 U	14 U	19 U	11 U
Dichlorodifluoromethane				15 U	12 U	14 U	19 U	11 U
Dichloroethane-1,1	10000		23000	5 J	8 J	2 J	19 U	11 U
Dichloroethane-1,2	1000		20	6 J	12 U	14 U	19 U	11 U
Dichloroethene-1,2 trans	50000		700	52	12 U	4 J	5 J	11 U
Dichloroethylene-1,1	10000		60	15 U	12 U	14 U	19 U	11 U
Dichloroethylene-1,2 cis	1000	1000000	400	260	12 J	75	89	5 J
Dichloropropane-1,2			30	15 U	12 U	14 U	19 U	11 U
Dichloropropene-1,3 cis			4	15 U	12 U	14 U	19 U	11 U
Dichloropropene-1,3 trans			4	15 U	12 U	14 U	19 U	11 U
Ethylbenzene	100000	1000000	13000	8 J	5 J	14 U	19 U	1 J
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				15 U	12 U	14 U	19 UJ	11 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidential Direct Contact Soil Cleanu Criteria

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Table G.5 Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID				B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				15 U	12 U	14 U	19 U	11 U
Isopropylbenzene				15 U	9 J	14 U	19 U	11 U
Methyl acetate				15 U	12 U	14 U	19 U	11 U
Methyl cyclohexane				· 4 J	15	14 U	19 U	11 U
Methyl ethyl ketone (2-butanone)	50000			1000 J	15	14 U	19 U	10 J
Methyl isobutyl ketone (4-methyl-2-penta	50000			8 J	27	14 U	19 U	11 U
Methyl tertiary butyl ether (MTBE)				15 U	12 U	14 U	19 U	11 U
Methylene chloride	1000		20	140 (c)	12 U	14 U	19 U	11 U
Styrene	100000		4000	15 U	12 U	14 U	19 U	11 U
Tetrachloroethane-1,1,2,2	1000		3	15 U	12 U	14 U	19 U	. 11 U
Tetrachloroethylene	1000	6000	60	1100 J (AC)	12 U	51	100 - 4 - 3 - (c)	
Toluene	500000	1000000	12000	2900 J	12 U	14 U	19 U	11 U
Trichlorobenzene-1,2,4	100000		5000	15 U	12 U	14 U	19 U	11 U.
Trichloroethane-1,1,1	50000		2000	19	12 U	3 J	3 J	11 U
Trichloroethane-1,1,2	1000		20	15 U	12 U	14 U	19 U	11 U
Trichloroethylene	1000	54000	60	E 230 (C)	1 J	10 J	14 J	24
Trichlorofluoromethane				15 U	12 U	14 UJ	19 U	11 U
Vinyl chloride	10000	7000	10	15 U	15 (c)	14 U	19 U	11 U
Xylenes,.total	67000		. 210000	83	48 .	14 U		5 J

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval				6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID				B0DF8	B0AY0RE	B0AX5	B0AX6	B0AX8
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	83	. 14 UJ	23 J	17 UJ	13 UJ
Benzene	1000	13000	30	7 J	14 UJ	67. J (c)	190/Umake (c)	13 UJ
Bromoform	1000		800	0.9 J	14 UJ	12 UJ	11 UJ	13 UJ
Bromomethane	1000	1000000	200	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Carbon disulfide			32000	2 J	14 UJ	.12 UJ	11 UJ	13 UJ
Carbon tetrachloride	1000		70	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Chlorobenzene	1000		1000	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Chloroethane				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Chloroform	1000	28000	600	5 J	14 UJ	12 UJ	11 UJ	13 UJ
Chloromethane	10000			10 U	14 UJ	12 UJ	11 UJ	13 UJ
Cyclohexane	_			10 U	14 UJ	3 J	5 J	13 UJ
DBCP (1,2-dibromo-3-chloropropane)				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dibromochloromethane	1000		400	10 U	14 UJ	12 UJ	· 11 UJ	13 UJ
Dibromoethane-1,2				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichlorobenzene-1,2	50000		17000	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichlorobenzene-1,3	100000			10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichlorobenzene-1,4	100000		2000	10 U	-14 UJ	12 UJ	11 UJ	13 UJ
Dichlorobromomethane	1000		600	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichlorodifluoromethane	_			· 10 U	14 J	12 UJ	11 UJ	13 UJ
Dichloroethane-1,1	10000		23000	57	14 UJ	12 UJ	11 UJ	13 UJ
Dichloroethane-1,2	1000		20	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichloroethene-1,2 trans	50000		700	1 J	14 UJ	12 UJ	11 UJ	13 UJ
Dichloroethylene-1,1	10000		60	10 U	14 UJ	12 UJ	. 1 J	13 UJ
Dichloroethylene-1,2 cis	1000	1000000	400	70	14 UJ	12 UJ	11 UJ	13 UJ
Dichloropropane-1,2			30	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichloropropene-1,3 cis			4	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Dichloropropene-1,3 trans			4	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Ethylbenzene	100000	1000000	13000	10 U	14 UJ	12 UJ	1 J	13 UJ
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				1 J	14 UJ	12 UJ	11 UJ	13 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval				6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID				B0DF8	B0AY0RE	B0AX5	B0AX6	B0AX8
Chemical Name								
Volatile Organic Compounds (ug/Kg)			· .				
Hexanone-2				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Isopropylbenzene				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Methyl acetate				13	14 UJ	12 UJ	11 UJ	13 UJ
Methyl cyclohexane				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Methyl ethyl ketone (2-butanone)	50000			430 J	14 UJ	7 J	6 J	13 UJ
Methyl isobutyl ketone (4-methyl-2-penta	50000			270 J	14 UJ	12 UJ	11 UJ	13 UJ
Methyl tertiary butyl ether (MTBE)				10 U	14 UJ	12 UJ	11 UJ	13 UJ
Methylene chloride	1000		20	10 U	15 J	12 UJ	11 UJ	13 UJ
Styrene	100000		4000	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Tetrachloroethane-1,1,2,2	1000		3	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Tetrachloroethylene	1000	6000	60	- 130 (C)	14 UJ	12_UJ	11 UJ	13 UJ
Toluene	500000	1000000	12000	19	14 UJ	12 UJ	3 J	13 UJ
Trichlorobenzene-1,2,4	100000		5000	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Trichloroethane-1,1,1	50000		2000	270 J	14 UJ	12 UJ	11 UJ	13 UJ
Trichloroethane-1,1,2	1000		20	10 U	14 UJ	12 UJ	11 UJ	13. UJ
Trichloroethylene	1000	54000	60	38	14 UJ	12 UJ	11 UJ	13 UJ
Trichlorofluoromethane		l		10 U	14 UJ	12 UJ	11 UJ	13 UJ
Vinyl chloride	10000	7000	10	10 U	14 UJ	12 UJ	11 UJ	13 UJ
Xylenes, total	67000 · -	ļ ·	210000	1-J	14 UJ	12 UJ	11 UJ	13 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date			F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval				7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID				B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name								
Volatile Organic Compounds (ug/Kg))							
Acetone	100000		16000	3 J	10 UJ	24 UJ	91 J	2500 J
Benzene	1000	13000	30	12 UJ	10 U	15 U	3 J	2200 UJ
Bromoform	1000		800	12 UJ	10 U	15 U	.10 UJ	2200 UJ
Bromomethane	1000	1000000	200	12 UJ	10 U	15 U	10 U	520 J (c)
Carbon disulfide			32000	12 UJ	· 10 U	8 J	12	2200 UJ
Carbon tetrachloride	1000		70	12 UJ	10 UJ	15 U	10 U	2200 UJ
Chlorobenzene	1000		1000	12 UJ	10 U	15 U	10 U	2200 UJ
Chloroethane				12 UJ	10 U	15 U	10 UJ	2200 UJ
Chloroform	1000	28000	600	12 UJ	10 U	15 U	10 U	2200 UJ
Chloromethane	10000			12 UJ	10 U	15 U	10 U	2200 UJ
Cyclohexane				12 UJ	10 U	15 U	. 41	2200 UJ
DBCP (1,2-dibromo-3-chloropropane)				12 UJ	10 U	15 U	10 UJ	2200 UJ
Dibromochloromethane	1000		400	12 UJ	10 U	15 U	10 U	2200 UJ
Dibromoethane-1,2				12 UJ	10 U	15 U	10 U	2200 UJ
Dichlorobenzene-1,2	50000		17000	12 UJ	10 U	15 U	2 J	2200 UJ
Dichlorobenzene-1,3	100000			12 UJ	10 U	15 U	10 U	2200 UJ
Dichlorobenzene-1,4	100000		2000	12 UJ	10 U	15 U	10 U	2200 UJ
Dichlorobromomethane	1000		600	12 UJ	10 U	15 U	10 U	2200 UJ
Dichlorodifluoromethane				12 UJ	10 U	15 U	10 U	2200 UJ
Dichloroethane-1,1	10000		23000	12 UJ	10 U	15 U	7 J	2200 UJ
Dichloroethane-1,2	1000		20	12 UJ	10 U	15 U	10 U	2200 UJ
Dichloroethene-1,2 trans	50000		700	12 UJ	10 U	15 U	13	2200 UJ
Dichloroethylene-1,1	10000		60	12 UJ	10 U	15 U	10 U	2200 UJ
Dichloroethylene-1,2 cis	1000	1000000	400	12 UJ	10 U	6 J	140	2200 UJ
Dichloropropane-1,2			30	12 UJ	10 U	15 U	10 U	2200 UJ
Dichloropropene-1,3 cis			4	12 UJ	10 U	15 U	10 · U	2200 UJ
Dichloropropene-1,3 trans			4	12 UJ	10 U	15 U	10 U	2200 UJ
Ethylbenzene	100000	1000000	13000	12 UJ	10 U	15 U	5 J	2200 UJ
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				12 UJ	10 U	15 U	10 U	2200 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date]		F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval]]		7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID	,			B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				12 UJ	10 U	15 U	10 UJ	2200 UJ
Isopropylbenzene				12 UJ	10 U	15 U	10 U	2200 UJ
Methyl acetate				12 UJ	10 U	15 U	10 U	2100 J
Methyl cyclohexane				12 UJ	10 U	15 U	28	2200 UJ
Methyl ethyl ketone (2-butanone)	50000			12 UJ	10 U	15 U	24	2200 UJ
Methyl isobutyl ketone (4-methyl-2-penta	50000			12 UJ	10 U	15 U	10 UJ	2200 UJ
Methyl tertiary butyl ether (MTBE)				12 UJ	10 U	15 U	10 U	2200 UJ
Methylene chloride	1000		20	12 UJ	10 U	15 U	10 U	2200 UJ
Styrene	100000		4000	12 UJ.	10 U	15 U	10 U	2200 UJ
Tetrachloroethane-1,1,2,2	1000		3	12· UJ	10 U	15 U	10 U	2200 UJ
Tetrachloroethylene	1000	6000	60	12 UJ	10 U	470 J (c)	16	2200 UJ
Toluene	500000	1000000	12000	12 UJ	10 U	15 U	26	290 J
Trichlorobenzene-1,2,4	100000		5000	12 UJ	10 U	15 U	10 U	2200 UJ
Trichloroethane-1,1,1	50000		2000	12 UJ	10 U	4 J	10 U	2200 UJ
Trichloroethane-1,1,2	1000		20	12 UJ	10 U	15 U	10 U	2200 UJ
Trichloroethylene	1000	54000	60	12 UJ	10 U	9 J	7 J	2200 UJ
Trichlorofluoromethane				12 UJ	10 UJ	15 U	10 U	2200 UJ
Vinyl chloride	10000	7000	10	12 UJ	10 U	15 U	59 (c)	2200 UJ
Xylenes, total	67.000		210000	12 UJ	10. U	15 U	31	2200 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

ω 0.2

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date			F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval		1		6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID				B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name								
Volatile Organic Compounds (ug/Kg))							
Acetone	100000		16000	170 J	1600 U	12 U	3 J	390 J
Benzene	1000	13000	30	260 (0)	1600 U	18	13 U	1300 U
Bromoform	1000		800	14 UJ -	1600 U	12 U	13 U	1300 U
Bromomethane	1000	1000000	200	14 U	1600 U	12 U	13 U	1300 U
Carbon disulfide			32000	2 J	1600 U	3 J	13 U	1300 U
Carbon tetrachloride	1000	:	70	14 U	1600 U	12 U	13 U	1300 U
Chlorobenzene	1000		1000	14 U	1600_U	12 U	13 U	1300 U
Chloroethane				20 J	1600 U	12 U .	13 .U	1300 U
Chloroform	1000	28000	600	14 U	1600 U	12 U	13 U	1300 U
Chloromethane	10000			14 U	1600 U	12 U	13 U	1300 U
Cyclohexane				130	1600 U	7 J	13 U	1300 U
DBCP (1,2-dibromo-3-chloropropane)				14 UJ	1600 U	12 U	13 U	1300 U
Dibromochloromethane	1000		400	14 U	1600 U	12 U	13 U	1300 U
Dibromoethane-1,2				14 U	1600 U	12 U	13 U	1300 U
Dichlorobenzene-1,2	50000		17000	14 U	1600 U	12 U	13 U	1300 U
Dichlorobenzene-1,3	100000			14 U	1600 U	12 U	13 U	1300 U
Dichlorobenzene-1,4	100000		2000	14 U	1600 U	12 U	13 U	1300 U
Dichlorobromomethane	1000		600	14 U	1600 U	12 U	: 13 U	1300 U
Dichlorodifluoromethane				14 U	1600 U	12 U	13 U	1300 U
Dichloroethane-1,1	10000		23000	14	1600 U	12 U	13 U	1300 U
Dichloroethane-1,2	1000		20	14 U	1600 U	12 U	13 U	1300 U
Dichloroethene-1,2 trans	50000		700	5 J	1600 U	12 U	13 U	1600 (c)
Dichloroethylene-1,1	10000		60	14 U	1600 U	12 U	13 U	130 J (¢)
Dichloroethylene-1,2 cis	1000	1000000	400	29	1600 U	12 U	13 U	13000 (AC)
Dichloropropane-1,2			30	14 U	1600 U	12 U	13 U	1300 U
Dichloropropene-1,3 cis			4	14 U	1600 U	12 U	13 U	1300 U
Dichloropropene-1,3 trans			4	14 U	1600 U	12 U	13 U	1300 U
Ethylbenzene	100000	1000000	13000	120	3500	1 J	13 U	1300 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				14 U	1600 U	12 U	13 U	1300 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date		İ	F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval			1	6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID				B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name								
Volatile Organic Compounds (ug/Kg	1							
Hexanone-2				14 UJ	1600 U	12 U	13 U	1300 U
Isopropylbenzene				11 J	7200	12 U	13 U	140 J
Methyl acetate				14 U	1600 U	12 U	13 U	870 J
Methyl cyclohexane				110	1600 U	5 J	13 U	1300 U
Methyl ethyl ketone (2-butanone)	50000			49	1600 U	12 U	13 U	1300 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			14 UJ	1600 U	12 U	13 U	1300 U
Methyl tertiary butyl ether (MTBE)				14 U	1600 U	12 U	13 U	1300 U
Methylene chloride	1000		20	14 U	1600 U	12 U	13 U	1300 U
Styrene	100000		4000	14 U	1600 U	12 U	13 U	1300 U
Tetrachloroethane-1,1,2,2	1000		3	14 U	1600 U	12 U	13 U	1300 U
Tetrachloroethylene	1000	6000	60	14 U	1600. U	12 U	13 U	1300 U
Toluene	500000	1000000	12000	79	470 J	13	13 U	1300 U
Trichlorobenzene-1,2,4	100000		5000	14 U	1200 J	12 U	13 U	1300 U
Trichloroethane-1,1,1	50000		2000	2 J	1600 U	12 U	13 U	1300 U
Trichloroethane-1,1,2	1000		20	14 U	1600 U	12 U	13 U	1300 U
Trichloroethylene	1000	54000	60	1 J	1600 U	12 U	13 U	630000 (ABC)
Trichlorofluoromethane				14 U	1600 U	12 U	13 U	1300 U
Vinyl chloride	10000	7000	10	14 U	1600 U	12 U	13 U	480 J (C
Xylenes, total	67000		-210000-	250	22000	2-J	13 U	

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date	1		F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval	1		[4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID	1	1	1 1	B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name								
								
Volatile Organic Compounds (ug/Kg	1)							
Acetone	100000		16000	84 J	69 UJ	13 UJ	250 J	180 J
Benzene	1000	13000	30	2 J	15 U	13 UJ	6 J	12 U
Bromoform	1000		800	18 UJ	15 U	13 UJ	15 UJ	12 U
Bromomethane	1000	1000000	200	18 U	15 U	13 UJ	15 U	12 U
Carbon disulfide			32000	21	15 U	13 UJ	19	6 J
Carbon tetrachloride	1000		70	18 U	15 U	13 UJ	15 U	12 U
Chlorobenzene	1000		1000	18 U	15 U	13 UJ	15 U	12 U
Chloroethane				18 UJ	15 U	13 UJ	15 UJ	12 U
Chloroform	1000	28000	600	18 U	15 U	13 UJ	15 U	10 J
Chloromethane	10000			18 U	15 U	13 UJ	15 U	12 U
Cyclohexane				18 U	15 U	13 UJ	12 J	12 U .
DBCP (1,2-dibromo-3-chloropropane)				18 UJ	15 U	13 UJ	15 UJ	12 U
Dibromochloromethane	1000		400	18 U	15 U	13 UJ	15 U	12 U
Dibromoethane-1,2				18 U	15 U	13 UJ	15 U	12 U
Dichlorobenzene-1,2	50000		17000	18 U	15 U	13 UJ	15 U	6 J
Dichlorobenzene-1,3	100000			18 U	15 U	13 UJ	15 U	12 U
Dichlorobenzene-1,4	100000		2000	18 U	15 U	13 UJ	15 U	2 J
Dichlorobromomethane	1000		600	18 U	15 U	13 UJ	15 U	12 U
Dichlorodifluoromethane				18 U	15 U	13 UJ	15 U	12 U
Dichloroethane-1,1	10000		23000	18 U	7 J	13 UJ	15 U	12 U
Dichloroethane-1,2	1000		20	18 U	15 U	13 UJ	15 U	12 UJ
Dichloroethene-1,2 trans	50000		700	18 U	15 U	13 UJ	15 U	12 U
Dichloroethylene-1,1	10000		60	18 U	15 U	13 UJ	15 U	12 U
Dichloroethylene-1,2 cis	1000	1000000	400	7 J	15	13 UJ	9 J	3 J
Dichloropropane-1,2			30	18 U	15 U	13 UJ	15 U	12 U
Dichloropropene-1,3 cis			4	18 U	15 U	13 UJ	15 U	12 U
Dichloropropene-1,3 trans			4	18 U	15 U	13 UJ	15 U	12 U _.
Ethylbenzene	100000	1000000	13000	5 J	15 U	13 UJ	7 J	2 J
Freon 113 (1,1,2-trichloro-1,2,2-trifluoro	e			18 U	15 U	13 UJ	15 U	12 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5 Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date	1	·	F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval				4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID				B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name								
Volatile Organic Compounds (ug/Kg	<u> </u>							
Hexanone-2		T		18 UJ	15 U	13 UJ	15 UJ	12 U
Isopropylbenzene				18 U	15 U	13 UJ	5 J	12 U
Methyl acetate				18 U	15 U	13 UJ	15 U	12 U
Methyl cyclohexane				18 U	15 U	13 UJ	20	12 U
Methyl ethyl ketone (2-butanone)	50000			20	15	13 UJ	20	28
Methyl isobutyl ketone (4-methyl-2-penta	50000			18 UJ	15 U	13 UJ	15 UJ	12 U
Methyl tertiary butyl ether (MTBE)				18 U	15 U	13 UJ	15 U	12 UJ
Methylene chloride	1000		20	. 18. U	15 U	13 UJ	15 U	43.
Styrene	100000		4000	18 U	15 U	13 UJ	15 U	9 J
Tetrachloroethane-1,1,2,2	1000		3	18 U	15 U	13 UJ	15 U	12 U
Tetrachloroethylene	1000	6000	60	270 (c)	320 J (c)	4 J	4 J	58
Toluene	500000	1000000	12000	12 J	17	13 UJ	37	19
Trichlorobenzene-1,2,4	100000		5000	18 U	15 U	13 UJ	15 U	12 U
Trichloroethane-1,1,1	50000		2000	5 J	12 J	13 UJ	15 U	4 J
Trichloroethane-1,1,2	1000		20	18 U	15 U	13 UJ	15 U	12 U
Trichloroethylene	1000	54000	60	71 (C)	17	13 UJ	3 J	33
Trichlorofluoromethane				18 U	15 U	13 UJ	15 U	12 U
Vinyl chloride	10000	7000	10	18 U	15 U	13 UJ	12 J (c)	12 U
Xylenes, total	67000		210000	21	15 ·U · · ·	13 UJ	38	17 -

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval				8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID				B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name						:		·
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	110 J	320 J	110 J	40 J	15 UJ
Benzene	1000	13000	30	16 UJ	4 J	4 J	32 U	14 U
Bromoform	1000		800	16 UJ	27 UJ	13 U	32 U	14 U
Bromomethane	1000	1000000	200	16 UJ	27 U	13 U	32 U	14 U
Carbon disulfide			32000	16 UJ	110	45	32 U	14 U
Carbon tetrachloride	1000		70	_16 UJ	27 U	13 U	32 U	14 U
Chlorobenzene	1000		1000	16 UJ	27 U	13 U	32 U	14 U
Chloroethane				16 UJ	27 UJ	13 U	32 U	14 U
Chloroform	1000	28000	600	16 UJ	27 U	13 U	32 U	14 U
Chloromethane	10000			16 UJ	27 U	13 U	32 U	14 U
Cyclohexane				16 UJ	27 U	13 U	32 U	. 14 U
DBCP (1,2-dibromo-3-chloropropane)				16 UJ	27 UJ	13 UJ	32 U	14 U
Dibromochloromethane	1000	-	400	16 UJ	27 U	13 U	32 U	14 U
Dibromoethane-1,2				16 UJ	27 U	13 U	32 U	14 U
Dichlorobenzene-1,2	50000		17000	16 UJ	27 U··	13 U	32 U	14 U
Dichlorobenzene-1,3	100000			16 UJ	27 U	13 U	32 U	14 U
Dichlorobenzene-1,4	100000		2000	16 UJ	27 U	13 U	32 U	14 U
Dichlorobromomethane	1000		600	16 UJ	27 U	13 U	32 U	14 U
Dichlorodifluoromethane				16 UJ	27 U	13 U	32 U	14 UJ
Dichloroethane-1,1	10000		23000	4 J	27 U	13 U	5 J	14 U
Dichloroethane-1,2	1000		20	16 UJ	27 U	13 U	32 U	14 U
Dichloroethene-1,2 trans	50000	1	700	16 UJ	27 U	13 U	32 U	14 U
Dichloroethylene-1,1	10000		60	16 UJ	27 U	13 U	32 U	14 Ü
Dichloroethylene-1,2 cis	1000	1000000	400	7 J [.]	27 U	2 J	60	14 U
Dichloropropane-1,2			30	16 UJ	27 U	13 U	32 U	14 U
Dichloropropene-1,3 cis			4	16 UJ	27 U	13 U	32 U	14 U
Dichloropropene-1,3 trans			4	16 UJ	27 U	13 U	32 U	14 U
Ethylbenzene	100000	1000000	13000	16 UJ	2400 J	13 U	32 U	14 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				16 UJ	27 U	13 U	32 U	14 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidential Direct Contact Soil Cleanu Criteria

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval]			8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID]			B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				16 UJ	27 UJ	13 UJ	32 U	14 U
Isopropylbenzene				16 UJ	47	13 U	32 U	14 U
Methyl acetate				16 UJ	27 U	13 U	32 U	14 U
Methyl cyclohexane				16 UJ	27 U	13 U	32 U	14 U
Methyl ethyl ketone (2-butanone)	50000			21 J	99	13 U	86	14 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			16 UJ	27 UJ	13 UJ	32 U	14 U
Methyl tertiary butyl ether (MTBE)				16 UJ	27 U	13 U	32 U	14 U
Methylene chloride	1000		20	16 UJ	(c)	13 U	32 U	17 U
Styrene	100000		4000	16 ÚJ	27 U	13 U	32 U	14 U
Tetrachloroethane-1,1,2,2	1000		3	16 UJ	27 U	13 U	32 U	14 U
Tetrachloroethylene	1000	6000	60	3 J	6 J	6 J	8 J	14 U
Toluene	500000	1000000	12000	16 UJ	16 J	13 U	6 J	14 U
Trichlorobenzene-1,2,4	100000		5000	16 UJ	27 U	13 U	32 U	14 U
Trichloroethane-1,1,1	50000		2000	16 UJ	6 J	13 U	32 U	14 U
Trichloroethane-1,1,2	1000		20	16 UJ	27 U	13 U	32 U	14 U
Trichloroethylene	1000	54000	60	3 J	27 U	13	220 (C)	14 U
Trichlorofluoromethane				16 UJ	27 U	13 U	32 U	14 U
Vinyl chloride	10000	7000	10	16 UJ .	27 U	13 U	32 U	` 14 U
Xylenes, total	67000		210000	16 UJ	6200	13 U	32 U	14 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date		İ	F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval				6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID				B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name						:		<u> </u>
Volatile Organic Compounds (ug/Kg))	•					"	
Acetone	100000		16000	1700 J	23 UJ	1700 U	97 J	1700 UJ
Benzene	1000	13000	30	16 U	12 U	1700 U	7.6 (Fib.(c)	7,00 J (c)
Bromoform	1000		800	16 UJ	12 U	1700 U	13 U	1700 U
Bromomethane	1000	1000000	200	16 U	12 U	. 1700 U	13 U .	1700 U
Carbon disulfide			32000	16 U	7 J	1700 U	24	1700 U
Carbon tetrachloride	1000		70	16 U	12 U	1700 U	13 U	1700 U
Chlorobenzene	1000		1000	16 U	12 U	1700 U	13 U	170 J
Chloroethane				16 UJ	12 U	1700 U	13 U	1700 UJ
Chloroform	1000	28000	600	16 U	12 U	280 J	13 U	1700 · U
Chloromethane	10000			16 U	12 U	1700 U	13 U	1700 U
Cyclohexane				15 J	12 U	1700 U	95	1700 U
DBCP (1,2-dibromo-3-chloropropane)				16 UJ	12 UJ	.1700 U	13 U	1700 U
Dibromochloromethane	1000		400	16 U	12 U	.1700 U	13 U	1700 U
Dibromoethane-1,2	,			16 U	12 U	1700 U	13 U	1700 U
Dichlorobenzene-1,2	50000		17000	16 U	. 12 U	1700 U	13 U	1700 U
Dichlorobenzene-1,3	100000			16 U	12 U	1700 U	13 U	1700 U
Dichlorobenzene-1,4	100000		2000	16 U	12 U	1700 U	13 U	1700 U
Dichlorobromomethane	1000		600	16 U	12 U	1700 U	13 U	1700 U
Dichlorodifluoromethane				16 U	12 U	1700 U	13 U	1700 U
Dichloroethane-1,1	10000		23000	16 U	12 U	220 J	13 U	1700 U
Dichloroethane-1,2	1000		20	16 U	12 U	1700 U	13 U	1700 U
Dichloroethene-1,2 trans	50000		700	16 U	12 U	1700 U	13 U	1700 U
Dichloroethylene-1,1	10000		60	16 U	12 U	1700 U	13 U	1700 U
Dichloroethylene-1,2 cis	1000	1000000	400	16 U	2 J	1,1000 (AC)	6 J	1700 U
Dichloropropane-1,2			30	16 U	12 U	1 <u>700</u> U	13 U	1700 U
Dichloropropene-1,3 cis			4	16 U	12 U	1700 U	13 U	1700 U
Dichloropropene-1,3 trans			4	16 U	12 U	1700 U	13 U	1700 U
Ethylbenzene	100000	1000000	13000	16 U	12 U	1700 U	84	9800
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				16 U	12 U	1700 U	13 U	1700 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval				6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID				B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name			-					
Volatile Organic Compounds (ug/Kg)				·			
Hexanone-2				16 UJ	12 UJ	1700 U	13 U	1700 U
isopropylbenzene				16 U	12 U	1700 U	13	1400 J
Methyl acetate				16 U	12 U	1700 U	13 U	1700 U
Methyl cyclohexane				11 J	12 U	1700 U	80	3600
Methyl ethyl ketone (2-butanone)	50000			220	12 U	1700 U	23	1700 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			55 J	12 UJ	1700 U	13 U	1700 U
Methyl tertiary butyl ether (MTBE)				16 U	12 U	1700 UJ	13 U	1700 UJ
Methylene chloride	1000		20	16 U	12 U	1700 U	13 U	1700 U
Styrene	100000		4000	16 U	12 U	1700 U	13 U	1700 U
Tetrachloroethane-1,1,2,2	1000		3	16 U	12 U	1700 U	13_U	1700 U
Tetrachloroethylene	1000	6000	60	16 U	450 J (c)	110000 (ABC):	13	1700 U
Toluene	500000	1000000	12000	2 J	12 U	1700 U	590 J	2600
Trichlorobenzene-1,2,4	100000		5000	16 U	12 U	1700 UJ	13 U	1700 U
Trichloroethane-1,1,1	50000		2000	16 U	7 J	250 J	13 U	1700 U
Trichloroethane-1,1,2	1000		20	16 U	12 U	1700 U	13 U	1700 U
Trichloroethylene	1000	54000	60	16 U	32	20000 (AC)	*63 (C)	1700 U
Trichlorofluoromethane				16 U	12 U	1700 U	13 U	1700 U
Vinyl chloride	10000	7000	10	16 U	12 U	1700 U	13 U	1700 U
Xylenes, total	67000		210000	4 J	12 U	1700 U	380	54000

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date			F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID				B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name								
Volatile Organic Compounds (ug/Kg))							
Acetone	100000		16000	220 UJ	4 J	28 UJ	14	29 UJ
Benzene	1000	13000	30	46 UJ	18 U	12 U	11 U	15 U
Bromoform	1000		800	46 UJ	18 U	12 U	11 U	15 U
Bromomethane	1000	1000000	200	46 UJ	18 U	12 U	11 U	15 U
Carbon disulfide			32000	15 J	18 U	12 U	11 U	15 U
Carbon tetrachloride	1000		70	46 UJ	18 U	12 U	11 U	15 U
Chlorobenzene	1000		1000	46 UJ	18 U	12 U	11 U	15 U
Chloroethane				46 UJ	18 U	12 U	11 U	15 U
Chloroform	1000	28000	600	46 UJ	18 U	12 U	11 U	15 Ü
Chloromethane	10000			46 UJ	18 U	12 U	11 U	15 U
Cyclohexane				46 UJ	18 U	12 U	11 U	15 U
DBCP (1,2-dibromo-3-chloropropane)				46 UJ	18 U	12 U	11 U	15 U
Dibromochloromethane	1000		400	46 UJ	18 U	12 U	11 U	15 U
Dibromoethane-1,2				46 UJ	18 U	- 12 U	11 U	15 U
Dichlorobenzene-1,2	50000		17000	46 UJ	18 U	12 U	11 U	15 U
Dichlorobenzene-1,3	100000			46 UJ	18 U	12 U	11 U	15 U
Dichlorobenzene-1,4	100000		2000	46 UJ	18 U	12 U	11 U	15 U
Dichlorobromomethane	1000		600	46 UJ	18 U	12 U	11 U	15 U
Dichlorodifluoromethane				46 UJ	18 U	12 UJ	11 U	15 UJ
Dichloroethane-1,1	10000		23000	46 UJ	18 U	12 U	· 11 U	15 U
Dichloroethane-1,2	1000		20	46 UJ	18 U	12 U	11 U	15 U
Dichloroethene-1,2 trans	50000		700	46 UJ	18 U	12 U	11 U	15 U
Dichloroethylene-1,1	10000		60	46 UJ	18 U	12 U	11 U	15 U
Dichloroethylene-1,2 cis	1000	1000000	400	46 UJ	18 U	12 U	11 U	15 U
Dichloropropane-1,2			30	46 UJ	18 U	12 U	11 U	15 U
Dichloropropene-1,3 cis			4	46 UJ	18 U	12 U	11 U	15 U
Dichloropropene-1,3 trans			4	46 UJ	18 U	12 U	11 U	15 U
Ethylbenzene	100000	1000000	13000	46 UJ	18 U	12 U	11 U	15 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				46 UJ	18 U	12 U	11 U	15 U

B- Analyte detected in associated blank J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date			F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval		ļ	ĺ	5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID				B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name				,				
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				46 UJ	18 U	12 U	11 U	15 U
Isopropylbenzene				46 UJ	18 U	12 U	11 U	15 U
Methyl acetate				46 UJ	18 U	12 U	11 U	15 U
Methyl cyclohexane				46 UJ	. 18 U	12 U	11 U	15 U
Methyl ethyl ketone (2-butanone)	50000			74 J	18 U	12 U	11 U	15 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			46 UJ	18 U	12 U	11 U	15 U
Methyl tertiary butyl ether (MTBE)				46 UJ	. 18 U	12 U	11 U	15 U
Methylene chloride	1000		20	49 UJ	18 U	12 U	17 U	15 U
Styrene	100000		4000	46 UJ	18 U	12 U	11 U	15 U
Tetrachloroethane-1,1,2,2	1000		3	46 UJ	18 U	12 U	11 U	15 U .
Tetrachloroethylene	1000	6000	60	46 UJ	18 U	12 U	11 U	15 U
Toluene	500000	1000000	12000	46 UJ	18 U	12 U	11 U	15 U
Trichlorobenzene-1,2,4	100000		5000	46 UJ	18 U	12 U	11 U	15 U
Trichloroethane-1,1,1	50000		2000	. 46 UJ	18 U	12 U	11 U	15 U
Trichloroethane-1,1,2	1000		20	46 UJ	18 U	12 U	11 U	15 U
Trichloroethylene	1000	54000	60	46 UJ	18 U	12 U	11 U	15 U
Trichlorofluoromethane				46 UJ	18 U	12 U	11 U	15 U
Vinyl chloride	10000	7000	10	46 UJ	18 U	12 U	11 U	15 U
Xylenes, total	67000		210000	46 UJ	18 U	12 U	11 U	· 15 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

302719

Table G.5

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date			F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval				6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID				B0DZ4	B0DZ0	B0DX0	B0DX5	B0DY6
Chemical Name						:		
Volatile Organic Compounds (ug/Kg)							·
Acetone	100000		16000	13 J	21	30 UJ	10 UJ	11
Benzene	1000	13000	30	16 U	12 U	3 J	10 U	10 U
Bromoform	1000	<u>.</u>	800	· 16 U	12 U	17 U	10 U	10 U
Bromomethane	1000	1000000	200	16 U	12 U	17 U	10 U	10 U
Carbon disulfide		<u></u>	32000	16 U	- 12 U	17 U	10 U	10 U
Carbon tetrachloride	1000		70	16 U	12 U	17 U	. 10 U	10 U
Chlorobenzene	1000		1000	16 U	12 U	.17 U	10 U	10 U
Chloroethane				16 U	12 U	17 U	10 U	10 U
Chloroform	1000	28000	600	16 U	12 U	17 U	10 U	10 U
Chloromethane	10000			16 U	12 U	17 U	10 U	10 U
Cyclohexane				16 U	12 U	17 U	. 10 U	10 U .
DBCP (1,2-dibromo-3-chloropropane)				16 U	12 U	17 U	10 U	10 U
Dibromochloromethane	1000		400	16 U	12 U	17 U	10 U	10 U
Dibromoethane-1,2				16 U	12 U	17 U	10 U	10 U
Dichlorobenzene-1,2	50000		17000	16 U	12 U	17 U	10 U	10 U
Dichlorobenzene-1,3	100000			16 U	12 Ü	17 U	10 U	10 U
Dichlorobenzene-1,4	100000		2000	16 U	12 U	17 U	10 U	10 U
Dichlorobromomethane	1000		600	16 U	12 U	17 U	10 U	10 U
Dichlorodifluoromethane				16 U	12 U	17 UJ	10 UJ	10 U
Dichloroethane-1,1	10000		23000	16 U	12 U	17 U	10 U	10 U
Dichloroethane-1,2	1000		20	16 U	12 U	17 U	10 U	10. U
Dichloroethene-1,2 trans	50000		700	16 U	12 U	17 U	10 U	10 U
Dichloroethylene-1,1	10000		60	16 U	12 U	17 U	10 U	10 U
Dichloroethylene-1,2 cis	1000	1000000	400	16 U	12 U	17 U	10 U	10 U
Dichloropropane-1,2			30	16 U	12 U	17 U	10 U	10 U
Dichloropropene-1,3 cis			4	16 U	12 U	17 U	10 U	10 U
Dichloropropene-1,3 trans			4	16 U	12 U	17 U	10 U	10 U
Ethylbenzene	100000	1000000	13000	16 U	12 U	17 U	10 U	10 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				16 U	12 U	17 U	10 U	10 U_

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID (A) (B) (C) MA-SB-71 MA-SB-72 MA-SB-75 MA-SB-77 MA-SB-78 MA-SB72-S-6.0 Sample ID IGWSCC NRDCSCC EPASSLDA MA-SB71-S-6.0 MA-SB75-S-4.5 MA-SB77-S-5.0 MA-SB78-S-6.0 F20 Sample Date 12/13/2001 12/12/2001 12/13/2001 12/12/2001 12/13/2001 Sample Interval 6 - 6.5 ft 5 - 5.5 ft 6 - 6.5 ft 4.5 - 5 ft 6 - 6.5 ft CLP Sample ID B0DZ4 B0DZ0 B0DX5 B0DY6 B0DX0 Chemical Name Volatile Organic Compounds (ug/Kg) Hexanone-2 16 U 12 U 17 U 10 U 10 U 17 U 10 U Isopropylbenzene 16 U 12 U 10 U Methyl acetate 16 U 12 U 17 U 10 U 10 U Methyl cyclohexane 16 U 12 U 2 J 10 U 10 U Methyl ethyl ketone (2-butanone) 50000 12 U 17 U 10 U 16 U 10 U Methyl isobutyl ketone (4-methyl-2-penta 50000 16 U 12 U 17 U 10 U 10 U Methyl tertiary butyl ether (MTBE) 16 U 12 U 17 U 10 U 10 U 1000 12 U 17 U 12 U Methylene chloride 20 16 U 10 U Styrene 100000 16 U 4000 12 U 17 U 10 U 10 U Tetrachloroethane-1,1,2,2 1000 3 16 U 12 U 17 U 10 U 10 U 1000 6000 60 16' U 12 U 17 U 10 U 10 U Tetrachloroethylene Toluene 500000 1000000 12000 16 U 12 U 17 U 10 U 10 U 100000 5000 16 U 12 U 17 U 10 U 10 U Trichlorobenzene-1,2,4 Trichloroethane-1,1,1 50000 2000 16 U 12 U 17 U 10 U 10 U Trichloroethane-1,1,2 1000 20 16 U 12 U 17 U 10 U 10 U 1000 Trichloroethylene 54000 60 16 U 12 U 17 U 10 U 10 U Trichlorofluoromethane 16 U 12 U 17 U 10 U 10 U Vinyl chloride 10000 7000 16 U 12 U 17 U 10 U 10 U 10 67000 210000 16 U 12 U 17 U 10 U 10 U Xylenes, total

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date]	F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval	1			5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID]			B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name				<u> </u>		:		
Volatile Organic Compounds (ug/Kg)	•						
Acetone	100000		16000	15	24 UJ	17 J	7 J	5 J
Benzene	1000	13000	30	10 U	11 U	19 U	10 U	14 U
Bromoform	1000		800	10 U	11 U	19 U	10 U	14 U
Bromomethane	1000	1000000	200	10 U	11 U	19 U	10 U	14 U
Carbon disulfide			32000	10 U	11 U	19 U	10 U	14 U
Carbon tetrachloride	1000		70	10 U	11 U	19 U	10 U	14 U
Chlorobenzene	1000		1000	10 U	11 U	19 U	10 U	14 U
Chloroethane				10 U	11 U	19 U	10 U	14 U
Chloroform	1000	28000	600	10 U	11 U	19 U	10 U	14 U
Chloromethane	10000			10 U	11 U	19 U	10 U	14 U
Cyclohexane				10 U	11 U	19 U	10 U	2 J
DBCP (1,2-dibromo-3-chloropropane)				10 U	11 U	19 U	10 U	14 U
Dibromochloromethane	1000		400	10 U	11 U	19 U	10 U	14 U
Dibromoethane-1,2				10 .U	11 U	19 U	10 U	14 U
Dichlorobenzene-1,2	50000		17000	10 U	11 U	19 U	10 U	14 U
Dichlorobenzene-1,3	100000			10 U	11 U	19 U	10 U	14 U
Dichlorobenzene-1,4	100000		2000	10 U	11 U	19 U	10 U	14 U
Dichlorobromomethane	1000		600	10 U	11 U	19 U	10 U	14 U
Dichlorodifluoromethane				10 U	11 U	9 U	10 U	14 U
Dichloroethane-1,1	10000		23000	10 U	11 U	19 U	10 U	14 U
Dichloroethane-1,2	.1000		20	10 U	11 U	19 U	10 U	14 U
Dichloroethene-1,2 trans	50000		700	10 U	11 U	19 U	10 U	14 U
Dichloroethylene-1,1	10000		60	10 U	11 U	19 U	10 U	14 U .
Dichloroethylene-1,2 cis	1000	1000000	400	10 U	11 U	19 U	10 U	14 U
Dichloropropane-1,2			30	10 U	11 U	19 U	10 U	14 U
Dichloropropene-1,3 cis			4	10 U	11 U	19 U	10 U	14 U
Dichloropropene-1,3 trans			4	10 U	11 U	19 U	10 U	14 U
Ethylbenzene	100000	1000000	13000	10 U	11 U	19 U	10 U	14 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				10 U	11 U	19 U	10 U	14 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date			F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID				B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				10 U	11 U	19 U	10 U	14 U
Isopropylbenzene				10 U	11 U	19 U	10 U	14 U
Methyl acetate				10 U	11 U	. 19 U	10 U	14 U
Methyl cyclohexane				10 U	. 11 U	19 U	10 U	3 J
Methyl ethyl ketone (2-butanone)	50000			10 U	11 U	19 U	10 U	14 UJ
Methyl isobutyl ketone (4-methyl-2-penta	50000			10 U	11 U	19 U	10 U	14 U
Methyl tertiary butyl ether (MTBE)				10 U	11 U	19 U	10 U	14 U
Methylene chloride	1000		20	10 U	11 U	19 U	12 U	14 U
Styrene	100000		4000	10 U	11 U	19 U	10 U	14 U
Tetrachloroethane-1,1,2,2	1000		3	10 U	11 U	19 U	10 U	14 U
Tetrachloroethylene	1000	6000	60	10 U	41	20	10 U	14 U
Toluene	500000	1000000	12000	10 U	11 U	19 U	10 U	2 J
Trichlorobenzene-1,2,4	100000		5000	10 U	11 U	19 U	10 U	14 UJ
Trichloroethane-1,1,1	50000	l	2000	10 U	11 U	19 U	10 U	14 U
Trichloroethane-1,1,2	1000		20	10 U	11 U	19 U	10 U	14 U
Trichloroethylene	1000	54000	60	10 U	2 J	19 U	10 U	. 14 U
Trichlorofluoromethane				10 U	. 11 U	19 U	10 UJ	14 U
Vinyl chloride	10000	7000	10	10 U	. 11 U	19 U	10 U	14 U
Xylenes, total	67000		210000	10 U .	11 U	19 U	10 U	14 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date			F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval				4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID				B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name						:		
Volatile Organic Compounds (ug/Kg)								
Acetone	100000		16000	2 J .	15 U	6300 U	10 UJ	11 UJ
Benzene	1000	13000	30	10 U	15 U	31000 F ^M - (ABC)	10 U	11 UJ
Bromoform	1000		800	10 U	15 U	6300 U	10 U	11 UJ
Bromomethane	1000	1000000	200	10 U	15 U	6300 U	10 U	11 UJ
Carbon disulfide			32000	10 U	15 U	6300 U	10 U	11 UJ
Carbon tetrachloride	1000		70	10 U	15 U	6300 U	10 U	11 UJ
Chlorobenzene	1000		1000	10 U	15 U	6300 U	10 U	11 UJ
Chloroethane				10 U	15 U	6300 U	10 U	11 UJ
Chloroform	1000	28000	600	10 U	15 U	16000 (AC)	10 U	11 UJ
Chloromethane	10000			10 U	15 U	6300 U	10 U	11 UJ
Cyclohexane				10 U	15 U	1700 J	10 U	11 UJ
DBCP (1,2-dibromo-3-chloropropane)				10 U	15 U	6300 U	10 U	11 UJ
Dibromochloromethane	1000		400	10 U	15 U	6300 U	10 U	11 UJ
Dibromoethane-1,2				10 U	15 U	6300 U	10 U	11 UJ
Dichlorobenzene-1,2	50000		17000	10 U	15 U	4800 J	10 U	11 UJ
Dichlorobenzene-1,3	100000			10 U	15 U	6300 U	10 U	11 UJ
Dichlorobenzene-1,4	100000		2000	10 U	15 U	6300 U	10 U	11 UJ
Dichlorobromomethane	1000		600	10 U	15 U	6300 U	10 U	11 UJ
Dichlorodifluoromethane				10 U	15 U	6300 U	10 UJ	11 UJ
Dichloroethane-1,1	10000		23000	10 U	15 U	1500 J	10 U	11 UJ
Dichloroethane-1,2	1000		20	10 U	15 U	6300 U	10 U	11 UJ
Dichloroethene-1,2 trans	50000		700	10 U	15 U	6300 U	10 U	11 UJ
Dichloroethylene-1,1	10000		60	10 U	15 U	6300 U	10 U	11 UJ
Dichloroethylene-1,2 cis	1000	1000000	400	10 U	15 U	6300 U	10 U	11 UJ
Dichloropropane-1,2			30	10 U	15 U	6300 U	10 U	11 UJ
Dichloropropene-1,3 cis			4	10 U	15 U	6300 U	10 U	11 UJ
Dichloropropene-1,3 trans			4	10 U	15 U	6300 U	10 U	11 UJ
Ethylbenzene	100000	1000000	13000	10 U	15 U	29000 (c)	10 U	11 UJ
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				10 U	15 U	740 J	10 U	11 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.5 Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date			F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval		1	l [4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID	_			B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				10 U	15 U	6300 U	10 U	11 UJ
Isopropylbenzene				10 U	15 U	1100 J	10 U	11 UJ
Methyl acetate	,			10 U	15 U	6300 U	10 U	11 UJ
Methyl cyclohexane				10 U	15 .U	12000	10 U	11 UJ
Methyl ethyl ketone (2-butanone)	50000			10 U	15 U	6300 U	10 U	11 UJ
Methyl isobutyl ketone (4-methyl-2-penta	50000			10 U	15 U	3000 J	10 U	11 UJ
Methyl tertiary butyl ether (MTBE)				10 U	15 U	6300 UJ	10 U	11 UJ
Methylene chloride	1000		20	10 U	15 U	12000 U	17 U	11 UJ
Styrene	100000		4000	10 U	15 U	6300 U	10 U	11 UJ
Tetrachloroethane-1,1,2,2	1000	_	3	10 U	15 U	6300 U	10 U	11 UJ
Tetrachloroethylene	1000	6000	60	10 U	19	43000 (ABC)	10 U	3 J
Toluene	500000	1000000	12000	10 U	15 U	49000il	1 J	11 UJ
Trichlorobenzene-1,2,4	100000		5000	10 U	15 U	14000 J (c)	10 U	11 UJ
Trichloroethane-1,1,1	50000		2000	10 U	15 U	3300 J (0)	10 U	11 UJ
Trichloroethane-1,1,2	1000		20	10 U	15 U	6300 U	10 U	11 UJ
Trichloroethylene	1000	54000	60	10 U	1 J	15000 (AC)	5 J	2 J
Trichlorofluoromethane				10 U	15 U	710 J	10 U	11 UJ
Vinyl chloride	10000	7000	10	10 U	15 U	6300 U	10 U	11 UJ
Xylenes, total	67000		210000	10 U	15 U	220000): :: (AC)į	10 U	11 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-207	MA-SO-208	MA-SO-209
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO207-S	MA-SO208-S	MA-SO209-S
Sample Date			F20	12/17/2001	12/17/2001	10/22/2001	10/22/2001	10/22/2001
Sample Interval				5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	4.5 - 5 ft	5 - 5.5 ft
CLP Sample ID				B0FW6	B0FT9	B0DG9	B0DH5	B0DH7RE
Chemical Name						:		
Volatile Organic Compounds (ug/Kg))						Ţ.	
Acetone	100000		16000	27	12	3 J	13 U	12 UJ
Benzene	1000	13000	30	13 U	10 U	11 U	13 U	12 UJ
Bromoform	1000		800	13 U	10 U	11 U	13 U	12 UJ
Bromomethane	1000	1000000	200	13 U	10 U	11 U	13 U	12 UJ
Carbon disulfide			32000	13 U_	10 U	11 U	13 U	12 UJ
Carbon tetrachloride	1000		70	13 U	10 U	11 U	13 U	12 UJ
Chlorobenzene	1000		1000	13 U	10 U	11 U	13 U	12 R
Chloroethane				13 U	10 U	11 U	13 U	12 UJ
Chloroform	1000	28000	600	13 U	10 U	11 U	13 U	12 UJ
Chloromethane	10000	L		13 U	10 U	11 U	13 U	12 UJ
Cyclohexane				13 U	10 U	_11_U	13_U	12 UJ
DBCP (1,2-dibromo-3-chloropropane)				13 U	10 U	11 U	13 U	12 R
Dibromochloromethane	1000		400	13 U	10 U	11 U	13 U	12 UJ
Dibromoethane-1,2				13 U	10 U	11 U	13 U	12 R
Dichlorobenzene-1,2	50000	_	17000	13 U	10 U	11 U	13 U	12 R
Dichlorobenzene-1,3	100000			13 U	10 U	11 U	13 U	12 R
Dichlorobenzene-1,4	100000	·	2000	13 U	10 U	11 U	13 U	12 R
Dichlorobromomethane	1000		600	13 U	10 U	11 U	13 U	12 UJ
Dichlorodifluoromethane				13 U	10 U	11 U	13 U .	12 UJ
Dichloroethane-1,1	10000	<u> </u>	23000	. 13 U	10 U	11 U	13 U	12 UJ
Dichloroethane-1,2	1000		20	13 U	10 U	11 U	13 U	. 12 UJ
Dichloroethene-1,2 trans	50000		700	13 U	10 U	11 U	13 U	12 UJ
Dichloroethylene-1,1	10000		60	13 U	10 U	11 U	13 U	12 UJ
Dichloroethylene-1,2 cis	1000	1000000	400	13 U	10 U	11 U	13 U	12 UJ
Dichloropropane-1,2			30	13 U	10 U	11 U	13 U	12 UJ
Dichloropropene-1,3 cis			4	13 U	10 U	11 U	13 U	12 UJ
Dichloropropene-1,3 trans			4	13 U	10 U	11 U	13 U	12 UJ
Ethylbenzene	100000	1000000	13000	13: U	10 U	11 U	13 U	12 R
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe	·			13 U	10 U	11 U	13 U	12 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidential Direct Contact Soil Cleanu Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

302725

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5 Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID (A) ·(B) (C) MA-SO-204 MA-SO-206 MA-SO-207 MA-SO-208 MA-SO-209 **IGWSCC** NRDCSCC EPASSLDA MA-SO204-S-5.0 MA-SO206-S-5.0 Sample ID MA-SO207-S MA-SO208-S MA-SO209-S F20 10/22/2001 Sample Date 12/17/2001 12/17/2001 10/22/2001 10/22/2001 Sample Interval 5 - 5.5 ft 4.5 - 5 ft 5 - 5.5 ft 4.5 - 5 ft 5 - 5.5 ft

CLP Sample ID				B0FW6	B0FT9	B0DG9	B0DH5	B0DH7RE
Chemical Name								
/olatile Organic Compounds (ug/Kg)								
Hexanone-2				13 U	10 U	11 U	13 U	12 R
sopropylbenzene				13 U	10 U	11 U	13 U	12 R
Methyl acetate				13 U	10 U	11 U	13 U	12 UJ
Methyl cyclohexane				13 U	10 U	11 U	. 13 U	12 UJ
Methyl ethyl ketone (2-butanone)	50000			13 U	10 U	11 U	18	12 UJ
Methyl isobutyl ketone (4-methyl-2-penta	50000			13 U	10 U	11 U	13 U	12 R
Methyl tertiary butyl ether (MTBE)				13 U	10 U	11 U	13 U	12 UJ
Methylene chloride	1000		20	13 U	10 U	11 U	13 U	12 UJ
Styrene	100000		4000	13 U	10 U	11 U	13 U	12 R
Fetrachloroethane-1,1,2,2	1000		3	13 U	10 U	11 U	13 U	12 R
Tetrachloroethylene	1000	6000	60	13 U	10 U	11 U	13 U	2 J
Toluene	500000	1000000	12000	2 J	10 U	11 U	13 U	4 J
Frichlorobenzene-1,2,4	100000	1.5	5000	13 U	10 U	11 U	13 U	12 R
richloroethane-1,1,1	50000		2000	13 U	10 U	11 U	13 U	12 UJ
richloroethane-1,1,2	1000		20	13 U	10 U	11 U	13 U	12 UJ
richloroethylene	1000	54000	60	13 U	10 U	2 J	13 U	12 UJ
Frichlorofluoromethane				13 UJ	10 UJ	11 U	13 U	12 UJ
/inyl chloride	10000	7000	10	13 U	10 U	11 U	13 U	12 UJ
Kylenes, total	67000		210000	2 J	10 U	11 U	13 U	12 R

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-210	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO210-S-5.0	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S
Sample Date	1	l	F20	12/14/2001	12/14/2001	12/14/2001	12/14/2001	10/18/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft
CLP Sample ID		1	İ	B0FW2	B0FT3	B0FT6	B0FW0	B0DC9
Chemical Name								
Volatile Organic Compounds (ug/Kg))							
Acetone	100000		16000	26 UJ	25 UJ	3 J	4 J	14 UJ
Benzene	1000	13000	30	26 U	25 U	16 U	16 U	14 U
Bromoform	1000		800	26 U	25 U	16 U	16 U	14 U
Bromomethane	1000	1000000	200	26 U	25 U.	16 U	16 U	14 U
Carbon disulfide			32000	26 U	16 J	16 U	16 U	14 U
Carbon tetrachloride	1000		70	26 U	25 U	16 U	16 U	14 U
Chlorobenzene	1000		1000	26 U	25 U	16 U	16 U	14 U
Chloroethane				26 U	25 U	16 U	16 U	14 U
Chloroform	1000	28000	600	26 U	25 U	16 U	16 U	14 U
Chloromethane	10000			26 U	25 U	16 U	16 U	14 U
Cyclohexane				26 U	25 U	16 U	16 U	14 U
DBCP (1,2-dibromo-3-chloropropane)				26 U	25 U	16 U	16 U	14 U
Dibromochloromethane	1000		400	26 U	25 U	16 U	16 U	14 U
Dibromoethane-1,2				26 U	25 U	16 U	16 U	14 U
Dichlorobenzene-1,2	50000		17000	26 U .	25 U	16 U	16 U	14 U
Dichlorobenzene-1,3	100000			26 U	25 U	16 U	16 U	14 U
Dichlorobenzene-1,4	100000		2000	26 U	25 U	16 U	16 U	14 U
Dichlorobromomethane	1000		600	. 26 U	25 U	16 U	16 U	14 U
Dichlorodifluoromethane				26 UJ	25 UJ	16 UJ	16 UJ	14 U
Dichloroethane-1,1	10000		23000	26 U	25 U	16 U	16 U	14 U
Dichloroethane-1,2	1000		20	26 U	25 U	16 U	16 U	14 U
Dichloroethene-1,2 trans	50000		700	26 U	25 U	16 U	16 U	14 U
Dichloroethylene-1,1	10000		60	26 U	25 U	16 U	16 U	14 U
Dichloroethylene-1,2 cis	1000	1000000	400	26 U	25 U	16 U	2 J	14 U
Dichloropropane-1,2			30	26 U	25 U	16 U	16 U	14 U
Dichloropropené-1,3 cis			4	26 U	25 U	16 U	16 U	14 U
Dichloropropene-1,3 trans			4	26 U	25 U	16 U	16 U	. 14 U
Ethylbenzene	100000	1000000	13000	26 U	25 U	16 U	16 U	14 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				26 U	25 U	16 U	16 U	14 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria

05/20/2004 NRDCSCC - Nonresidential Direct Contact Soll Cleanu Criteria

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Station ID	(A)	(B)	(C)	MA-SO-210	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO210-S-5.0	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S
Sample Date			F20	12/14/2001	12/14/2001	12/14/2001	12/14/2001	10/18/2001
Sample Interval		ì ·		5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft
CLP Sample ID				B0FW2	B0FT3	B0FT6	B0FW0	B0DC9
Chemical Name								
Volatile Organic Compounds (ug/Kg	}	,						<u> </u>
Hexanone-2				26 U	25 U	16 U	16 U	14 U
Isopropylbenzene				26 U	25 U	16 U	16 U	14 U
Methyl acetate				26 U	25 U	16 U	16 U	14 U
Methyl cyclohexane				26 U	25 U	16 U	16 U	14 U
Methyl ethyl ketone (2-butanone)	50000			26 U	25 U	16 U	16 U	- 14 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			26 U	25 U	16 U	16 U	14 U
Methyl tertiary butyl ether (MTBE)				26 U	25 U	16 U	16 U	14 U
Methylene chloride	1000		20	28 U	28 U	- 18 U	24 U	14 U
Styrene	100000		4000	26 U	25 U	16 U	16 U	14 U
Tetrachioroethane-1,1,2,2	1000		3	26 U	25 U	16 U	16 U	14 U
Tetrachloroethylene	1000	6000	60	26 U	25 U	16 U	16 U	24
Toluene	500000	1000000	12000	5 J	3 J	2 J	3 J	14 U
Trichlorobenzene-1,2,4	100000		5000	26 U	25 U	16 U	16 U	14 U
Trichloroethane-1,1,1	50000		2000	26 U	25 U	16 U	16 U	14 U
Trichloroethane-1,1,2	1000		20	26 U	25 U	16 U	16 U	14 U
Trichloroethylene	1000	54000	60	26 U	25 U	16 U	16 U	3 J
Trichlorofluoromethane				3 J	25 U	16 U	2 J	14 U
Vinyl chloride	10000	7000	10	26 U	25 U	16 U	16 U	14 U
Xylenes, total	67000		210000	26 U	25 U	16 U	2 J	14 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-301	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO301-S-5.0	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5
Sample Date		•	F20	12/13/2001	12/12/2001	12/13/2001	12/17/2001	12/17/2001
Sample Interval				5 - 5.5 ft	6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft
CLP Sample ID				B0DY1	B0AY2	B0DY4	B0FW9	B0FX0
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Acetone	100000		16000	500 J	23 UJ	10 J	13	2 J
Benzene	1000	13000	30	58 UJ	15 U	11 U	12 U	10 U
Bromoform	1000		800	58_UJ	15 U	11 U	12 U	10 U
Bromomethane	1000	1000000	200	58 UJ	15 U	11 Ú	12 U	10 U
Carbon disulfide			32000	21 J	16	11 U	2 J	10 U
Carbon tetrachloride	1000		70	58 UJ	15 U	11 U	12 U	10 U
Chlorobenzene	1000		1000	58 UJ	15 U	11 U	12 U	10 U
Chloroethane				58 ÚJ	15 U	11 U	12 U	10 U
Chloroform	1000	28000	600	58 UJ	15 U	11 U	12 U	10 U
Chloromethane	10000			58 UJ	15 U	11 U_	12 U	_10 U
Cyclohexane				58 UJ	15 U	11 U	12 U	10 U
DBCP (1,2-dibromo-3-chloropropane)				58 UJ	15 U	11 U	12. U	10 U
Dibromochloromethane	1000		400	58 UJ	15 U	11 U	12 U	10 U
Dibromoethane-1,2				58_UJ	15 U	11 U	12 U	10 U
Dichlorobenzene-1,2	50000		17000	58_UJ	15 U	11 Ų	12 U	10 U
Dichlorobenzene-1,3	100000			58 UJ	15 U	11 U_	12 U	_10 U
Dichlorobenzene-1,4	100000		2000	58 UJ	15 U	11 U	12 U	10 U
Dichlorobromomethane	1000		600	58 UJ	15 U	11 U	12 U	10 U
Dichlorodifluoromethane				58 UJ	15 UJ	11 U	12 U	10 U
Dichloroethane-1,1	10000		23000	58 UJ	15 U	11 U	12 U	10 U
Dichloroethane-1,2	1000		20	58 UJ	15 U	11 U	12 U	10 U
Dichloroethene-1,2 trans	50000		700	58 UJ	15 U	11 U	12 U	10 U
Dichloroethylene-1,1	10000		60	58 UJ	15 U	11 U	12 U	10 U
Dichloroethylene-1,2 cis	1000	1000000	400	58 UJ	15 U	11 U	12 U	10 U
Dichloropropane-1,2			30	58 UJ	15 U	11 U	12 U	10 U
Dichloropropene-1,3 cis			4	58 UJ	15 U	11 U	12 U	10 U
Dichloropropene-1,3 trans			4	58 UJ	15 U	11 U	12 U	10 U
Ethylbenzene	100000	1000000	13000	58 UJ	15 U	11 U	12 U	10 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoroe				58 UJ	15 U	11 U	12 U	10 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5 Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-301	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO301-S-5.0	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5
Sample Date	1		F20	12/13/2001	12/12/2001	12/13/2001	12/17/2001	12/17/2001
Sample Interval]			5 - 5.5 ft	6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft
CLP Sample ID				B0DY1	B0AY2	B0DY4	B0FW9	B0FX0
Chemical Name								
Volatile Organic Compounds (ug/Kg)							
Hexanone-2				58 UJ	15 U	11 U	12 U_	10 U
Isopropylbenzene				58 UJ	15 U	11 U	12 U	10 U
Methyl acetate				58 UJ	15 U	11 U	12 U	10 U
Methyl cyclohexane				58 UJ	15 U	11 U	12 U	10 U
Methyl ethyl ketone (2-butanone)	50000			210 J	15 U	11 U	12 U	10 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			58 UJ	15 U	11 U	12 U	10 U
Methyl tertiary butyl ether (MTBE)				58 UJ	15 U	11 U	12 U	10 U
Methylene chloride	1000		20	90 UJ	20 U	18 U	12 U	10 U
Styrene	100000		4000	58 UJ	15 U	11 U	12 U	10 U
Tetrachloroethane-1,1,2,2	1000		3	. 58 UJ	15 U	11 U	12 U	10 U
Tetrachloroethylene	1000	6000	60	58 UJ	15 U	11 U	12 U	10 U
Toluene	500000	1000000	12000	58 UJ	15 U	11 U	12 U	1 J
Trichlorobenzene-1,2,4	100000		5000	58 UJ	15 U	11 U	12 U	10 U
Trichloroethane-1,1,1	50000		2000	58 UJ	15 U	11 U	12 U	10 U
Trichloroethane-1,1,2	1000		20	58 UJ	15 U	11 U	12 U	10 U
Trichloroethylene	1000	54000	60	58 UJ	15 U	11 U	12 U	10 U
Trichlorofluoromethane				58 UJ	15 U	11 U	12 UJ	2 J
Vinyl chloride	10000	7000	10	58 UJ	15 U	11 U	12 U	10 U
Xylenes, total	67000		210000	58 UJ	15 U	11 U	12 U	10 U

B- Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.5

Subsurface Soil - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-S-10.0	MA-SO404-S-8.5
Sample Date		· ·	F20	12/17/2001	12/17/2001
Sample Interval			j	10 - 10.5 ft	8.5 - 9 ft
CLP Sample ID		,		B0FX1	B0FX3
Chemical Name					
Volatile Organic Compounds (ug/Kg	1)	-			
Acetone	100000		16000	4 J	2 J
Benzene	1000	13000	30	10 U	11 U
Bromoform	1000		800	10 U	11 U
Bromomethane	1000	1000000	200	10 U	11 U
Carbon disulfide			32000	10 U	11 U
Carbon tetrachloride	1000		70	10 U	11 U _
Chlorobenzene	1000		1000	10 U	11 U
Chloroethane				10 U	11 U
Chloroform	1000	28000	600	10 U	11 U
Chloromethane	10000			10 U	11 U
Cyclohexane				10 U	11 U
DBCP (1,2-dibromo-3-chloropropane)				10 U	11 U
Dibromochloromethane	1000		400	. 10 U	11 U
Dibromoethane-1,2				10 U	. 11 U
Dichlorobenzene-1,2	50000		17000	10 U	11 U
Dichlorobenzene-1,3	100000			10 U	11 U
Dichlorobenzene-1,4	100000		2000	10 U	11 U
Dichlorobromomethane	1000		600	10 U	11 U
Dichlorodifluoromethane				10 U	11 U
Dichloroethane-1,1	10000		23000	10 U	11 U
Dichloroethane-1,2	1000		20	10 U	11 U
Dichloroethene-1,2 trans	50000		700	10 U	11 U
Dichloroethylene-1,1	10000		60	10 U	11 U
Dichloroethylene-1,2 cis	1000	1000000	400	10 U	11 U
Dichloropropane-1,2			30	10 U	11 U
Dichloropropene-1,3 cis			4	10 U	11 U
Dichloropropene-1,3 trans			4	10 U	11 U
Ethylbenzene	100000	1000000	13000	10 U	11 U
Freon 113 (1,1,2-trichloro-1,2,2-trifluoro	d			10 U	11 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(c)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-S-10.0	MA-SO404-S-8.5
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval				10 - 10.5 ft	8.5 - 9 ft
CLP Sample ID				B0FX1	B0FX3
Chemical Name					
i Volatile Organic Compounds (ug/Kg)		<u> </u>	i		
Hexanone-2				10 U	11 U
sopropylbenzene				10 U	11 U
Methyl acetate				10 U	11 U
Methyl cyclohexane				7 10 U	11 U
Methyl ethyl ketone (2-butanone)	50000		-	10 U	11 U
Methyl isobutyl ketone (4-methyl-2-penta	50000			10 U	11 U
Methyl tertiary butyl ether (MTBE)				10 U	11 U
Methylene chloride	1000		20	12 U	12 U
Styrene	100000		4000	10 U	11 U
Tetrachloroethane-1,1,2,2	1000		3	10 U	11 U
Tetrachloroethylene	1000	6000	60	10 U	11 U
Toluene	500000	1000000	12000	10 U	2 J
Trichlorobenzene-1,2,4	100000		5000	10 U	11 U
Trichloroethane-1,1,1	50000		2000	10 U	11 U
Trichloroethane-1,1,2	1000		20	10 U	11 U
Trichloroethylene	1000	54000	60	10 U	11 U
Trichlorofluoromethane				10 UJ	2 J
Vinyl chloride	10000	7000	10	10 U	11 U
Xylenes, total	67000		210000	10 U	1 J

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID				B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Acenaphthene	100000		570000	340 J	410 U	410 ÚJ	410 UJ	520 J
Acenaphthylene			4200000	82 J	410 U	410 UJ	410 UJ	480 J
Acetophenone				410 U	410 U	100 J	150 J	14 J
Anthracene	100000		12000000	1200	410 U	410 UJ	410 UJ	1800 J
Atrazine				410 U	410 U	410 UJ	410_UJ	360 UJ
Benzaldehyde				410 U	140 J	410 UJ	410 UJ	21 J
Benzo(a)anthracene	500000	4000	2000	5700 (BC)	22 J	410 UJ	410 UJ	4700 J ((BC))
Benzo(a)pyrene	100000	660	8000	5100 (B)	21 J	410 UJ	410 UJ	\$ 4 (B)
Benzo(b)fluoranthene	50000	4000	5000	6200 (BC)	27 J	410 UJ	410 UJ	4200 J. (B)
Benzo(g,h,l)perylene			4200000	1600	410 U	410 UJ	410 UJ	1300 J
Benzo(k)fluoranthene	500000	4000	49000	2900	24 J	410 UJ	410 UJ	2700 J
Biphenyl				19 J	94 J	410 UJ	410 UJ	74 J
Bromophenyi-4 Phenyl Ether				410 U	410 U	410 ŲJ	410 UJ	360 UJ
Butylbenzyl phthalate	100000		930000	410 U	100 J	410 UJ	76 J	170 J
Caprolactam	<u> </u>			410 U	410 U	410 UJ	410 UJ	26 J
Carbazole			600	410	410 U	410 UJ	410 UJ	690 划 (15)
Chloroaniline-4			700	410 U	410 U	410 UJ	410 UJ	360 UJ
Chloronaphthalene-2				410 U	410 U	410 UJ	410 UJ	360 UJ
Chlorophenol-2	10000		4000	410 U	410 U	410 UJ	410 UJ	360 UJ
Chlorophenyl-4 phenyl ether				410 U	410 U	410 UJ	410 UJ	360 UJ
Chrysene	500000	40000	160000	6100	35 J	58 J	110 J	3500 J
Cresol-4,6-dinitro-ortho				1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Cresol-o			15000	720	49 J	410 UJ	410 UJ	360 UJ
Cresol-p				150 J	77 · J	910 J	1300 J	18 J
Cresol-parachloro-meta	100000		4000	410 U	410 U	410 UJ	410 UJ	360 UJ
Dibenzo(a,h)anthracene	100000	660	2000	800 (B)	410 U	410 UJ	410 UJ	650 J
Dibenzofuran				170 J	410 U	410 UJ	410 UJ	480 J
Dichlorobenzidine-3,3	100000		7	410 U	410 U	410 UJ	410 UJ	360 UJ
Dichlorophenol-2,4	10000		1000	410 U	410 U	410 UJ	410 UJ	360 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidential Direct Contact Soil Cleanu Criteria

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID			Ī	B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Dimethylphenol-2,4	10000		9000	12 J	24 J	410 UJ	410 UJ	360 UJ
Dinitrophenol-2,4	10000		300	1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Dinitrotoluene-2,4			0.8	410 U	410 U	410 UJ	410 UJ	360 UJ
Dinitrotoluene-2,6			0.7	410 U	410 U	410 UJ	410 UJ	360 UJ
Ether, bis(2-chloroethyl)	10000		0.4	410 U	410 U	410 UJ	410 UJ	360 UJ
Ether, bis-chloroisopropyl	10000			410 U	410 U	410 UJ	410 UJ	360 UJ
Fluoranthene	100000	10000000	4300000	9400	410 U	410 UJ	410 UJ	9100 J
Fluorene	100000		560000	410 U	410 U	410 UJ	410 UJ	850 J
Hexachlorobenzene	100000		2000	410 U	410 U	410 UJ	410 UJ	360 UJ
Hexachlorobutadiene	100000		2000	410 U	410 U	410 UJ	410 UJ	360 UJ
Hexachlorocyclopentadiene	100000		400000	410 U	410 U	410 UJ	410 UJ	360 UJ
Hexachloroethane	100000		500	410 U	410 U	410 UJ	410 UJ	360 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	1900 J	10 J	410 UJ	410 UJ	1900 J
Isophorone	50000		500	410 U	410 U	410 UJ	410 UJ	360 UJ
Methane, bis(2-chloroethoxy)				410 U	410 U	410 UJ	410 UJ	360 UJ
Methylnaphthalene-2		<u> </u>		50 J	28 J	410 UJ	42 J	310 J
Naphthalene	100000	4200000	84000	64 J	41 J	100 J	130 J	460 J
Nitroaniline-2				1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Nitroaniline-3				1000 Ü	1000 U	1000 UJ	1000 UJ	910 UJ
Nitroaniline-4				1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Nitrobenzene	10000		100	410 U	410 U	410 UJ	410 UJ	360 UJ
Nitrophenol-2				410 U	410 U	410 UJ	410 UJ	360 UJ
Nitrophenol-4		<u> </u>		1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	410 U	410 U	410 UJ	410 UJ	360 UJ
Nitrosodiphenylamine-n	100000		1000	410 U	410 U	410 UJ	410 UJ	360 UJ
PCP (Pentachlorophenol)	100000		30	1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Phenanthrene			4200000	5100	410 U	77 J	150 J	7700 J
Phenoi	50000	<u> </u>	100000	410 U	140 J	410 UJ	410 UJ	360 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000	<u> </u>	410 U	4100	760 UJ	870 UJ	360 JBU

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID			<u> </u>	B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name							"	
Semivolatile Organic Compounds (u	g/Kg)							
Phthalate, di-n-butyl	100000		2300000	410 U	190 J	410 UJ	410 UJ	360 UJ
Phthalate, di-n-octyl	100000		10000000	410 UJ	410 UJ	340 J	430 J	73 J
Phthalate, diethyl	50000			410 U	320 J	410 UJ	410 UJ	360 UJ
Phthalate, dimethyl	50000			410 U	410 U	410 UJ	410 UJ	360 UJ
Pyrene	100000	10000000	4200000	8700	56 J	410 UJ	410 UJ	8000 J
Trichlorophenol-2,4,5	50000		270000	1000 U	1000 U	1000 UJ	1000 UJ	910 UJ
Trichlorophenol-2,4,6	10000		200	410 U	410 U	410 UJ	410 UJ	360 UJ

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval				6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID				B0DF8	B0AY0	B0AX5	B0AX6	B0AX8
Chemical Name								
Semivolatile Organic Compound	s (ug/Kg)	•						
Acenaphthene	100000		570000	110 J	420 UJ	150 J	180 J	400 UJ
Acenaphthylene			4200000	69 J	48 J	390 UJ	400 UJ	400 UJ
Acetophenone				20 J	420 UJ	390 UJ	400 UJ	400 UJ
Anthracene	100000		12000000	390 J	96 J	320 J	400 J	47 J
Atrazine				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Benzaldehyde				26 J	420 R	390 R	400 R	400 R
Benzo(a)anthracene	500000	4000	2000	1100 J	500 J	1500 J	1900 J	180 J
Benzo(a)pyrene	100000	660	8000	920 J (B)	230 J	930.J (B)	1000 J (B)	160 J
Benzo(b)fluoranthene	50000	4000	5000	970 J	420 J	1500 J	2000 J	160 J
Benzo(g,h,l)perylene			4200000	480 J	230 J	42 J	400 UJ	400 UJ
Benzo(k)fluoranthene	500000	4000	49000	860 J	390 J	1200 J	1900 J	120 J
Biphenyl				12 J	420 UJ	390 UJ	400 UJ	400 UJ
Bromophenyl-4 Phenyl Ether				350 UJ	420 UJ .	390 UJ	400 UJ	400 UJ
Butylbenzyl phthalate	100000		930000	. 10 J	420 UJ	390 UJ	49 J	400 UJ
Caprolactam				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Carbazole			600	130 J	420 UJ	190 J	240 J	400 UJ
Chloroaniline-4			700	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Chloronaphthalene-2				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Chlorophenol-2	10000		4000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Chlorophenyl-4 phenyl ether		<u> </u>		350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Chrysene	500000	40000	160000	1200 J	550 J	1400 J	1700 J	200 J
Cresol-4,6-dinitro-ortho				890 UJ	1100 R	980 R	1000 R	1000 R
Cresol-o			15000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Cresol-p				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Cresol-parachloro-meta	100000		4000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Dibenzo(a,h)anthracene	100000	660	2000	200 J	110 J	220 J	310 J	400 UJ
Dibenzofuran		·		87 J	420 UJ	49 J	57 J	400 UJ
Dichlorobenzidine-3,3	100000		7	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Dichlorophenol-2,4	10000		1000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

B- Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval	1			6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID	1			B0DF8	B0AY0	B0AX5	B0AX6	B0AX8
Chemical Name								
Semivolatile Organic Compounds (u	ıg/Kg)						·	
Dimethylphenol-2,4	10000	·	9000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Dinitrophenol-2,4	10000		300	890 UJ	1100 R	980 R	1000 R	1000 R
Dinitrotoluene-2,4			0.8	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Dinitrotoluene-2,6			0.7	350_UJ_	420 UJ	390 UJ	400 UJ	400 UJ
Ether, bis(2-chloroethyl)	10000		0.4	350 UJ	420 UJ	. 390 UJ	400 UJ	400 UJ
Ether, bis-chloroisopropyl	10000			350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Fluoranthene	100000	10000000	4300000	2100 J	840. J	3100 J	4100 J	400 J
Fluorene	100000		560000	160 J	420 UJ	100 J	120 J	400 UJ
Hexachlorobenzene	100000		2000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Hexachlorobutadiene	100000	i	2000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Hexachlorocyclopentadiene	100000		400000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Hexachloroethane	100000		500	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	620 J	- 230 J	730 J	840 J	110 J
Isophorone	50000		500	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Methane, bis(2-chloroethoxy)				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Methylnaphthalene-2				33 J	420 UJ	390 UJ	400 UJ	400 UJ
Naphthalene	100000	4200000	84000	250 J	420 UJ	390 UJ	400 UJ	400 UJ
Nitroaniline-2	<u> </u>	l		890 UJ	1100 UJ	980 UJ	1000 UJ	1000 UJ
Nitroaniline-3				890 UJ	1100 UJ	980 UJ	1000 UJ	1000 UJ
Nitroaniline-4				890 UJ	1100 UJ	980 UJ	1000 UJ	1000 UJ
Nitrobenzene	10000		100	350 UJ	420 UJ	390 UJ	_400 UJ	400 UJ
Nitrophenol-2				350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Nitrophenol-4				890 UJ	1100 UJ	980 UJ	1000 UJ	1000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Nitrosodiphenylamine-n	100000		1000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
PCP (Pentachlorophenol)	100000		30	890 UJ	1100 UJ	980 UJ	1000 UJ	1000 UJ
Phenanthrene			4200000	1800 J	460 J	1500 J	1800 J	210 J
Phenol	50000		100000	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		650 BJ	87 J	50 J	41 J	400 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria.

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval			1	6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID			ļ .	B0DF8	B0AY0	B0AX5	B0AX6	B0AX8
Chemical Name							•	······································
Semivolatile Organic Compo	ounds (ug/Kg)	l	L	·				
Phthalate, di-n-butyl	100000		2300000	350 UJ	130 J	390 UJ	400 UJ	400 UJ
Phthalate, di-n-octyl	100000		10000000	71 J	420 UJ	390 UJ	400 UJ	400 UJ
Phthalate, diethyl	50000			350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Phthalate, dimethyl	50000			350 UJ	420 UJ	390 UJ	400 UJ	400 UJ
Pyrene	100000	10000000	4200000	1800 J	700 J	2200 J	2500 J	350 J
Trichlorophenol-2,4,5	50000		270000	890 UJ	1100 UJ.	980 UJ	1000 UJ	1000 UJ
Trichlorophenol-2,4,6	10000		200	350 UJ	420 UJ	390 UJ	400 UJ	400 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date]		F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval	1			7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID]			B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name						:		
Semivolatile Organic Compounds (L	ıg/Kg)							
Acenaphthene	100000		570000	350 UJ	1900 UJ	1700	1600 J	99 J
Acenaphthylene			4200000	350 UJ	1900 UJ	110 J	320 J	120 J
Acetophenone				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Anthracene	100000		12000000	350 UJ	1900 UJ	5400	4200	400 J
Atrazine				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Benzaldehyde				350 R	1900 UJ	17 J	3500 U	740 J
Benzo(a)anthracene	500000	4000	2000	53 J	350 J	(BC)		1400 J
Benzo(a)pyrene	100000	660	8000	350 UJ	1900 UJ	9500 (BC)	= 13000 (BC)	1700 Jan (B)
Benzo(b)fluoranthene	50000	4000	5000	350 UJ	1900 UJ	13000 (BC)	17000 (BC)	2400 J
Benzo(g,h,I)perylene			4200000	350 UJ	1900 UJ	1100 J	6200	890 J
Benzo(k)fluoranthene	500000	4000	49000	350 UJ	1900 UJ	5300 (B)	9500(B)	910 J
Biphenyl			-	350 UJ	1900 UJ	240 J	140 J	64 J
Bromophenyl-4 Phenyl Ether				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Butylbenzyl phthalate	100000		930000	350 UJ	1900 UJ	1100 U	140 J	690 UJ
Caprolactam				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Carbazole			600	350 UJ	1900 UJ	1400 (C)	2900 J (C)	210 J
Chloroaniline-4	·		700	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Chloronaphthalene-2				350 UJ	1900 UJ	1100 U	3500 U	54 J
Chlorophenol-2	10000		4000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Chlorophenyl-4 phenyl ether				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Chrysene	500000	40000	160000	81 J	480 J	8700	13000	1700 J
Cresol-4,6-dinitro-ortho				870 R	4700 UJ	2800 U	8700 U	1700 UJ
Cresol-o			15000	350 ŲJ	1900 UJ	1100 U	3500 U	690 UJ
Cresol-p				350 UJ	1900 UJ	1100 U	3500 U	140 J
Cresol-parachloro-meta	100000		4000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Dibenzo(a,h)anthracene	100000	660	2000	. 350 UJ	1900 UJ	1200 · · · (B)	3300 J (BC)	300 J
Dibenzofuran				350 UJ	1900 UJ	1200	. 1200 J	120 J
Dichlorobenzidine-3,3	100000		7	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Dichlorophenol-2,4	10000		1000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date			F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval				7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID				B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name								•
Semivolatile Organic Compounds	(ug/Kg)							
Dimethylphenol-2,4	10000		9000	350 UJ .	1900 UJ	1100 U	3500 U	690 UJ
Dinitrophenol-2,4	10000		300	870 R	4700 UJ	2800 U	8700 U	1700 UJ
Dinitrotoluene-2,4			0.8	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Dinitrotoluene-2,6			0.7	350 UJ	- 1900 UJ	1100 U	3500 U	690 UJ
Ether, bis(2-chloroethyl)	10000		0.4	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Ether, bis-chloroisopropyl	10000			350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Fluoranthene	100000	10000000	4300000	84 J	550 J	21000	25000	2500 J
Fluorene	100000		560000	350 UJ	1900 UJ	2200	1800 J	150 J
Hexachlorobenzene	100000		2000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Hexachlorobutadiene	100000		2000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Hexachlorocyclopentadiene	100000		400000	350 UJ	1900 UJ	1100 UJ	3500 U	690 UJ
Hexachloroethane	100000		500	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	350 UJ	1900 UJ	6100 (B)	8200 (B)	1100 J
Isophorone	50000		500	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Methane, bis(2-chloroethoxy)				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Methylnaphthalene-2				350 UJ	1900 UJ	810 J	310 J	220 J
Naphthalene	100000	4200000	84000	350 UJ	1900 UJ	1400	760 J	10000 J
Nitroaniline-2		<u> </u>		870 UJ	4700 UJ	2800 U	8700 U	1700 UJ
Nitroaniline-3				870 UJ	4700 UJ	2800 U	8700 U	1700 UJ
Nitroaniline-4		<u> </u>		870 UJ	4700 UJ	2800 UJ	8700 U	1700 UJ
Nitrobenzene	10000		100	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Nitrophenol-2				350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Nitrophenol-4				870 UJ	4700 UJ	2800 U	8700 U	1700 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	350 UJ	1900 UJ	1100 UJ	3500 U	690 UJ
Nitrosodiphenylamine-n	100000		1000	350 UJ	1900 UJ	1100 U	3500 U	200 J
PCP (Pentachlorophenol)	100000	<u> </u>	30	870 UJ	4700 UJ	2800 UJ	8700 U	1700 UJ
Phenanthrene			4200000	140 J	530 J	19000	20000	1800 J
Phenoi	50000		100000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		52 J	1900 UJ	1100 U	3500 U	690 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date]		F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval			ĺ	7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft:	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID				B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Phthalate, di-n-octyl	100000		10000000	350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Phthalate, diethyl	50000			350 UJ	1900 UJ	1100 UJ	3500 U	690 UJ
Phthalate, dimethyl	50000			350 UJ	1900 UJ	1100 U	3500 U	690 UJ
Pyrene	100000	10000000	4200000	140 J	730 J	18000	24000	2100 J
Trichlorophenol-2,4,5	50000		270000	870 UJ	4700 UJ	2800 U	8700 U	1700 UJ
Trichlorophenol-2,4,6	10000		200	350 UJ	1900 UJ	1100 UJ	3500 U	690 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date	7		F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval	7			6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID				B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name			:					
		1						
Semivolatile Organic Compounds (ug/Kg)	•						
Acenaphthene	100000		570000	4100 U	640	540	4800 J	38 J
Acenaphthylene			4200000	4100 U	320 J	62 J	430 U	14 J
Acetophenone				4100 U	400 U	390 U	430 U	390 U
Anthracene	100000		12000000	330 J	1100	1300	17000	73 J
Atrazine				4100 U	400 U	390 U	430 U	390 U
Benzaldehyde				4100 U	400 U	390 U	430 U	15 J
Benzo(a)anthracene	500000	4000	2000	920 J	31.00 (c)	5900 st (BC)	20000 (BC)	270 J
Benzo(a)pyrene	100000	660	8000	1(000° J 174° (B)	3400 J (B)	5000 (B)	12000 - A (BC)	240 J
Benzo(b)fluoranthene	50000	4000	5000	1400 J	5100 J (BC)	5400 (BC)	1:1000 (BC)	380 J
Benzo(g,h,l)perylene			4200000	580 J	1900	2800 J	3100	140 J
Benzo(k)fluoranthene	500000	4000	49000	630 J	2200	4000ks (B)	11000 (B)	140 J
Biphenyl				210 J	190 J	51 J	390 J	390 U
Bromophenyl-4 Phenyl Ether				4100 U	400 U	390 U	430 U	390 U
Butylbenzyl phthalate	100000		930000	4100 U	370 J	390 U	430 U	390 U
Caprolactam				4100 U	400 U	390 U	430 U	390 U
Carbazole			600	200 J	800 (C)	390 J	3200 (C)	49 J
Chloroaniline-4			700	4100 U	400 U	390 U	430 U	390 U
Chloronaphthalene-2				4100 U	400 U	390 U	430 U	390 U
Chlorophenol-2	10000		4000	4100 U	400 U	390 U	430 U .	.390 U
Chlorophenyl-4 phenyl ether				4100 U	400 U	390 U	430 U	390 U
Chrysene	500000	40000	160000	1100 J	3900 J	5700	20000	280 J
Cresol-4,6-dinitro-ortho				10000 U	1000 UJ	980 R	1100 R	990 UJ
Cresol-o			15000	4100 U	400 U	390 U	. 47 J	390 U
Cresol-p				220 J	400 U	390 U	130 J	390 U
Cresol-parachloro-meta	100000		4000	4100 U	400 U	390 U	430 U	390 U
Dibenzo(a,h)anthracene	100000	660	2000	330 J	A CONTRACTOR OF THE CONTRACTOR	1200 J. (B)		43 J
Dibenzofuran				100 J	460	350 J	3400	20 J
Dichlorobenzidine-3,3	100000		7	4100 U	400 U	390 R	430 U	390 U
Dichlorophenol-2,4	10000		1000	4100 U	400 U	390 U	430 U	390 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

302747

Table G.6

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date	1		F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval				6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID			Ì	B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name								
Semivolatile Organic Compounds (u	ıg/Kg)							
Dimethylphenol-2,4	10000		9000	4100 U	400 U	390 U	84 J	390 U
Dinitrophenol-2,4	10000		300	10000 U	1000 UJ	980 R	1100 R	990 UJ
Dinitrotoluene-2,4			0.8	4100 U	400 U	390 U	430 U	390 U
Dinitrotoluene-2,6			0.7	4100 U	400 U	390 U	430 U	390 U
Ether, bis(2-chloroethyl)	10000		0.4	4100 U	400 U	390 U	_430 U	390 U
Ether, bis-chloroisopropyl	10000			4100 U	· 400 U	390 U	430 U	390 U
Fluoranthene	100000	10000000	4300000	2300 J	7600 J	8900	43000	610
Fluorene	100000		560000	4100 U	1000	560	4900 J	38 J
Hexachlorobenzene	100000		2000	4100 U	400 U	390 U	430 U	390 U
Hexachlorobutadiene	100000		2000	4100 U	400 U	390 U	430 U	390 U
Hexachlorocyclopentadiene	100000		400000	4100 U	400 UJ	390 U	430 U	390 UJ
Hexachloroethane	100000		500	4100 U	400 U	390 U	430 U	390 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	730 J	2300	3100 J	6300 J (B)	170 J
Isophorone	50000		500	4100 U	(c)	390 U	430 U	390 U
Methane, bis(2-chloroethoxy)				4100 U	400 U	390 U	430 U	390 U
Methylnaphthalene-2				4100 U	6000 J	270 J	1400	11 J
Naphthalene	100000	4200000	84000	2200 J	89000° (C)	440	1200	210 J
Nitroaniline-2				10000 U	1000 U	- 980 U	1100 U	990 U
Nitroaniline-3				10000 U	1000 U	980 UJ	1100 UJ	990 U
Nitroaniline-4				10000 U	1000 U	980 UJ	1100 UJ	990 U
Nitrobenzene	10000		100	4100 U	400 U	390 U	430 U	390 U
Nitrophenol-2				4100 U	400 U	390 U	430 U	390 U
Nitrophenol-4				10000 U	1000 U	980 U	1100 U	990 U
Nitroso-di-n-propyl-amine-N	10000		0.05	4100 U	400 U	390 U	430 U	390 U
Nitrosodiphenylamine-n	100000		1000	500 J	400 U	390 U	430 U	390 U
PCP (Pentachiorophenol)	100000		30	10000 U	1000 U	980 UJ	1100 UJ	990 U
Phenanthrene			4200000	1500 J	5800 J	5400	53000	360 J
Phenoi	50000		100000	4100 U	400 U	390 U	430 U	390 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		9600	32000	390 UJ	210 J	390 U_

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date			F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval				6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID			L.,, ,	B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name								
Semivolatile Organic Compoun	ds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	4100 U	92000	83 J	110 J	390 U
Phthalate, di-n-octyl	100000		10000000	4100 U	590	390 R	430 R	390 U
Phthalate, diethyl	50000			4100 U	400 U	390 U	430 U	390 U
Phthalate, dimethyl	50000			4100 U	400 U	390 U	430 U	390 U
Pyrene	100000	10000000	4200000	1400 J	6700 J	11000	52000	460
richlorophenol-2,4,5	50000		270000	10000 U	1000 U	980 U	1100 U	990 U
richlorophenol-2,4,6	10000		200	4100 U	400 U	390 U	430 U	390 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

302745

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date			F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval				4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID	7		ĺ	B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Acenaphthene	100000	I	570000	410 U	55 J	13000 UJ	22 J	520
Acenaphthylene			4200000	16 J	48 J	480 J	440 U	60 J
Acetophenone				20 J	1200 U	13000 UJ	350 J	250 J
Anthracene	100000		12000000	19 J	170 J	420 J	55 J	1100
Atrazine				410 U	1200 U	13000 UJ	440 U	410 U
Benzaldehyde				31 J	1200 U	13000. UJ	440 U	670
Benzo(a)anthracene	500000	4000	2000	66 J	550 J	13000 UJ	140 J	2000 (c)
Benzo(a)pyrene	100000	660	8000	76 J	610 J	13000 UJ	150 J	1700 (B)
Benzo(b)fluoranthene	50000	4000	5000	120 J	740 J	13000 UJ	190 J	2000
Benzo(g,h,l)perylene			4200000	65 J	270 J	13000 UJ	81 J	170 J
Benzo(k)fluoranthene	500000	4000	49000	70 J	520 J	13000 UJ	150 J	1200
Biphenyl				410 U	1200 U	13000 UJ	440 U	1500
Bromophenyl-4 Phenyl Ether				410 U	1200 U	13000 UJ	440 U	410 U
Butylbenzyl phthalate	100000		930000	410 U	1200 U	13000 UJ	440 U	2900
Caprolactam				410 U	··· 1200 U	13000 UJ	440 U	410 U
Carbazole			600	13 J	84 J	13000 UJ	27 J	400 J
Chloroaniline-4			700	410 U	1200 U	13000 UJ	440 U	410 U
Chloronaphthalene-2				410 U	1200 U	13000 UJ	440 U	410 U
Chlorophenol-2	10000		4000	410 U	1200 U	13000 UJ	440 U	410 U
Chlorophenyl-4 phenyl ether				410 U	1200 U	13000 UJ	440 U	410 U
Chrysene	500000	40000	160000	110 J	560 J	13000 UJ	180 J	2100
Cresol-4,6-dinitro-ortho				1000 UJ	3000 U	32000 UJ	1100 U	1000 UJ
Cresol-o			15000	410 U	1200 U	13000 UJ	440 U	1400
Cresol-p				410 U	1200 U	13000 UJ	440 U	3800 J
Cresol-parachloro-meta	100000		4000	410 U	1200 U	13000 UJ	440 U	410 U
Dibenzo(a,h)anthracene	100000	660	2000	19 J	120 J	13000 UJ	47 J	280 J
Dibenzofuran				10 J	41 J	13000 UJ	23 J	440
Dichlorobenzidine-3,3	100000		7	410 UJ	1200 U	13000 UJ	440 U	410 UJ
Dichlorophenol-2,4	10000		1000	410 U	1200 U	13000 UJ	440 U	410 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date			F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval]			4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID	1			B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name				· · · · · · · · · · · · · · · · · · ·				
Semivolatile Organic Compounds (u	g/Kg)							
Dimethylphenol-2,4	10000		9000	410 U	· 1200 U	13000 UJ	440 U	410 U
Dinitrophenol-2,4	10000		300	1000 UJ	3000 U	32000 UJ	1100 U	1000 UJ
Dinitrotoluene-2,4		·	0.8	410 U	1200 U	13000 UJ	440 U	410 U
Dinitrotoluene-2,6			0.7	410 U	1200 U	13000 UJ	440 U	410 U
Ether, bis(2-chloroethyl)	10000	•	0.4	410 U	1200 U	13000 UJ	440 U	410 U
Ether, bis-chloroisopropyl	10000			410 U	1200 U	13000 UJ	440 U	410 U
Fluoranthene	100000	10000000	4300000	200 J	1100 J	370 J	290 J	3500 J
Fluorene	100000		560000	12 J	69 J	13000 UJ	43 J	620
Hexachlorobenzene	100000		2000	410 U	1200 U	13000 UJ	440 U	410 U
Hexachlorobutadiene	100000		2000	410 U	1200 U	13000 UJ	440 U	410 U
Hexachlorocyclopentadiene	100000		400000	410 UJ	1200 UJ	13000 UJ	440 U	410 UJ
Hexachloroethane	100000		500	410 U	1200 U	13000 UJ	440 U	410 U
indeno(1,2,3-cd)pyrene	500000	4000	14000	66 J	360 J	13000 UJ	110 J	1000
Isophorone	50000		500	410 U	1200 U	13000 UJ	440 U	410 U
Methane, bis(2-chloroethoxy)				410 U	1200 U	13000 UJ	440 U	410 U
Methylnaphthalene-2				33 J	1200 U	13000 UJ	89 J	370 J
Naphthalene	100000	4200000	84000	42 J	150 J	13000 UJ	1500	430
Nitroaniline-2				1000 U	3000 U	32000 UJ	1100 U	1000 U
Nitroaniline-3				1000 U	3000 U	32000 UJ	1100 U	1000 U
Nitroaniline-4				1000 U	3000 UJ	32000 UJ	1100 U	1000 U
Nitrobenzene	10000		100	410 U	1200 U	13000 UJ	440 U	410 U
Nitrophenol-2				410 U	1200 U	13000 UJ	440 U	410 U
Nitrophenol-4	<u> </u>	<u> </u>		1000 U	3000 U	32000 UJ	1100 U	1000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	410 UJ	1200 UJ	13000 UJ	440 U	410 UJ
Nitrosodiphenylamine-n	100000		1000	410 U	1200 U	13000 UJ	440 U	410 U
PCP (Pentachlorophenol)	100000		30	1000 U	3000 UJ	32000 UJ	1100 U	1000 U
Phenanthrene			4200000	170 J	820 J	13000 UJ	290 J	4400 J
Phenol	50000		100000	410 U	1200 U	13000 UJ	170 J	2900
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000	l <u></u>	700	1200 U	94000 J	1800	81000

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date			F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval			[4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID			Γ	B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name								
Semivolatile Organic Compo	unds (ug/Kg)	L		·				
Phthalate, di-n-butyl	100000		2300000	410 U	1200 U	130000 J	73 J	380 J
Phthalate, di-n-octyl	100000		10000000	410 U	1200 U	13000 UJ	250 J	410 U
Phthalate, diethyl	50000			410 U	1200 UJ	13000 UJ	440 U	770
Phthalate, dimethyl	50000			410 U	1200 U	13000 UJ	440 U	410 U
Pyrene	100000	10000000	4200000	140 J	970 J	13000 UJ	220 J	2800
Trichlorophenol-2,4,5	50000		270000	1000 U	3000 U	32000 UJ	1100 U	1000 U
Trichlorophenol-2,4,6	10000		200	410 U	1200 UJ	13000 UJ	440 U	410 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval	1			8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID				B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name								
Semivolatile Organic Compounds (L	ıg/Kg)							
Acenaphthene	100000		570000	19 J	1200	410 U	430 U	13000 UJ
Acenaphthylene			4200000	490 UJ	44 J	410 U	430 U	13000 UJ
Acetophenone				54 J	600 U	270 J	430 U	13000 UJ
Anthracene	100000		12000000	29 J	1600	410 U	430 U	13000 UJ
Atrazine				490 UJ	600 U	410 U	430 U	13000 UJ
Benzaldehyde				490 UJ	160 J	22 J	430 U	13000 UJ
Benzo(a)anthracene	500000	. 4000	2000	100 J.	1600	23 J	430 U	1400 J
Benzo(a)pyrene	100000	660	8000	110 J	1400 (B)	20 J	430 U	1400 J (B)
Benzo(b)fluoranthene	50000	4000	5000	160 J	1600	52 J	21 J	13000 UJ
Benzo(g,h,l)perylene	T		4200000	88 J .	600	65 J	430 U	13000 UJ
Benzo(k)fluoranthene	500000	4000	49000	61 J	1100	410 U	430 U	1300 J
Biphenyl				25 J	100 J	410 U	430 U	13000 UJ
Bromophenyl-4 Phenyl Ether				490 UJ	600 U	410 U	430 U	13000 UJ
Butylbenzyl phthalate	100000		930000	490 UJ	600 U	60 J	430 U	13000 UJ
Caprolactam				490 UJ	600 U	410 U	430 U	13000 UJ
Carbazole			600	14 J	600 (C)	410 U	430 U	13000 UJ
Chloroaniline-4			700	490 UJ	600 U	410 U	430 U	13000 UJ
Chloronaphthalene-2				490 UJ	600 U	410 U	430 U	13000 UJ
Chlorophenol-2	10000		4000	490 UJ	600 U	410 U	430 U	13000 UJ
Chlorophenyl-4 phenyl ether				490 UJ	600 U	410 U	430 U	13000 UJ
Chrysene	500000	40000	160000	120 J	1700	45 J	27 J	1700 J
Cresol-4,6-dinitro-ortho				1200 UJ	1500 UJ	1000 U	1100 U	31000 UJ
Cresol-o			15000	38 J	600 U	52 J	430 U	13000 UJ
Cresol-p				110 J	280 J	56 J	430 U	13000 UJ
Cresol-parachloro-meta	100000		4000	490 UJ	600 U	410 U	430 U	13000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	22 J	250 J	410 U	430 U	13000 UJ
Dibenzofuran				11 J	840	410 U	430 U	13000 UJ
Dichlorobenzidine-3,3	100000		7	490 UJ	600 UJ	410 U	430 U	13000 UJ
Dichlorophenol-2,4	10000	<u> </u>	1000	490 UJ	600 U	410 U	430 U	13000 UJ

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

B- Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date	1	1	F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval	7			8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID	7			B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name								
							,	
Semivolatile Organic Compounds (ug/Kg)					·		
Dimethylphenol-2,4	10000		9000	490 UJ	600 U	30 J	430 U	13000 UJ
Dinitrophenol-2,4	10000		300	1200 UJ	1500 UJ	1000 UJ	1100 U	31000 UJ
Dinitrotoluene-2,4			0.8	490 UJ	600 U	410 U	430 U	13000 UJ
Dinitrotoluene-2,6			0.7	490 UJ	600 U	410 U	430 U	13000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	490 UJ	600 U	410 UJ	430 U	13000 UJ
Ether, bis-chloroisopropyl	10000			490 UJ	600 U	410 UJ	430 U	13000 UJ
Fluoranthene	100000	10000000	4300000	200 J	4400	43 J	430 U	2600 J
Fluorene	100000		560000	23 J.	1300	410 U	430 U	13000 UJ
Hexachlorobenzene	100000		2000_	490 UJ	600 U	410 U	430 U	13000 UJ
Hexachlorobutadiene	100000		2000	490 UJ	600 U	410 UJ	430 U	13000 UJ
Hexachlorocyclopentadiene	100000		400000	490 UJ	600 UJ	410 U	430 U	13000 UJ
Hexachloroethane	100000		500	490 UJ	600 U	410 UJ	430 U	13000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	78 J	760	23 J	430 U	13000 UJ
Isophorone	50000		500	490 UJ	600 U	410 U	430 U	13000 UJ
Methane, bis(2-chloroethoxy)				490 UJ	600 U	410 U	430 U	13000 UJ
Methylnaphthalene-2				27 J	710	16 J	25 J	13000 UJ
Naphthalene	100000	4200000	84000_	490 UJ	29000	490	53 J	13000 UJ
Nitroaniline-2				1200 UJ	1500 U	1000_UJ	1100 U	31000 UJ
Nitroaniline-3				1200 UJ	1500 U	1000 U	1100 U	31000 UJ
Nitroaniline-4				1200 UJ	1500 U	1000 U	1100 U	31000 UJ
Nitrobenzene	10000		100	490 UJ	600 U	410 U	430 U	13000 UJ
Nitrophenol-2				19 J	600 U	410 U	430 U	13000 UJ
Nitrophenol-4				1200 UJ	1500 U	1000 UJ	1100 U	31000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	490 UJ	600 UJ	410 U	430 U	13000 UJ
Nitrosodiphenylamine-n	100000		1000	490 UJ	1700 (ć)	18 J	430 U	13000 UJ
PCP (Pentachlorophenol)	100000		30	1200 UJ	1500 U	1000 U	1100 U	31000 UJ
Phenanthrene			4200000	180 J	7300	. 41 J	13 J	2200 J
Phenoi	50000		100000	59 J	600 U	49 J	430 U	13000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		54000 J	600 U	7900 J	430 U	13000 UJ

B- Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval			·	8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID			ſ	B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name								
Semivolatile Organic Compoun	ds (ug/Kg)	J						
Phthalate, di-n-butyl	100000		2300000	120 J	28 J	110 J	430 U	13000 UJ
Phthalate, di-n-octyl	100000		10000000	490 UJ	600 U	410 U	430 U	13000 UJ
Phthalate, diethyl	50000			490 UJ	600 U	34 J	430 U	13000 UJ
Phthalate, dimethyl	50000			490 UJ	600 U	410 U	430 U	13000 UJ
Pyrene	100000	10000000	4200000	240 J	4000	34 J	430 U	2600 J
Trichlorophenol-2,4,5	50000		270000	1200 UJ	1500 U	1000 U	1100 U	31000 UJ
Trichlorophenol-2,4,6	10000		200	490 UJ	600 U	410 U	430 U	13000 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	_(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval				6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID		1	1	B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name					<u> </u>			
Semivolatile Organic Compounds	(ug/Kg)							
Acenaphthene	100000]	570000	1500 J	390 U	400 U	150 J	32000 UJ
Acenaphthylene			4200000	3500 J	20 J	400 U	34 J	32000 UJ
Acetophenone				8100 U	390 U	400 U	410 U	32000 UJ
Anthracene	100000		12000000	6600 J	30 J	400 U	240 J	32000 UJ
Atrazine				8100 U	390 U	400 U	410 U	32000 UJ
Benzaldehyde				8100 U	10 J	13 J	410 U	32000 UJ
Benzo(a)anthracene	500000	4000	2000	27000 (BC)	150 J	27 J	970	32000 UJ
Benzo(a)pyrene	100000	660	8000	24000 (BC)	110 J	400 U	720 (B)	32000 UJ
Benzo(b)fluoranthene	50000	4000	5000	36000 a. (BC)	170 J	400 U	830	32000 UJ
Benzo(g,h,i)perylene			4200000	9900 -	67 J	400 U	310 J	32000 UJ
Benzo(k)fluoranthene	500000	4000	49000	8100 U	130 J	19 J	570	32000 UJ
Biphenyl				380 J	390 U	400 U	52 J	32000 UJ
Bromophenyl-4 Phenyl Ether				8100 U	390 U	400 U	410 U	32000 UJ
Butylbenzyl phthalate	100000		930000	8100 U	390 U	400 U	49 J	32000 UJ
Caprolactam				8100 U	390 U	400 U	410 U	32000 UJ
Carbazole			600	2000 J (c)	17_J	400 U	100 J	32000 UJ
Chloroaniline-4			700	8100 U	390 U	400 U	410 U	32000 UJ
Chloronaphthalene-2			_	8100 U	390 U	400 U	410·U	32000 UJ
Chlorophenol-2	10000		4000	8100 U	390 U	400 U	410 U	32000 UJ
Chlorophenyl-4 phenyl ether				8100 U	390 U	400 U	410 U	32000 UJ
Chrysene	500000	40000	160000	28000	160 J	400 U	910	32000 UJ
Cresol-4,6-dinitro-ortho				20000 U	980 U	1000 U	1000 U	79000 UJ
Cresol-o			15000	8100 U	390 U	400 U	410 U	32000 UJ
Cresol-p				7600 J	390 U	400 U	410 U	3000 J
Cresol-parachioro-meta	100000		4000	8100 U	390 U	400 U	410 U	32000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	4100 J (BC)	37 J	400 U	140 J	32000 UJ
Dibenzofuran			_	2100 J	390 U	400 U	71 J	32000 UJ
Dichlorobenzidine-3,3	100000		7	8100 U	390 U	400 U	410 U	32000 UJ
Dichlorophenol-2,4	10000		1000	8100 U	390 U	400 U	410 U	32000 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date	7 .		F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval	7			6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID	7			B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	320 J	390 U	400 U	410 U	32000 UJ
Dinitrophenol-2,4	10000		300	20000 U	980 U	1000 U	1000 U	79000 UJ
Dinitrotoluene-2,4			0.8	8100 U	390 U	400 U	410 U	32000 UJ
Dinitrotoluene-2,6			0.7	8100 U	390 U	400 U	410 U	32000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	8100 U	390 U	400 U	410 U	32000 UJ
Ether, bis-chloroisopropyl	10000			8100 U	390 U	400 U	99 J	32000 UJ
Fluoranthene	100000	10000000	4300000	49000	230 J	400 U	1400	32000 UJ
Fluorene .	100000		560000	6000 J	390 U	400 U	140 J	32000 UJ
Hexachlorobenzene	100000		2000	8100 U	390 U	400 U	410 U	32000 UJ
Hexachlorobutadiene	100000		2000	8100 U	390 U	400 U	410 U	32000 UJ
Hexachlorocyclopentadiene	100000		400000	8100 UJ	390 UJ	400 UJ	410 U	32000 UJ
Hexachloroethane	100000		500	8100 U	390 U	400 U	410 U	32000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	14000 (EC)	96 J	400 U	410 J	32000 UJ
Isophorone	50000		500	8100 U	390 U	400 U	410 U	32000 UJ
Methane, bis(2-chloroethoxy)				8100 U	390 U	400 U	410 U	32000 UJ
Methylnaphthalene-2				420 J	390 U	400 U	750	1100 J
Naphthalene	100000	4200000	84000	3000 J	16 J	400 U	750	120000 J (AC)
Nitroaniline-2				20000 U	980 U	1000 U	1000 U	79000 UJ
Nitroaniline-3				20000 U	980 U	.1000 U	1000 U	79000 UJ
Nitroaniline-4				20000 UJ	980 UJ	1000 UJ	1000 U	79000 UJ
Nitrobenzene	10000		100	8100 U	390 U	400 U	410 U	32000 UJ
Nitrophenol-2				8100 U	390 U	400 U	410 U	32000 UJ
Nitrophenol-4				20000 U	980 U	1000 U	1000 U	79000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	8100 UJ	390 UJ	400 UJ	410 U	32000 UJ
Nitrosodiphenylamine-n	100000		1000	8100 U	390 U	400 U	410 U	32000 UJ
PCP (Pentachlorophenol)	100000		30	20000 UJ	980 UJ	1000 UJ	1000 U	79000 UJ
Phenanthrene			4200000	36000	170 J	53 J	1600	32000 UJ
Phenol	50000		100000	4200 J	390 U	400 U	410 U	2200 J
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		8100 U	390 U	400 U	410 U	32000 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date			F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval			l T	6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID			[B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name								
Semivolatile Organic Compoun	ds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	8100 U	40 J	38 J	410 U	32000 UJ
Phthalate, di-n-octyl	100000		10000000	8100 U	390 U	400 U	21 J	32000 UJ
Phthalate, diethyl	50000			8100 UJ	390 UJ	400 UJ	410 U	32000 UJ
Phthalate, dimethyl	50000			8100 U	390 U	400 U	410 U	32000 UJ
Pyrene	100000	10000000	4200000	60000	260 J	38 J	1300	32000 UJ
Trichlorophenol-2,4,5	50000		270000	20000 U	980 U	1000 U	1000 U	79000 UJ
Trichlorophenol-2,4,6	10000		200	8100 UJ	390 UJ	400 UJ	410 U	32000 UJ

302753

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)_	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date			F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval] .			5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID				B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name								
Semivolatile Organic Compounds (u	ıg/Kg)							
Acenaphthene	100000		570000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	220 J
Acenaphthylene			4200000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Acetophenone				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Anthracene	100000		12000000	13000 UJ	4300 UJ	800 J	4400 UJ	640 J
Atrazine				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Benzaldehyde				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Benzo(a)anthracene	500000	4000	2000	13000 UJ	620 J	2200 J. (c)	1800 J	1500 J
Benzo(a)pyrene	100000	660	8000	1400 J (B)	490 J	16. 2100 JH (B)	2200 J., (B)	
Benzo(b)fluoranthene	50000	4000	5000	1600 J	4300 UJ	1800 J	1900 J	1100 J
Benzo(g,h,l)perylene			4200000	13000 UJ	4300 UJ	890 J	1500 J	570 J
Benzo(k)fluoranthene	500000	4000	49000	1600 J	4300 UJ	2300 J	2000 J	1000 J
Biphenyl				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Bromophenyl-4 Phenyl Ether				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Butylbenzyl phthalate	100000		930000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Caprolactam				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Carbazole			600	13000 UJ	4300 UJ	3800 UJ	4400 UJ	210 J
Chloroaniline-4			700	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Chloronaphthalene-2				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Chlorophenol-2	10000		4000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Chlorophenyl-4 phenyl ether				13000 UJ	4300 ÚJ	3800 UJ	4400 UJ	2000 UJ
Chrysene	500000	40000	160000	1800 J	740 J	2600 J	2200 J	1700 J
Cresol-4,6-dinitro-ortho				33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Cresol-o			15000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Cresol-p				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Cresol-parachloro-meta	100000		4000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Dibenzo(a,h)anthracene	100000	660	2000	13000 UJ	4300 UJ	420 J	4400 UJ	200 J
Dibenzofuran				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Dichlorobenzidine-3,3	100000		7	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Dichlorophenol-2,4	10000		1000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date		į	F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval	7			5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID	1	i		B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name								
Semivolatile Organic Compounds (u	ug/Kg)							
Dimethylphenol-2,4	10000		9000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Dinitrophenol-2,4	10000		300	33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Dinitrotoluene-2,4		1 1 7	0.8	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Dinitrotoluene-2,6			0.7	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Ether, bis(2-chloroethyl)	10000		0.4	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Ether, bis-chloroisopropyl	10000			13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Fluoranthene	100000	10000000	4300000	3500 J	1400 J	4000 J	2400 J	3000 J
Fluorene	100000	-	560000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	240 J
Hexachlorobenzene	100000		2000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Hexachlorobutadiene	100000		2000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Hexachlorocyclopentadiene	100000		400000	13000 UJ	4300 UJ	3800° UJ	4400 UJ	2000 UJ
Hexachioroethane	100000		500	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	13000 UJ	4300 UJ	1100 J	1400 J	580 J
Isophorone	50000		500	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Methane, bis(2-chloroethoxy)				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Methylnaphthalene-2				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Naphthalene	100000	4200000	84000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Nitroaniline-2				33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Nitroaniline-3				33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Nitroaniline-4				33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 ÚJ
Nitrobenzene	10000		100	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Nitrophenol-2				13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Nitrophenol-4				33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Nitrosodiphenylamine-n	100000		1000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
PCP (Pentachlorophenol)	100000		30	33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Phenanthrene			4200000	1800 J	1100 J	3300 J	1200 J	3000 J
Phenol	50000		100000	13000 ŲJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

302755

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	. (B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date			F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID			1	B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)	<u> </u>						
Phthalate, di-n-butyl	100000		2300000	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Phthalate, di-n-octyl	100000		10000000	13000 UJ.	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Phthalate, diethyl	50000			13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Phthalate, dimethyl	50000			13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ
Pyrene	100000	10000000	4200000	2800 J	1100 J	3700 J	2300 J	3200 J
Trichlorophenol-2,4,5	50000		270000	33000 UJ	11000 UJ	9600 UJ	11000 UJ	4900 UJ
Trichlorophenol-2,4,6	10000	T	200	13000 UJ	4300 UJ	3800 UJ	4400 UJ	2000 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date			F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval	1]		6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID]			B0DZ4	B0DZ0	B0DX0	B0DX5	B0DY6
Chemical Name								
Semivolatile Organic Compounds (u	g/Kg)							
Acenaphthene	100000	-	570000	390 UJ	12000 UJ	38000 J	370 UJ	370 UJ
Acenaphthylene			4200000	390 UJ	12000 UJ	38000 J	370 UJ	370 UJ
Acetophenone			·	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Anthracene	100000		12000000	390 UJ	12000 UJ	83000 J	51 J	370 UJ
Atrazine				390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Benzaldehyde		<u> </u>		390 UJ	12000 UJ	89000 UJ	370 UJ_	370 UJ
Benzo(a)anthracene	500000	4000	2000	220 J	12000 UJ	150000 J1 (BC)	140 J	260 J
Benzo(a)pyrene	100000	660	8000	220 J	12000 UJ	150000 J. (ABC)	110 J	260 J
Benzo(b)fluoranthene	50000	4000	5000	230 J	12000 UJ	150000°J (ABC)	130 J	260 J
Benzo(g,h,l)perylene			4200000	110 J	12000 UJ	58000 J	370 UJ	150 J
Benzo(k)fluoranthene	500000	4000	49000	240 J	12000 UJ	140000 J (BC)	130 J	220 J
Biphenyl				390 UJ	12000 UJ	11000 J	370 UJ	370 UJ
Bromophenyl-4 Phenyl Ether				390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Butylbenzyl phthalate	100000		930000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Caprolactam				390 UJ	12000 UJ	89000 UJ	74 J	370 UJ
Carbazole			600	390 UJ	12000 UJ	68000 J (O)	370 UJ	370 UJ
Chloroaniline-4			700	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Chloronaphthalene-2				390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ .
Chlorophenol-2	10000		4000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Chlorophenyl-4 phenyl ether	l			390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Chrysene	500000	40000	160000	330 J	12000 UJ	180000 J# (BC)	. 170 J	290 J
Cresol-4,6-dinitro-ortho				990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Cresol-o			15000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Cresol-p				390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Cresol-parachloro-meta	100000		4000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Dibenzo(a,h)anthracene	100000	660	2000	390 UJ	12000 UJ	22000 J (BC)	370 UJ	54 J_
Dibenzofuran				390 UJ	12000 UJ	71000 J	370 UJ	370 UJ
Dichlorobenzidine-3,3	100000		7	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Dichlorophenol-2,4	10000		1000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria 05/20/2004 NRDCSCC - Nonresidential Direct Contact Soil Cleanu Criteria

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date		,	F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval	7			6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID				B0DZ4	B0DZ0	B0DX0	B0DX5	B0DY6
Chemical Name								
								,
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Dinitrophenol-2,4	10000		300	990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Dinitrotoluene-2,4			0.8	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Dinitrotoluene-2,6			0.7	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Ether, bis(2-chloroethyl)	10000		0.4	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Ether, bis-chloroisopropyl	10000			390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Fluoranthene	100000	10000000	4300000	370 J	12000 UJ	420000 J (A)	370 J	390 J
Fluorene	100000		560000	390 UJ	12000 UJ	84000 J	370 UJ	370 UJ
Hexachlorobenzene	100000		2000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Hexachlorobutadiene	100000		2000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Hexachlorocyclopentadiene	100000		400000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Hexachloroethane	. 100000		500	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	100 J	12000 UJ	68000) J 🖟 🧀 (BC)	370 UJ	160 J
Isophorone	50000		500	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Methane, bis(2-chloroethoxy)				390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Methylnaphthalene-2				390 UJ	12000 UJ	35000 J	370 UJ	370 UJ
Naphthalene	100000	4200000	84000	140 J	12000 UJ	76000 J	310 J	370 UJ
Nitroaniline-2				990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Nitroaniline-3				990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Nitroaniline-4				990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Nitrobenzene	10000	<u> </u>	100	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Nitrophenol-2		L		390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Nitrophenol-4				990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Nitroso-di-n-propyl-amine-N	10000	<u> </u>	0.05	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Nitrosodiphenylamine-n	100000		1000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
PCP (Pentachlorophenol)	100000		30	990 UJ	30000 UJ	220000 UJ	930 UJ	940 UJ
Phenanthrene			4200000	220 J	12000 UJ	480000 J	250 J	120 J
Phenol	50000		100000	390 UJ	12000 UJ	89000 UJ	140 J	370 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		81 J	12000 UJ	89000 UJ	370 UJ	67 J

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-\$B-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date	1		F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval		Ī		6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID				B0DZ4	B0DZ0	B0DX0	B0DX5	B0DY6
Chemical Name								
Semivolatile Organic Compounds (u	ıg/Kg)							
Phthalate, di-n-butyl	100000		2300000	40 J	12000 UJ	89000 UJ	370_UJ_	370 UJ
Phthalate, di-n-octyl	100000		10000000	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Phthalate, diethyl	50000			390 UJ	12000 UJ	89000 UJ	370_UJ	370 UJ
Phthalate, dimethyl	50000			390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ
Pyrene	100000	10000000	4200000	280 J	12000 UJ	350000 J (A)	320 J	400 J
Trichlorophenol-2,4,5	50000		270000	990 UJ	30000 UJ	_220000 UJ	930_UJ	940 UJ
Trichlorophenol-2,4,6	10000		200	390 UJ	12000 UJ	89000 UJ	370 UJ	370 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria

NRDCSCC - Nonresidential Direct Contact Soil Cleanu

EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteri

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date	7		F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval	1			5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID	7			B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name								
Semivolatile Organic Compounds (1	ug/Kg)							
Acenaphthene	100000		570000	370 UJ	1800	690 J	370 UJ	400 U
Acenaphthylene			4200000	43 J	150 J	290 J	. 370 UJ	400 U
Acetophenone				370 UJ	750 U	1900 U	370 UJ	400 U
Anthracene	100000		12000000	82 J	3000	1400 J	370 UJ	400 U
Atrazine				370 UJ	750 U	1900 U	370 UJ	400 U
Benzaldehyde				370 UJ	750 UJ	1900 UJ	370 UJ	620
Benzo(a)anthracene	500000	4000	2000	290 J	5400 (BC)	5000 (BC)	52 J	46 J
Benzo(a)pyrene	100000	660	8000	240 J	4800 (B)	4900 (B)	370 UJ	44 J
Benzo(b)fluoranthene	50000	4000	5000	210 J	6600 (BC)	6300 (BC)	370 UJ	400 U
Benzo(g,h,l)perylene			4200000	120 J	2000	2400	370 UJ	65 J
Benzo(k)fluoranthene	500000	4000	49000	270 J	2200	2000	42 J	400 U
Biphenyl				370 UJ	120 J	95 J	370 UJ	400 U
Bromophenyl-4 Phenyl Ether				370 UJ	750 U	1900 U	370 UJ	400 U
Butylbenzyl phthalate	100000		930000	370 UJ	750 UJ	1900 UJ	370 UJ	400 UJ
Caprolactam				370 UJ	750 U	1900 U	370 UJ	400 U
Carbazole			600	42 J	1900 🕮 (c)		370 UJ	400 UJ
Chloroaniline-4			700	370 UJ	750 U	1900 U	370 UJ	400 U
Chloronaphthalene-2		<u> </u>		370 UJ	750 U	1900 U	370 UJ	400 U
Chlorophenol-2	10000		4000	370 UJ	750 U	1900 U	370 UJ	400 U
Chlorophenyl-4 phenyl ether	L		<u> </u>	370 UJ	750 U	1900 U	370 UJ	. 400 U
Chrysene	500000	40000	160000	330 J	5600	6100	57 J	130 J
Cresol-4,6-dinitro-ortho				940 UJ	1900 U	4700 U	930 UJ	1000 R
Cresol-o			15000	370 UJ	750 U	1900 U	370 UJ	400 U
Cresol-p				370 UJ	750 U	1900 U	370 UJ	400 U
Cresol-parachloro-meta	100000		4000	370 UJ	750 U	1900 U	370, UJ	400 U
Dibenzo(a,h)anthracene	100000	660	2000	42 J		770 Ĵ (8).	370 UJ	400 U
Dibenzofuran		ļ		370 UJ	1300	510 J	370 UJ	400 U
Dichlorobenzidine-3,3	100000	ļ	7	370 UJ	750 U	1900 U	370 UJ	400 R
Dichlorophenol-2,4	10000	<u> </u>	1000	370 UJ	750 U	1900 U	370 UJ	400 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date			F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID	1			B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	370 UJ	750 U	1900 U	370 UJ	400 U
Dinitrophenol-2,4	10000		300	940 UJ	1900 UJ	4700 UJ	930 UJ	1000 R
Dinitrotoluene-2,4			0.8	370 UJ	750 U	1900 U	370 UJ	400 U
Dinitrotoluene-2,6			0.7	370 UJ	750 U	1900 U	370 UJ	400 U
Ether, bis(2-chloroethyl)	10000		0.4	370 UJ	750 UJ	1900 UJ	370 UJ	400 U
Ether, bis-chloroisopropyl	10000			370 UJ	750 UJ	1900 UJ	370 UJ	400 U
Fluoranthene	100000	10000000	4300000	580 J	14000	9900	92 J	49 J
Fluorene	100000		560000	370 UJ	1700	800 J	370 UJ	400 U
Hexachlorobenzene	100000		2000	370 UJ	750 U	1900 U	370 UJ	400 U
Hexachlorobutadiene	100000		2000	370 UJ	750 UJ	1900 UJ	370 UJ	400 U
Hexachlorocyclopentadiene	100000		400000	370 UJ	750 U	1900 U	370 UJ	400 U
Hexachloroethane	100000		500	370 UJ	750 UJ	1900 UJ	370 UJ	400 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	120 J	2600	2900	370 UJ	400 UJ
Isophorone	50000		500	370 UJ	750 U	1900 U	370 UJ	400 U
Methane, bis(2-chloroethoxy)				370 UJ	750 U	1900 U	370 UJ	400 U
Methylnaphthalene-2				370 UJ	450 J	490 J	370 UJ	400 U
Naphthalene	100000	4200000	84000	370 UJ	78.0	1300. J	370 UJ	400 U
Nitroaniline-2				940 UJ	1900 UJ	4700 UJ	930 UJ	1000 U
Nitroaniline-3				940 UJ	1900 U	4700 U	.930 UJ	1000 UJ
Nitroaniline-4				940 UJ	1900 U	4700 U	930 UJ	1000 UJ
Nitrobenzene	10000		100	370 UJ	750 U	1900 U	370 UJ	400 U
Nitrophenol-2				370 UJ	750 U	1900 U	370 UJ	400 U
Nitrophenol-4				940 UJ	1900 UJ	4700 UJ	930 UJ	1000 U
Nitroso-di-n-propyl-amine-N	10000		0.05	370 UJ	750 U	1900 U	370 UJ	400 U
Nitrosodiphenylamine-n	100000		1000	370 UJ	750 U	1900 U	370 UJ	400 U
PCP (Pentachlorophenol)	100000		30	940 UJ	1900 U	4700 U	930 UJ	1000 U
Phenanthrene			4200000	360 J	17000	9300	89 J	82 J
Phenol	50000		100000	370 UJ	750 U	1900 U	370 UJ	400 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		370 UJ	750 U	1900 U	43 J	360 J

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

B- Analyte detected in associated blank J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date			F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID			Ì	B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name						·		
Semivolatile Organic Compo	ounds (ug/Kg)	<u> </u>						
Phthalate, di-n-butyl	100000		.2300000	370 UJ_	41 J	40 J	370 UJ	56 J
Phthalate, di-n-octyl	100000		10000000	370 UJ	750 U	1900 U	370 UJ	400 UJ
Phthalate, diethyl	50000			370 UJ	750 U	1900 U	370 UJ	400 U
Phthalate, dimethyl	50000	Ī	,	370 UJ	750 U	1900 U	370 UJ	400 U
Pyrene	100000	10000000	4200000	460 J	12000	11000	82 J	77 J
Trichlorophenol-2,4,5	50000		270000	940 UJ	1900 U	4700 U	930 UJ	1000 U
Trichlorophenol-2,4,6	10000		200	370 UJ	750 U	1900 U	370 UJ	400 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date			F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval	7		Ī	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID	1		[B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Acenaphthene	100000		570000	380 U	460 U	12000 U	390 UJ	350 U
Acenaphthylene			4200000	380 U	460 U	12000 U	390 UJ	350 U
Acetophenone				380 U	460 U	12000 U	390 UJ	52 J
Anthracene	100000		12000000	380 U	60 J	640 J	390 UJ	10 J
Atrazine				380 U	460 U	12000 U	390 UJ	350 U
Benzaldehyde				380 U	460 U	12000 U	390 UJ	350 UJ
Benzo(a)anthracene	500000	4000	2000	100 J	270 J	1700 J	390 UJ	55 J
Benzo(a)pyrene	100000	660	8000	82 J	250 J	12000 U	390 UJ	75 J
Benzo(b)fluoranthene	50000	4000	5000	100 J	280 J	12000 U	390 UJ	120 J
Benzo(g,h,l)perylene			4200000	380 UJ	89 J	12000 U	390 UJ	350 U
Benzo(k)fluoranthene	500000	4000	49000	95 J	230 J	730 J	390 UJ	33 J
Biphenyl				380 U	460 U	13000	390 UJ	86 J
Bromophenyl-4 Phenyl Ether				380 U	460 U	12000 U	390 UJ	350 U
Butylbenzyl phthalate	100000		930000	380 UJ	460 UJ	21000	390 UJ	380 J
Caprolactam				380 U	460 U	12000 U	390 UJ	350 U
Carbazole			600	380 UJ	460 UJ	12000 U	390 UJ	350 U
Chloroaniline-4			700	380 U	460 U	12000 U	390 UJ	350 U
Chloronaphthalene-2				380 U	460 U	12000 U	390 UJ	350 U
Chlorophenol-2	10000		4000	380 U	460 U	12000 U	390 UJ	350 U
Chlorophenyl-4 phenyl ether				380 U	460 U	12000 U	390 UJ	350 U
Chrysene	500000	40000	160000	130 J	300 J	12000 U	390 UJ	130 J
Cresol-4,6-dinitro-ortho				950 R	1200 R	30000 U	980 UJ	870 U
Cresol-o			15000	380 U	460 U	4100 J	390 UJ	100 J
Cresol-p				380 U	460 U	3200 J	390 ÚJ	59 J
Cresol-parachloro-meta	100000		4000	380 U	460 U	12000 U.	390 UJ	350 U
Dibenzo(a,h)anthracene	100000	660	2000	380 U	460 U	12000 U	390 UJ	13 J
Dibenzofuran				380 U	460 U	410 J	390 UJ	8 J
Dichlorobenzidine-3,3	100000		7	380 R	460 R	12000 U	390 UJ	350 U
Dichlorophenol-2,4	10000		1000	380 U	460 U	12000 U	390 UJ	350 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date	\neg	j	F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval				4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID				B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Dimethylphenol-2,4	10000		9000	380 U	460 U	12000 U	390 UJ	350 U
Dinitrophenol-2,4	10000		300	950 R	. 1200 R	30000 U	980 UJ	870 UJ
Dinitrotoluene-2,4			0.8	380 U	460 U	12000 U	390 UJ	350 U
Dinitrotoluene-2,6			0.7	380 U	460 U	12000 U	390 UJ	350 U
Ether, bis(2-chloroethyl)	10000		0.4	380 U	460 U	12000 U	390 UJ	350 UJ
Ether, bis-chloroisopropyl	10000			380 U	460 U	12000 U	390 UJ	32. J
Fluoranthene	100000	10000000	4300000	160 J	410 J	3300 J	390 UJ	120 J
Fluorene	100000		560000	380 U	460 U	12000 U	390 UJ	350 U
Hexachlorobenzene	100000		2000	380 U	460 U	12000 U	390 UJ	350 U
Hexachlorobutadiene	100000		2000	380 U	460 U	12000 U	390 UJ	350 UJ
Hexachlorocyclopentadiene	100000		400000	380 U	460 U	12000 UJ	390 UJ	350 U
Hexachloroethane	100000		500	380 U	460 U	12000 U	390 UJ	350 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	· 53 J	140 J	12000 U	390 UJ	28 J
Isophorone	50000		500	380 U	460 U	12000 U	390 UJ	16 J
Methane, bis(2-chloroethoxy)				380 U	460 U	12000 U	390 UJ	350 U
Methylnaphthalene-2				380 U	460 U	4600 J	390 UJ	38 J
Naphthalene	100000	4200000	84000	380 U	460 U	56000	390 UJ	350 U
Nitroaniline-2				950 U	1200 U	30000 U	980 UJ	870 UJ
Nitroaniline-3	· ·			950 UJ	1200 UJ	30000 U	980 UJ	870 U
Nitroaniline-4				950 UJ	1200 UJ	30000 UJ	980 UJ	- 870 U
Nitrobenzene	10000		100	380 U	460 U	12000 U	390 UJ	350 U
Nitrophenol-2				380 U	460 U	12000 U	390 UJ	350 U
Nitrophenol-4		<u> </u>		950 U	1200 U	30000 U	980 UJ	870 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	380 U	460 U	12000 UJ	390 UJ	350 U
Nitrosodiphenylamine-n	100000		1000	380 U	460 U	12000 U	390 UJ	350 U
PCP (Pentachlorophenol)	100000		30	950 U	1200 U	30000 UJ	980 UJ	870 U
Phenanthrene			4200000	110 J	210 J	4600 J	390 UJ	100 J
Phenol	50000		100000	380 U	460 U	16000	390 UJ	60 J
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		680. J	210 J	90000	59 J	490 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date			F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval				4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID				B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	380 U	96 J	16000	390 UJ	39 J
Phthalate, di-n-octyl	100000		10000000	380 UJ	460 UJ	12000 U	390 UJ	350 U
Phthalate, diethyl	50000			380 U	460 U	12000 J	390 UJ	53 J
Phthalate, dimethyl	50000			380 U	460 U	12000 U	390 UJ	11 J
Pyrene	100000	10000000	4200000	180 J	440 J	2900 J	390 UJ	93 J
Trichlorophenol-2,4,5	50000		270000	950 U	1200 U	30000 U	980 UJ	870 U
Trichlorophenol-2,4,6	10000		200	380 U	460 U	12000 UJ	390 UJ	350 U

R - Rejected Result

302765

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-207	MA-SO-208	MA-SO-209
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO207-S	MA-SO208-S	MA-SO209-S
Sample Date			F20	12/17/2001	12/17/2001	10/22/2001	10/22/2001	10/22/2001
Sample Interval				5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	4.5 - 5 ft	5 - 5.5 ft
CLP Sample ID				B0FW6	B0FT9	B0DG9	B0DH5	B0DH7
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Acenaphthene	100000		570000	3800 UJ	380 U	380 U	390 U	350 U
Acenaphthylene	-		4200000	3800 UJ	380 U	380 U	39Ò U	350 U
Acetophenone				3800 UJ	380 U	380 U	390 U	350 U
Anthracene	100000		12000000	3800 UJ	- 380 U	380 U	100 J	350 U
Atrazine				3800 UJ	380 U	380 U	390 U	350 U
Benzaldehyde				3800 UJ	380 UJ	380 U	390 U	350 U
Benzo(a)anthracene	500000	4000	2000	540 J	91 J	380 U	330 J	58 J
Benzo(a)pyrene	100000	660	8000	430 J	80 J	380 U	300 J	63 J
Benzo(b)fluoranthene	50000	4000	5000	430 J	81 J	380 U	370 J	67 J
Benzo(g,h,l)perylene			4200000	3800 UJ	56 J	100 J	140 J	50 J
Benzo(k)fluoranthene	500000	4000	49000	390 J	88 J	380 U	330 J	67 J
Biphenyl				3800 UJ	380 U	380 U	390 U	350 U
Bromophenyl-4 Phenyl Ether				3800 UJ	380 U	380 U	390 U	350 U
Butylbenzyl phthalate	100000		930000	3800 UJ	380 U	380 UJ	130 J	350 U
Caprolactam				3800 UJ	380 U	380 U	390 U	350 U
Carbazole			600	3800 UJ	380 U	380 UJ	390 UJ	350 UJ
Chloroaniline-4			700	3800 UJ	380 U	380 U	390 U	350 U
Chloronaphthalene-2				3800 UJ	380 U	380 U	390 U	350 U
Chlorophenol-2	10000		4000	3800 UJ	380 U	380 U	390 U	350 U
Chlorophenyl-4 phenyl ether				3800 UJ	380 U	380 U	390 U	350 U
Chrysene	500000	40000	160000	590 J	100 J	40 J	380 J	76 J
Cresol-4,6-dinitro-ortho		<u> </u>		9600 UJ	950 U	970 R	980 R	880 R
Cresol-o			15000	3800 UJ	380 U	380 U	390 U	350 U
Cresol-p				3800 UJ	380 U	380 U	390 U	350 U
Cresol-parachloro-meta	100000		4000	3800 UJ	380 U	380 U	390 U	350 U
Dibenzo(a,h)anthracene	100000	660	2000	3800 UJ	380 U	380 U	56 J	350 U
Dibenzofuran				3800 UJ	380 U	380 U	390 U	350 U
Dichlorobenzidine-3,3	100000		7	3800 UJ	380 U	380 R	390 R	350 J
Dichlorophenol-2,4	10000		1000	3800 UJ	380 U	380 U	390 U	350 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-207	MA-SO-208	MA-SO-209
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO207-S	MA-SO208-S	MA-SO209-S
Sample Date]		F20	12/17/2001	12/17/2001	10/22/2001	10/22/2001	10/22/2001
Sample Interval	7			5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	4.5 - 5 ft	5 - 5.5 ft
CLP Sample ID	1			B0FW6	B0FT9	B0DG9	B0DH5	B0DH7
Chemical Name				 				
Semivolatile Organic Compounds (ug/Kg)							
Dimethylphenol-2,4	10000		9000	3800 UJ	380 U	380 U	390 U	350 U
Dinitrophenol-2,4	10000		300	9600 UJ	950 U	970 R	980 R	880 R
Dinitrotoluene-2,4			0.8	3800 UJ	380 U	380 U	390 U	350 U
Dinitrotoluene-2,6			0.7	3800 UJ	380 U	380 U	390 U	350 U
Ether, bis(2-chloroethyl)	10000		0.4	3800 UJ	380 U	380 U	390 U	350 U
Ether, bis-chloroisopropyl	10000			3800 UJ	380 U	380 U	390 U	350 U
Fluoranthene	100000	10000000	4300000	1200 J	210 J	50 J	630	82 J
Fluorene	100000		560000	3800 UJ	380 U	380 U	390 U	350 U
Hexachlorobenzene	100000		2000	3800 UJ	380 U	380 U	390 U	350 U
Hexachlorobutadiene	100000		2000	3800 UJ	380 U	380 U	390 U	350 U
Hexachlorocyclopentadiene	100000		400000	3800 UJ	380 U	380 U	390 U	350 U
Hexachloroethane	100000		500	3800 UJ	380 U	- 380 U	390 U	350 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	3800 UJ	380 Ú	380 UJ	180 J	49 J
Isophorone	50000		500	3800 UJ	380 U	380 U	390 U	350 U
Methane, bis(2-chloroethoxy)				3800 UJ	380 U	380 U	390 U	350 U
Methylnaphthalene-2				3800 UJ	380 U	380 U	390 U	350 U
Naphthalene	100000	4200000	84000	3800 UJ	380 U	380 U	390 U	350 U
Nitroaniline-2				9600 UJ	950 U	970 U	980 U	880 U
Nitroaniline-3	1			9600 UJ	950 U	970 UJ	980 UJ	880 UJ
Nitroaniline-4				9600 UJ	950 U	970 UJ	980 UJ	880 UJ
Nitrobenzene	10000		100	3800 UJ	380 U	380 U	390 U	350 U
Nitrophenol-2				3800 UJ	380 U	380 U	390 U	350 U
Nitrophenol-4				9600 UJ	. 950 U	970 U	980 U	880 U
Nitroso-di-n-propyl-amine-N	10000		0.05	3800 UJ	380 U	· 380 U	390 U	350 U
Nitrosodiphenylamine-n	100000		1000	3800 UJ	380 U	380 U	390 U	350 U
PCP (Pentachlorophenol)	100000		30	9600 UJ	950 U	970 U	980 U	880 U
Phenanthrene			4200000	1000 J	140 J	380 U	480	42 J
Phenol	50000		100000	3800 UJ	380 U _	380 U	390 U	350 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		3800 UJ	380 U	270 J	400 J	75 J

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-207	MA-SO-208	MA-SO-209
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO207-S	MA-SO208-S	MA-SO209-S
Sample Date			F20	12/17/2001	12/17/2001	10/22/2001	10/22/2001	10/22/2001
Sample Interval	7		1	5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	4.5 - 5 ft	5 - 5.5 ft
CLP Sample ID		, ,		B0FW6	B0FT9	B0DG9	B0DH5	B0DH7
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	3800 UJ	380 U	380 U	68 J	350 U
Phthalate, di-n-octyl	100000		10000000	3800 UJ	380 U	380 UJ	390 UJ	350 UJ
Phthalate, diethyl	50000			3800 UJ	380 U	380 U	390 U	350 U
Phthalate, dimethyl	50000			3800 UJ	380 U	380 U	390 U	350 U
Pyrene	100000	10000000	4200000	1000 J	170 J	54 J	710	90 J
Trichlorophenol-2,4,5	50000		270000	9600 UJ	950 U	970 U	980 U	880 U
Trichlorophenol-2,4,6	10000		200	3800 UJ	380 U	380 U	390 U	350 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S	MA-SO301-S-5.0
Sample Date		1	F20	12/14/2001	12/14/2001	12/14/2001	10/18/2001	12/13/2001
Sample Interval	7			4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft	5 - 5.5 ft
CLP Sample ID	7			B0FT3	B0FT6	B0FW0	B0DC9	B0DY1
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Acenaphthene	100000		570000	1900 UJ	440 UJ	410 UJ	51 J	7800 UJ
Acenaphthylene			4200000	1900 UJ	440 UJ	410 UJ	11 J	7800 UJ
Acetophenone				2000 UJ	440 UJ	410 UJ	390 U	7800 UJ
Anthracene	100000		12000000	1900 UJ	440 UJ	410 UJ	110 J	7800 UJ
Atrazine				1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Benzaldehyde				1900 UJ	440 UJ	410 UJ	13 J	7800 UJ
Benzo(a)anthracene	500000	4000	2000	200 J	: 440 UJ	410 UJ	270 J	840 J
Benzo(a)pyrene	100000	660	8000	1900 UJ	440 UJ	410 UJ	230 J	7800 UJ
Benzo(b)fluoranthene	50000	4000	5000	1900 UJ	440 UJ	410 UJ	320 J	7800 UJ
Benzo(g,h,I)perylene			4200000	1900 UJ	440 UJ	410 UJ	110 J	7800 UJ
Benzo(k)fluoranthene	500000	4000	49000	1900 UJ	440 UJ	410 UJ	140 J	7800 UJ
Biphenyl				1900 UJ	. 440 UJ	410 UJ	390 U	7800 UJ
Bromophenyl-4 Phenyl Ether				1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Butylbenzyl phthalate	100000		930000	. 1.900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Caprolactam	<u> </u>			1900 UJ	440 UJ [.]	410 UJ	390 U	7800 UJ
Carbazole		I	600	1900 UJ	440 UJ	410 UJ	42 J	7800 UJ
Chloroaniline-4			700	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Chloronaphthalene-2				1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Chlorophenol-2	10000		4000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Chlorophenyl-4 phenyl ether				1900 UJ	440 UJ	410 UJ	· 390 U	7800 UJ
Chrysene	500000	40000	160000	470 J	440 UJ	410 UJ	270 J	930 J
Cresol-4,6-dinitro-ortho				4800 UJ	1100 UJ	1000 UJ	980 UJ	20000 UJ
Cresol-o			15000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Cresol-p				1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Cresol-parachloro-meta	100000		4000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Dibenzo(a,h)anthracene	100000	660	2000	1900 UJ	440 UJ	410 UJ	70 J	7800 UJ
Dibenzofuran				1900 UJ	440 UJ	410 UJ	31 J	7800 UJ
Dichlorobenzidine-3,3	100000		7	1900 UJ	440 UJ	410 UJ	390 UJ	7800 UJ
Dichlorophenol-2,4	10000	L	1000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S	MA-SO301-S-5.0
Sample Date	7		F20	12/14/2001	12/14/2001	12/14/2001	10/18/2001	12/13/2001
Sample Interval				4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft	5 - 5.5 ft
CLP Sample ID				B0FT3	B0FT6	B0FW0	B0DC9	B0DY1
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Dimethylphenol-2,4	10000		9000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Dinitrophenol-2,4	10000		300	4800 UJ	1100 UJ	1000 UJ	980 UJ	20000 UJ
Dinitrotoluene-2,4			0.8	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Dinitrotoluene-2,6			0.7	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Ether, bis(2-chloroethyl)	10000		0.4	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Ether, bis-chloroisopropyl	10000			1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Fluoranthene	100000	10000000	4300000	1900 UJ	62 J	410 UJ	570	1800 J
Fluorene	100000		560000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Hexachlorobenzene	100000		2000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Hexachlorobutadiene	100000		2000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Hexachlorocyclopentadiene	100000		400000	1900 UJ	440 UJ	410 UJ	390 UJ	7800 UJ
Hexachloroethane	100000		500	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Indeno(1,2,3-cd)pyrene	500000	4000	14000	1900 UJ	440 UJ	410 UJ	160 J	7800 UJ
Isophorone	50000		500	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Methane, bis(2-chloroethoxy)				1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Methylnaphthalene-2				400 J	440 UJ	410 UJ	16 J	7800 UJ
Naphthalene	100000	4200000	84000	1900 UJ	440 UJ	56 J	34 J	7800 UJ
Nitroaniline-2				4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Nitroaniline-3				4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Nitroaniline-4				4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Nitrobenzene	10000		100	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Nitrophenol-2				1900 UJ	440 UJ	410 ÚJ	390 U	7800 UJ
Nitrophenol-4				4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Nitroso-di-n-propyl-amine-N	10000		0.05	1900 UJ	440 UJ	410 UJ	390 UJ	7800 UJ
Nitrosodiphenylamine-n	100000		1000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
PCP (Pentachlorophenol)	100000		30	4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Phenanthrene			4200000	400 J	70 J	410 UJ	520	2000 J
Phenol	50000		100000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		1900 UJ	56 J	49 J	390 U	7800 UJ

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S	MA-SO301-S-5.0
Sample Date			F20	12/14/2001	12/14/2001	12/14/2001	10/18/2001	12/13/2001
Sample Interval]			4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft	5 - 5.5 ft
CLP Sample ID	1			B0FT3	B0FT6	B0FW0	B0DC9	B0DY1
Chemical Name								
Semivolatile Organic Compounds (ug/Kg)							
Phthalate, di-n-butyl	100000		2300000	1900 UJ	440 UJ	410 UJ	33 J	7800 UJ
Phthalate, di-n-octyl	100000		10000000	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Phthalate, diethyl	50000			1900 UJ	440 UJ	410 UJ	390 U	7800 UJ
Phthalate, dimethyl	50000			1900 UJ	440 UJ	410 UJ	390 U -	7800 UJ
Pyrene	100000	10000000	4200000	240 J	49 J	410 UJ	410	1600 J
Trichlorophenol-2,4,5	50000		270000	4800 UJ	1100 UJ	1000 UJ	980 U	20000 UJ
Trichlorophenol-2,4,6	10000		200	1900 UJ	440 UJ	410 UJ	390 U	7800 UJ

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402	MA-SO-403
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5	MA-SO403-S-10.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval	7			6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft	10 - 10.5 ft
CLP Sample ID	7 .			B0AY2	B0DY4	B0FW9	B0FX0	B0FX1
Chemical Name								
Semivolatile Organic Compounds	(ug/Kg)							
Acenaphthene	100000		570000	390 UJ	1700 J	360 UJ	350 U	350 U
Acenaphthylene			4200000	390 UJ	780 J	360 UJ	350 U	350 U
Acetophenone		-		390 UJ	3900 UJ	360 UJ	350 U	350 U
Anthracene	100000		12000000	390 UJ	5200 J	360 UJ	350 U	350 U
Atrazine				390 UJ	3900 UJ	360 UJ	350 U	350 U
Benzaldehyde				390 UJ	3900 UJ	360 UJ	350 UJ	350 UJ
Benzo(a)anthracene	500000	4000	2000	130 J	9200 J (BC)	360 UJ	350 U	350 U
Benzo(a)pyrene	100000	660	8000	110 J	7000 J (B)	360 UJ	350 U	350 U
Benzo(b)fluoranthene	50000	4000	5000	110 J	(BC)	360 UJ	350 U	350 U
Benzo(g,h,l)perylene			4200000	64 J	1000 J	360 UJ	350 U	350 U
Benzo(k)fluoranthene	500000	4000	49000	130 J	5700 J. (B)	360 UJ	350 U	350 U
Biphenyl				390 UJ	3900 UJ	360 UJ	350 U	350 U
Bromophenyl-4 Phenyl Ether				390 UJ	3900 UJ	360 UJ	350 U	350 U
Butyibenzyl phthalate	100000		930000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Caprolactam				390 UJ	3900 UJ	360 UJ	350 U	350 U
Carbazole			600	390 UJ	4 2000 J (C)	360 UJ	350 U	350 U
Chloroaniline-4			700	390 UJ	3900 UJ	360 UJ	350 U	350 U
Chloronaphthalene-2				390 UĴ	3900 UJ	360 UJ	350 U	350 U
Chlorophenol-2	10000		4000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Chlorophenyl-4 phenyl ether				390 UJ	3900 UJ	360 UJ	350 U	350 U
Chrysene	500000	40000	160000	150 J	8700 J	360 UJ	350 U	350 U
Cresol-4,6-dinitro-ortho		<u> </u>		980 UJ	9900 UJ	890 UJ	870 U	890 U
Cresol-o			15000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Cresol-p				390 UJ	3900 UJ	360 UJ	350 U	350 U
Cresol-parachloro-meta	100000		4000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Dibenzo(a,h)anthracene	100000	660	2000	390 UJ	800 J = (B)	360 UJ	350 U	350 U
Dibenzofuran				390 UJ	1800 J	360 UJ	350 U	350 U
Dichlorobenzidine-3,3	100000		7	390 UJ	3900 UJ	360 UJ	350 U	350 U
Dichlorophenol-2,4	10000	\	1000	390 UJ	3900 UJ	360 UJ	350 U	350 U

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soll Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402	MA-SO-403
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5	MA-SO403-S-10.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval			1	6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft	10 - 10.5 ft
CLP Sample ID				B0AY2	B0DY4	B0FW9	B0FX0	B0FX1
Chemical Name		 						
Semivolatile Organic Compounds	(ug/Kg)	·						
Dimethylphenol-2,4	10000		9000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Dinitrophenol-2,4	10000		300	980 UJ	9900 UJ	890 UJ	870 U	890 U
Dinitrotoluene-2,4			0.8	390 UJ	3900 UJ	360 UJ	350 U	350 U
Dinitrotoluene-2,6			0.7	390 UJ	3900 UJ	360 UJ	350 U	350 U
Ether, bis(2-chloroethyl)	10000		0.4	390 UJ	3900 UJ	360 UJ	350 U	350 U
Ether, bis-chloroisopropyl	10000			390 UJ	3900 UJ	360 UJ	350 U	350 U
Fluoranthene	100000	10000000	4300000	280 J	15000 J	360 UJ	350 U	350 U
Fluorene	100000		560000	390 UJ	2800 J	360 UJ	350 U	350 U
Hexachlorobenzene	100000		2000	390 ŲJ	3900 UJ	360 UJ	350 U	350 U
Hexachlorobutadiene	100000		2000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Hexachlorocyclopentadiene	100000		400000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Hexachloroethane	100000		500	390 UJ	3900 UJ	360 UJ	350 U	350 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	69 J	1800 J	360 UJ	350 U	350 U
Isophorone	50000		500	390 UJ	3900 UJ	360 UJ	350 U	350 U
Methane, bis(2-chloroethoxy)				390 UJ	3900 UJ	360 UJ	350 U	350 U
Methylnaphthalene-2				390 UJ	800 J	360 UJ	350 U	350 U
Naphthalene	100000	4200000	84000	390 UJ	1200 J	360 UJ	350 U	350 U
Nitroaniline-2				980 UJ	9900 UJ	890 UJ	870 U	890 U
Nitroaniline-3				980 UJ	9900 UJ	890 UJ	870 U	890 U
Nitroaniline-4				980 UJ	9900 UJ	890 UJ	870 U	890 U
Nitrobenzene	10000		100	390 UJ	3900 UJ	360 UJ	350 U	350 U
Nitrophenol-2				390 UJ	3900 UJ	360 UJ	350 U	350 U
Nitrophenol-4				980 UJ	9900 UJ	890 UJ	870 U	890 U
Nitroso-di-n-propyl-amine-N	10000		0.05	390 UJ	3900 UJ	360 UJ	350 U	350 U
Nitrosodiphenylamine-n	100000		1000	390 UJ	3900 UJ	360 UJ	350 U	350 U
PCP (Pentachlorophenol)	100000		30	980 UJ	9900 UJ	890 UJ	870 U	890 U
Phenanthrene			4200000	240 J	15000 J	360 UJ	350 U	350 U
Phenol	50000		100000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		48 J	3900 UJ	68 J	350 U	350 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402	MA-SO-403
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5	MA-SO403-S-10.0
Sample Date			F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval				6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft	10 - 10.5 ft
CLP Sample ID				B0AY2	B0DY4	B0FW9	B0FX0	B0FX1
Chemical Name								
Semivolatile Organic Compound	ds (ug/Kg)	i						
Phthalate, di-n-butyl	100000		2300000	390 UJ	3900 UJ	360 UJ	350 U	350 U
Phthalate, di-n-octyl	100000		10000000	390 UJ	3900 UJ	360 UJ	. 350 U	350 U
Phthalate, diethyl	50000			390 UJ	3900 UJ	360 UJ	350 U	350 U
Phthalate, dimethyl	50000			390 UJ	3900 UJ	360 UJ	350 U	350 U
Pyrene	100000	10000000	4200000	240 J	14000 J	360 UJ	350 U	350 U
Trichlorophenol-2,4,5	50000		270000	980 UJ	9900 UJ	890 UJ	870 U	890 U
Trichlorophenol-2,4,6	10000		200	390 UJ	3900 UJ	360 UJ	350 U	350 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO404-S-8.5
Sample Date			F20	12/17/2001
Sample Interval				8.5 - 9 ft
CLP Sample ID				B0FX3
Chemical Name				
Semivolatile Organic Compounds	(ug/Kg)			
Acenaphthene	100000		570000	350 U
Acenaphthylene			4200000	350 U
Acetophenone				350 U
Anthracene	100000		12000000	92 J
Atrazine				350 U
Benzaldehyde				350 UJ
Benzo(a)anthracene	500000	4000	2000	230 J
Benzo(a)pyrene	100000	660	8000	180 J
Benzo(b)fluoranthene	50000	4000	5000	160 J
Benzo(g,h,i)perylene			4200000	92 J
Benzo(k)fluoranthene	500000	4000	49000	200 J
Biphenyl				350 U
Bromophenyl-4 Phenyl Ether		}		350 U
Butylbenzyl phthalate	100000		930000	350 U
Caprolactam				350 U
Carbazole			600	47 J
Chloroaniline-4			700	350 U
Chloronaphthalene-2				350 U
Chlorophenol-2	10000		4000	350 U
Chlorophenyl-4 phenyl ether				350 U
Chrysene	500000	40000	160000	250 J
Cresol-4,6-dinitro-ortho				860 U
Cresol-o			15000	350 U
Cresol-p				350 U
Cresol-parachloro-meta	100000		4000	350 U
Dibenzo(a,h)anthracene	100000	660	2000	350 U
Dibenzofuran				350 U
Dichlorobenzidine-3,3	100000		7	350 U
Dichlorophenol-2,4	10000		1000	350 U

B- Analyte detected in associated blank

30277

(A, B, C) - Exceeds criteria Exceedences highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6 Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(c)	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO404-S-8.5
Sample Date			F20 [12/17/2001
Sample Interval			l f	8.5 - 9 ft
CLP Sample ID			ļ [B0FX3
Chemical Name	<u> </u>			
Semivolatile Organic Compounds	(ug/Kg)	<u> </u>	•	
Dimethylphenol-2,4	10000		9000	350 U
Dinitrophenol-2,4	10000		300	860 U
Dinitrotoluene-2,4			0.8	350 U
Dinitrotoluene-2,6			0.7	350 U
Ether, bis(2-chloroethyl)	10000		0.4	350 U
Ether, bis-chloroisopropyl	10000			350 U
Fluoranthene	100000	10000000	4300000	500
Fluorene	100000		560000	41 J
Hexachlorobenzene	100000		2000	350 U
Hexachlorobutadiene	100000		2000	350 U
Hexachlorocyclopentadiene	100000		400000	350 U
Hexachloroethane	100000		500	350 U
Indeno(1,2,3-cd)pyrene	500000	4000	14000	94 J
isophorone	50000		500	350 U
Methane, bis(2-chloroethoxy)				350 U_
Methylnaphthalene-2				350 U
Naphthalene	100000	4200000	84000	350 U
Nitroaniline-2				860 U
Nitroaniline-3				860 U
Nitroaniline-4				860 U
Nitrobenzene	10000		100	350 U
Nitrophenol-2				350 U
Nitrophenol-4				860 U
Nitroso-di-n-propyl-amine-N	10000		0.05	350 U
Nitrosodiphenylamine-n	100000		1000	350 U
PCP (Pentachlorophenol)	100000		30	860 U
Phenanthrene			4200000	410
Phenol	50000		100000	350 U
Phthalate, bis(2-ethylhexyl) (DEHP)	100000	210000		350 Ü

B- Analyte detected in associated blank

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.6

Subsurface Soil - Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO404-S-8.5
Sample Date			F20	12/17/2001
Sample Interval				8.5 - 9 ft
CLP Sample ID				B0FX3
Chemical Name				
Semivolatile Organic Compo	unds (ug/Kg)			
Phthalate, di-n-butyl	100000		2300000	350 U
Phthalate, di-n-octyl	100000		10000000	350 U
Phthalate, diethyl	50000			350 U
Phthalate, dimethyl	50000			350 U
Pyrene	100000	10000000	4200000	410
Trichlorophenol-2,4,5	50000		270000	860 U
Trichlorophenol-2,4,6	10000		200	350 U

B- Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval				5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID				MB0990	MB0985	MB0EY6	MB0EY3	MB0989
Chemical Name								
Metals (mg/Kg)		T						
Aluminum		ļ		4450	7300	3270	2350	4690
Antimony		340	5	2.3 U		6 BU (c)	9.5 BJ((c)	4.9 B
Arsenic		20	29	19		32 (BC)	46:8 (BC)	10.3
Barium		47000	1600	376	7,880 (c),	18.5 B	27.8 B	138
Beryllium			63	3.2 J	0.72 B	0.5 B	0.42 B	0.62 B
Cadmium		100	8	8.1 (c)	8.1 = (C)	0.23 U	0.24 U	0.47 B
Calcium				32600	4030	1470	2600	37800
Chromium		20	38	71.9 (BC);	30:3 (B)	Ž0 . (B)	20.8 (B)	15.5
Cobalt				10 B	10.2 B	1.6 B	1.8 B	2.1 B
Copper		600		53.1	29.7	13.4	17.6	13.2
Iron				9510	39000	16100	10200	5070
Lead		600		239	324	116	155	123
Magnesium				2540	1910	463 B	496 B	6470
Manganese				190	187	21.9	26.6	323
Mercury		270		0.13 U	0.12 U	0.06 UJ	0.06 UJ	0.26
Nickel		2400	130	29.9	9 B	4.2 B	4 B	4 B
Potassium				505 B	337 B	538 B	336 B	795 B
Selenium		<u> </u>	5	1.4	5.2 (c)	0.95 BJ	0.96 UJ	1.1 U
Silver	<u> </u>	4100	34	1.5 U	1.4 U	0.23 U	0.65 B	1.3 U
Sodium				366 B	414 B	655 BJ	412 BJ	374 B
Thallium		2		1.8 U	1.7 U	1.2 B	0.96 U	1.6 U
Vanadium		7100	6000	18.2	17.4	29.6	18.3	265
Zinc		1500	12000	341	3140 (B)	23.1	21.5	10.9

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date	7		F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval	1 :		·	6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID] .			MB0988	MB09M2	MB0982	MB0983	MB0984
Chemical Name			7.					
Metals (mg/Kg)	1		<u> </u>					
Aluminum				3960	2580	6410	3650	2970
Antimony		340	5	5.8 B (c)	4.3 B	2.2 U	2.2 U	2.2 U
Arsenic		20	29	129 (BC)	11.9	10.5	7,4	14,4
Barium		47000	1600	2080 (c)	4090 (c)	24400 ° (c)	13300 (c)	14600 · (C)
Beryllium			63	0.58 B	0.53 B	0.83 B	0.53 B	0.59 B
Cadmium		100	8	0.46 B	6.7	0.95 B	0.54 B	5.3
Calcium				2880	3680	7830	2680	3560
Chromium		20	38	1080 (BC)	20:1 (B)	56.2 (BC)	14.6	7.8
Cobalt				5.9 B	6.2 B	16.6	9.1 B	11.6 B
Copper		600		44.8	127	104	92.8	113
Iron				15600	14500	12000	8990	10200
Lead		600		278	786 (B)	380	330	3370 (8)
Magnesium				1280	1250	1740	818 B	386 B
Manganese				150	196	263	99.4	93.8
Mercury		270		0.95	2.2 J	0.46 J	0.6 J	0.45 J
Nickel		2400	130	9.9	24.5	18.8	13.3	9.2 B
Potassium				487 B	246 B	764 B	474 B	387 B
Selenium			5	1.1 U	1 U	1.2 U	1.2 U	1.2 U
Silver		4100	34	1.3 U	1.2 U	1.4 U	1.4 U	1.4 U
Sodium				124 B	114 B	256 B	191 B	370 B
Thallium		2		1.6 U	1.5 U	1.7 U	1.7 U	1.7 U
Vanadium		7100	6000	12.4	17.4	23	18.3	14.7
Zinc		1500	12000	364	641 J	1170 J	982 J	2750 J (8)

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date			F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval]			7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID]			MB09M1	MB0EY4	MB0CJ3	MB0CG2	MB0CF1
Chemical Name						,		
Metals (mg/Kg)								
Aluminum				3470	3830	3000	6130	25500 J
Antimony		340	5	2 U .	1.3 BJ	0.86 UJ_	1.2 BJ	41 J (C)
Arsenic		20	29	5.3	7.2	148 år (BC)	34:4 ± (BC)	920 <u> J </u>
Barium	<u> </u>	47000	1600	31.6 B	137	991 .	615	17600 J
Beryllium			63	0.5 B	0.31 B	0.48 B	0.7 B	0.83 BJ
Cadmium		100	8	0.17 U	0.33 B	1 B	1.6	is=118:5° J∵ (c)
Calcium				1100	2370	13100	22900	72400 J
Chromium		20	38	10.2	30.1 (8)	30:3 (B)	3417 = 1 (B)	21300±J (BC
Cobalt				4.1 B	2.4 B	3 В	6.2 B	· 8.8 BJ
Copper		600		6	17.5	30.6	46.9	
Iron				10100	7240	14000	8540	40000 J
Lead		600		8.2	277	647: (B)	211	1140 U (B)
Magnesium				919 B	1340	2250 J	5050	6620 J
Manganese				98	60.9	373	474 J	349 J
Mercury		270		0.11 U	0.82 J	0.23	0.98	224 J
Nickel		2400	130	6 B	6.7 B	9.2 B	12.8	95.4 J
Potassium				522 B	324 B	473 B	711 B	2850 J
Selenium			5	1.1 U	0.91 U	1.3	1 U	3.1 J
Silver		4100	34	1.3 U	0.23 U	0.23 U	0.21 U	0.91 BJ
Sodium				61.6 U	340 BJ	859 BJ	762 BJ	8820 J
Thallium		2		1.6 U	1.1 B	1.2 UJ	1.1 UJ	2.1 UJ
Vanadium		7100	6000	13.6	14.8	13.5	14.4	90.8 J
Zinc		1500	12000	23.9 J	340	411	179 J	3790 J

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-\$B-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date	·		F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval				6.5 - 7 ft	3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID		į		MB0CF8	MB0CE6	MB0CM0	MB0CL3	MB0CF0
Chemical Name								
Metals (mg/Kg)				<u></u>				
Aluminum				5550	3340	3050	4690	1150
Antimony		340	5	5.6 BJ (c)			2.2 B	1.4 BJ
Arsenic	·	20	29	4340 (BC)	39.5 (BC)		15.9	165 (BC)
Barium		47000	1600	989	333	9450 J (c)	18300 J (c)	4320 (c)
Beryllium			63	- 0.76 B -	-0.23 B	0.44 B	0.58 B	-0.23 B
Cadmium		100	8	0.84 B	1 B	y:8 (C)	5.7	0.59 B
Calcium				45400	28100	11800	12900	1160 B
Chromium		20	38	44-1* (BC)	129 - x (BC)	8.6	22.4 (B)	224 (BC)
Cobalt				4.6 B	2.9 B	6.7 B	9.7 B	4.9 B
Copper		600	-	37.2	67.9	92	97.6	38.4
Iron				12300	12800	11000	20600	36100
Lead		600		103	715 (B)	4800 (B)	9950 (B)	864 (B)
Magnesium			·	27200	3830	5800 J	2900 J	347 B
Manganese				293 J	114 J	152	551	11.8 J
Mercury		270		2	5.8	0.44	0.48	0.33
Nickel		2400	130	11.2	12.9	12.7	19.6	13.1
Potassium				822 B	524 B	290 B	474 B	354 B
Selenium			5	1.2 U	1.3	1.7 J	2 J	4.1
Silver		4100	34	0.26 U	0.27 B	0.23 BJ	0.24 UJ	0.24 U
Sodium				2610 J	611 BJ	223 B	149 B	671 BJ
Thallium		2		1.3 UJ	1.2 UJ	1.1 U	1.9 B	1.3 UJ
Vanadium		7100	6000	18.7	22.4	11 B	18.2	20.9
Zinc		1500	12000	170 J	228 J	4250) (B)	1770 (B)	196 J

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date			F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval				4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID			4	MB0CG6	MB0CJ4	MB0CK3	MB0CG4	MB0CG8
Chemical Name						:		
						`	·	
Metals (mg/Kg)				·				
Aluminum	·			3320	3990	4180	2230	7330
Antimony		_340	5	4.1 BJ	2.1 BJ	1.8 BJ	19.4 BJ (c)	
Arsenic		20	29	78.9 (BC)	280 (BC)	24.7 J (B)	4470 (BC)	120 (BC)
Barium		47000	1600	498	1450	925	785	
Beryllium			63	0.53 B	0.54 B	0.47 B	0.14 U	0.6 B
Cadmium		100	8	6	1.7	2.4	0.56 B	1.6
Calcium				10600	17100	13500	186000	4080
Chromium		20	38	293 (BC)	631 (BC)	2.11.7 (BC)	268 (BC)	177,0 (BC)
Cobalt				7.1 B	4.4 B	7.8 B	1.9 B	9.6 B
Copper		600		235	81	86.8	37.5	90.8
Iron				16200	12800	28100	4300	28300
Lead		600		716 T (8)	239	538	183	435
Magnesium				2020 J	3950 J	5770	99800	1540 J
Manganese				189	106	289	220 J	87.3
Mercury		270		1.7	3.8	0.89 J	0.54	0.84
Nickel		2400	130	14.8	11.4	62.7	3.2 B	22.2
Potassium				600 B	387 B	404 B	348 B	985 B
Selenium			5	1.9	2.2	1.2 B	1.7 U	2.3
Silver		4100	34	0.29 U	0.24 B	0.25 U	0.34 U	0.23 U
Sodium				1850 J	743 BJ	987 B	1240 BJ	1040 BJ
Thallium		2		1.5 UJ	1.2 UJ	1.3 UR	1.8 UJ	1.2 ŲJ
Vanadium		7100	6000	15	21.2	28.2	6.9 B	22.5
Zinc		1500	12000	1040	354	560	328 J	596

027

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

MA-SB-29

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001
Sample Interval				8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft

Otation ib	\^\	1	(0)	181A-0D-13	MA-0D-100	ונו-טט-אווו	רויםטיאווו	111A-0D-23
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval				8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID				MB0CL1	MB0CH3	MB0CK6	MB0CE8	MB0CZ7
Chemical Name								
Metals (mg/Kg)	l	<u> </u>				<u> </u>		
Aluminum				13100	2700 J	8370	2910	4530
Antimony		340	5	1.1 UJ	19.8 BJ (c)	0.93 UJ	0.86 UJ	2.3 J
Arsenic		20	29	31.3×J. (BC)	3390 J., (BC)	198 J (BC)	11.3	55.4 (BC
Barium		47000	1600	133	1270 J	18500 (c)	i 6390 ₹ (c)	504 J
Beryllium			63	0.85 B	0.52 BJ	0.74 B	0.16 B	0.14 B
Cadmium		100	8	0.12 U	3.8 J	4.4	0.98 B	1.1 B
Calcium	·			5200	116000 J	3920	483 B	35500
Chromium		20	38	∋205 (BC)	2300 J (BC)	23.6 (B)	132 (BC)	33.JHatan 10
Cobalt				5.8 B	2.9 BJ	4.5 B	2.9 B	3.8 B
Copper		600		53.6	554 J	40.2	15.4	235
Iron				16600	9850 J	40400	5100	18700
Lead		600		158	287 J	352	64.3	1320
Magnesium				3870	66700 J	1610	689 B	13000
Manganese				139	215 J	128	32.7 J	132 J
Mercury		270		0.16 J	1.6 J	0.17 J	0.31	1.1
Nickel		2400	130	15.7	7.6 BJ	13	5.1 B	36.8 R
Potassium				1100 B	341 BJ	·517 B	350 B	616 B
Selenium			5	1.4 U	2 UJ	2.7	1.1 U	1.4
Silver		4100	34	0.29 U	0.41 UJ	0.25 U	0.23 U	1.1 J
Sodium				629 B	2260 J	2570 J	583 BJ	1490 J
Thallium		2		1.5 UR	2.1 UJ	1.3 UR	1.2 UJ	1.3 UJ
Vanadium		7100	6000	31.3	9.6 BJ	23.3	9.1 B	23.2
Zinc		1500	12000	54.6	1430 J	2330 (B)	319 J	833 R

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date	7		F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample Interval	7			6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID	┦ .			MB0CH4	MB0CH7	MB0CH8	MB0CF5	MB0CF6
Chemical Name								
11.4.1.1.1.1.1.1.1		l						
Metals (mg/Kg)				4700	4400	4000		2020
Aluminum	 	0.10		1780	4190	1990	5010	3230 21 J (0)
Antimony		340	5	1.3 BJ	0.88 UJ (47-1 (BC)	0.87 UJ	0.92 UJ	
Arsenic		20	29	164 (BC)		18.1	65.5 (BC)	
Barium		47000	1600	654	233	63.3	(c)	
Beryllium			63	0.38 B	0.55 B	0.41 B	0.31 B	0.24 B
Cadmium	_	100	8	0.12 B	0.39 B	0.22 B	1 B	1 B
Calcium		<u> </u>		16500	11300	6360	19600	109000
Chromium		20	38	493 (BC)		77.6 : (BC)	49. (BC)	373 Superin (BC)
Cobalt				3 B	8.1 B	3.1 B	3.3 B	2.7 B
Copper		600		94.7	2590 === (B)		68.9	35.4
lron				8110	21400	3820	9720	10100
Lead		600		334	. 219	69.9	159	244
Magnesium				404 BJ	1840 J	783 BJ	8170	77400
Manganese				62	171	70.4	150 J	285 J
Mercury		270		0.19	0.72	0.06 B	0.67	1.4
Nickel	1	2400	130	8.9 B	13	10.3	8.3 B	6.5 B
Potassium	1			359 B	543 B	337 B	682 B	769 B
Selenium			5	1.2 B	1.6	1.1 U	1.2 U	2.5
Silver		4100	34	0.23 U	0.4 B	0.37 B	0.25 U	0.33 U
Sodium				2090 J	843 BJ	497 BJ	654 BJ	3060 J
Thallium	1	2		1.2 UJ	1.2 UJ	1.2 UJ	1.3 UJ	1.7 UJ
Vanadium		7100	6000	12.2	22.1	11.5 B	15.2	9.4 B
Zinc	1	1500	12000	64.2	119	124	182 J	635 J

302784

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date			F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval				5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID			[MB0CZ4	MB0D12	MB0CZ9	MB0D08	MB0980
Chemical Name								
Metals (mg/Kg)	<u> </u>	L						
Aluminum				2720 J	5440	4280	5840	4400
Antimony		340	5	1.8 UJ	0.9 UJ	0.85 UJ	4.6 BJ	3.8 J
Arsenic		20	29	12,5 J	19.2 J	6.8	17.4 J	18
Barium		47000	1600	164 J	15600 (c)	126 J	366	1800 J - # L(c)
Beryllium			. 63	0.2 UJ	0.48 B	0.17 B	0.62 B	0.24 B
Cadmium		100	8	0.54 BJ	2.6	0.56 B	0.61 B	2.5
Calcium				34500 J	7240	3880	5820	5590
Chromium		20	38	9.2 J	42.3 (BC)	11.3 J	65.8 (BC)	22.2 J (B)
Cobalt				2.9 BJ	4.1 B	3.2 B	7.9 B	5.2 B
Copper		600		52.2 J	210	50.8	93.9	330
Iron				20100 J	13900	11500	71400	25300
Lead		600		322 J	256	305	² 2330 (B)	2340 (8)
Magnesium				1430 BJ	1350	1160	1140 B	891 B
Manganese				. 273 J	128 J	119 J	463 J	305 J
Mercury		270		0.29 J	1.4	0.41	0.63	1.8
Nickel		2400	130	8.7 R	20.6	6.6 R	33.9	108 R
Potassium				463 BJ	543 B	487 B	547 B	589 B
Selenium			5	3.6 J	2.8 U	1.1 U	4	2.3
Silver		4100	34	0.49 UJ	0.24 U	0.23 UJ	0.46 B	0.78 J
Sodium				698 BJ	2260 BJ	419 BJ	846 BJ	1600 J
Thallium		2		2.6 UJ	1.3 UJ	1.2 UJ	1.4 UJ	1.1 UJ
Vanadium		7100	6000	11.7 BJ	14.2	16.3	21.1	18.9
Zinc	<u> </u>	1500	12000	178 R	1810 (B)	159 R	397	956 R

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date			F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval	7			6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID	7			MB0D17	MB0D14	MB0CZ3	MB0CZ5	MB0D07
Chemical Name								
Matala (malka)	<u> </u>							
Metals (mg/Kg) Aluminum		1		3240	3950	4460	2750	4720
	 	340		0.85 UJ	7.2 BJ (G)			
Antimony		20	5 29	224(EU) - (BC)		0.99 03 20 €(B)	0.78 UJ	0.82 UJ 5 J
Arsenic							10.5	103
Barium	-	47000	1600		6680 + (c)	1160 J 0.22 B	487 J	· · · · · · · · · · · · · · · · · · ·
Beryllium		100	63	0.43 B	0.44 B	0.22 B	0.13 B	0.28 B
Cadmium		100	8	0.4 B	1.2 B		0.47 B	0.16 B
Calcium	<u> </u>			6910	2800	5160	1090	2970
Chromium	<u> </u>	20	38	27.9'; (8)		30 J (B)	7.7 J	12.2
Cobalt				4.6 B	7.7 B	3.2 B	1.9 B	2.6 B
Copper	ļ <u></u>	600		49.1	45.6	108	23.8	15.1
lron				7860	22900	10100	6220	8720
Lead		600		163	**************************************	731 (B)	156	182
Magnesium				1220	1240	1200 B	625 B	995 B
Manganese	<u> </u>			90.5 J	492 J	103 J	30.6 J	106 J
Mercury		270		0.53	1.5	0.56	0.36	0.43
Nickel	<u> </u>	2400	130	10.4	25.5 B	8.7 R	6.3 R	6 B
Potassium				596 E	1020 B	530 B	298 B	457 B
Selenium			5	1.1 U	2.7	1.3 U	2	1 U
Silver		4100	. 34	0.23 U	0.24 U	0.27 UJ	0.21 UJ	0.22 U
Sodium				541 BJ	747 BJ	11600 J	587 BJ	370 BJ
Thallium		2		1.2 UJ	1.2 UJ	1.4 UJ	1.1 UJ	1.1 UJ
Vanadium		7100	6000	13.3	24.3	15.6	10.7	12.5
Zinc		1500	12000	218	374	9500 (B)	332 R	149

302786

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date	7		F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval	7			5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID	7		l t	MB0D11	MB0CJ8	MB0CK4	MB0ES8	MB0CL8
Chemical Name								
Metals (mg/Kg)		<u> </u>	l	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Aluminum	1	T		5160	5100	6790	3260 J	3130
Antimony		340	5	0.84 UJ	0.83 UJ	0.86 UJ	0.84 UJ	1,7 B
Arsenic		20	29	5.2 J	297±J (BC):		13.1	22.7 (B)
Barium		47000	1600	108	12300 (c)	1330	22.4 B	2460 J. (c)
Beryllium			63	0.25 B	0.39 B	0.46 B	0.32 B	0.75 B
Cadmium		100	8	0.09 U	7.8	4.5	0.09 UJ	0.1 U
Calcium				612 B	19400	22900	747 B	2830
Chromium		20	38	13.3	* 32.4 (B)	69.8 (BC)	9.8	11.6
Cobalt				1.7 B	3.7 B	5.6 B	2.5 B	5 B
Соррег		600		14.2	58.7	40.8	6.7	34
Iron				8920	12200	14700	7990	25100
Lead		600	*	86.5	436	339	27.6	2650 × 10 × (B)
Magnesium				829 B	2040	2800	905 B	442 BJ
Manganese				43.8 J	139	325	60.7 J	48.4
Mercury		270		0.19	0.64 J	1.9 J	0.077 BJ	0.32
Nickel		2400	130	5 B	9.5	14.8	4.6 B	11.2
Potassium				718 B	606 B	1460 J	559 B	309 B
Selenium			5	1.1 U	1.1 U	1.1 U	1.1 U	1.8 J
Silver		4100	34	0.23 U	0.22 U	0.23 U	0.23 U	0.21 UJ
Sodium				262 BJ	4870 J	1020 B	203 BJ	248 B
Thallium		2.	<u> </u>	1.2 UJ	1.2 UR	1.2 UR	1.2 UJ	1.2 U
Vanadium		7100	6000	17.3	14.7	27.5	11.6	24.5
Zinc	1	1500	12000	62.3	5960 (B)	542	35.6	501

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date		1	F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval	7			4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID				MB0CL6	MB0CM2	MB0CG9	MB0D20	MB0CK7
Chemical Name								
Metals (mg/Kg)		<u>1</u>	<u> </u>					
Aluminum				5670	7960	5710	8590 J	12300
Antimony		340	5	0.9 B	0.91 U	2 BJ	0.85 UJ	0.91 UJ
Arsenic		20	29	49.4 (BC)	1780 (BC)	60.3 (BC)	1.4 B	48.6 J (BC)
Barium		47000	1600	14000 J (c)	1870 J (c)	* 14900 -(c)	91.4	39700 (C)
Beryllium			63	0.56 B	1.5 J	0.65 B	0.52 B	0.89 B
Cadmium		100	8	0.4 B	1.3	7.4	0.091 UJ	1.6
Calcium				11000	4860	7170	484 B	2650
Chromium		20	38	65.9 (BC)	110 (80)	1730 (BC)	18	128 (BC)
Cobalt				7.7 B	4.1 B	6.6 B	7. <u>8 B</u>	4.8 B
Copper		600		40.5	_ 242	367	16.9	40.3
Iron				15200	11700	54100	17400	39000
Lead		600		409	1270 (B)	842 (B)	12.3	277
Magnesium				3220 J	943 BJ	2520 J	2500	2370
Manganese				217	74.1	272	124 J	194
Mercury		270		0.3	1.2	0.52	0.049 BJ	0.1 BJ
Nickel		2400	130	10.7	20.3	96.6	15.1	13.9
Potassium				894 B	781 B	472 B	569 B	584 B
Selenium			5	1.4 J	1.3 J	1.8	1.1 U	1.9
Silver		4100	34	0.2 <u>UJ</u>	0.23 UJ	0.24 U	0.23 U	0.24 U
Sodium				462 B	354 B	1170 BJ	254 BJ	2000 J
Thallium		2		1.1 <u>U</u>	1.2 U	1.2 UJ	1.2 UJ	1.3 UR
Vanadium		7100	6000	19.8	19.1	26.9	15.7	23.5
Zinc		1500	12000	469	511	734	77.4	1560 (B)

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-207	MA-SO-208	MA-SO-209
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO207-S	MA-SO208-S	MA-SO209-S
Sample Date			F20 [12/17/2001	12/17/2001	10/22/2001	10/22/2001	10/22/2001
Sample Interval			i i	5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	4.5 - 5 ft	5 - 5.5 ft
CLP Sample ID				MB0ES4	MB0ES3	MB0CM1	MB0CM5	MB0CM7
Chemical Name								
Metals (mg/Kg)						1		
Aluminum				4780 J	2020 J	5170	3500	2620
Antimony		340	5	0.84 UJ	0.82_UJ	1 B	1.9 B	0.74 U
Arsenic		20	29	3.9	1.8 B	133 (BC)	13.5	2.8
Barium		47000	1600	82.7	22.4 B	70.6 J	10200 J (c)	206 J
Beryllium			63	0.32 B	0.18 B	0.44 B	0.42 B	0.16 B
Cadmium		100	8	0.09 UJ	0.09 UJ	0.09 U	3.8	4.7
Calcium				26800	309 B	703 B	29400	448 B
Chromium		20	38	14.7	6.6	45 (BC)	18	6.4
Cobalt				2.4 B	1.2 B	3.7 B	6.6 B	1.8 B
Copper		600		17.5	5.9	363	70.5	14.9
lron				10500	5420	11900	16000	6030
Lead		600		113	26.6	48.2	525	357
Magnesium				3200	399 B	1480 J	17100 J	444 BJ
Manganese				97.3 J	57.3 J	62	160	90.6
Mercury		270		0.16 J	0.08 BJ	0.14 J	1.1	0.32
Nickel		2400	130	7.8 B	3. B	9	14.2	3.8 B
Potassium				695 B	310 B	691 B	804 B	315 B
Selenium			5	1.1 U	1.1 U	0.91 UJ	3 J	0.85 UJ
Silver		4100	34	0.23 U	0.22 U	0.2 UJ	0.2 UJ	0.19 UJ
Sodium				343 BJ	207 BJ	54.6 B	178 B	91 B
Thallium		2		1.2 UJ	1.2 UJ	1.5 B	1.8 B	1 U
Vanadium		7100	6000	16	7.8 B	15.2	17.6	8.4 B
Zìnc		1500	12000	77.2	33.4	321	1520 (B)	502

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-210	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO210-S-5.0	MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S
Sample Date]		F20	12/14/2001	12/14/2001	12/14/2001	12/14/2001	10/18/2001
Sample Interval	7			5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft
CLP Sample ID	1			MB0ER6	MB0ER5	MB0ER8	MB0ES2	МВ0СН9
Chemical Name								
Metals (mg/Kg)								
Aluminum				3760	971	5880	9130	2350
Antimony		340	5	0.99 UJ	0.88 UJ	1.2 BJ	0.89 UJ	0.83 UJ
Arsenic		20	29	1240 J. (BC)	7.2 J	16.6 J	.479 J (BC)	5.6
Barium		47000	1600	14000 (c)	11900 (C)	18500 (c)	10300 (c)	444
Beryllium			63	0.67 B	0.2 B	0.46 B	0.4 B	0.22 B
Cadmium		100	8	22.6 (c)	1.5	24:8 (c)	1.1 B	0.09 U
Calcium				1800	3590	1560	2120	1370
Chromium		20	38	5.9	5.6	17.5	14.2	57.7 (BC)
Cobalt				5.2 B	1.9 B	3.1 B	3 B	2 B
Copper		600		41.9	13.6	36.5	12.6	13.3
Iron	Ţ			26400	16400	60900	60000	6980
Lead		600		223	322	51.8	38.1	81.3
Magnesium				168 B	221 B	125 B	287 B	559 BJ
Manganese				265 J	20.3 J	142 J	102 J	49.1
Mercury		270		0.12 B	0.18	0.09 B	0.057 U	0.35
Nickel		2400	130	8.9 B	3.8 B	7.1 B	4.2 B	5.9 B
Potassium				420 E	502 E	235 B	303 B	295 B
Selenium			5	3.1	1.4	2.5	2.7	1.1 U
Silver		4100	34	0.27 U	0.24 U	0.25 U	0.24 U	0.22 U
Sodium				2550 J	637 BJ	1670 J	977 BJ	365 BJ
Thallium		2		1.4 UJ	1.2 UJ	1.3 UJ	1.2 UJ	1.2 UJ
Vanadium		7100	6000	11.5 B	14.9	17.8	14.2	10.3 B
Zinc		1500	12000	1960 (8)	273	1340	672	102

302790

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.7 Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-301	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO301-S-5.0	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5
Sample Date]		F20	12/13/2001	12/12/2001	12/13/2001	12/17/2001	12/17/2001
Sample Interval	1.		[5 - 5.5 ft	6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft
CLP Sample ID			·	MB0D03	MB09M3	MB0D01	MB0ES9	MB0ET0
Chemical Name								
	L			<u></u>				
Metals (mg/Kg)	T	·	·					
Aluminum				1360 J	6530	5540	2160 J	3500 J
Antimony		340	5	3.5 BJ	0.83 UJ	0.82 UJ	0.78 UJ	0.79 UJ
Arsenic		20	29	4.6 BJ	7.1	236 (BC)	0.74 B	2.8
Barium	_	47000	1600	150 J			35.1 B	33.3 B
Beryllium			63	0.24 UJ	0.29 B	0.23 B	0.19 B	0.21 B
Cadmium		100	8	0.3 BJ	3	0.18 B	0.08 UJ	0.09 UJ
Calcium				13200 J	21000	3180	170 B	355 B
Chromium		20	38	6.1 J	* 34.3 J (B)	16.8 J	6.6	12.7
Cobalt				0.74 BJ	3.3 B	2.1 B	0.74 B	1.4 B
Copper	-	600		55.4 J	64.3	13.6	2 B	9.1
Iron				19100 J	22700	13600	3670	8560
Lead		600		97.7 J	363	169	2.5	3.8
Magnesium				956 BJ	1770	1230	528 B	771 B
Manganese				144 J	199 J	124 J	16.8 J	27.7 J
Mercury		270		0.16 UJ	0.47	0.42	0.053 U	0.048 U
Nickel		2400	130	5.6 R	7:6 R	5.3 R	3.9 B	4.9 B
Potassium		T		283 BJ	556 B	946 B	271 B	457 B
Selenium			5	3 J	1.8	. 1.1 U	1 U	1 Ù
Silver		4100	34	0.59 UJ	0.22 UJ	0.22 UJ	0.21 U	0.21 U
Sodium				567 BJ	1060 BJ	147 BJ	234 BJ	146 BJ
Thallium		2		3.1 UJ	1.2 UJ	1.2 UJ	1.1 UJ	1.1 UJ
Vanadium		7100	6000	6.2 BJ	13.8	20.8	6.7 B	13
Zinc		1500	12000	100 R	634 R	68.5 R	84.2	22.5

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-403	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO403-S-10.0	MA-SO404-S-8.5
Sample Date			F20	12/17/2001	12/17/2001
Sample Interval				10 - 10.5 ft	8.5 - 9 ft
CLP Sample ID			.	MB0ET1	MB0ES6
Chemical Name					
Metals (mg/Kg)		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
Aluminum				2040 J	2040 J
Antimony		340	5	0.74 UJ	0.72 UJ
Arsenic		20	29	7	1.5 B
Barium		47000	1600	92.9	# 1820 (c)
Beryllium			63	0.14 B	0.18 B
Cadmium		100	8	0.08 UJ	0.08 UJ
Calcium			·	385 B	802 B
Chromium		20	38	8.8	7.8
Cobalt		<u>. </u>		0.55 B	1.3 B
Copper		600		4.1 B	5.1
Iron				4340	4440
Lead		600		5.5	35.3
Magnesium		T		496 B	506 B
Manganese				17.9 J	30.2 J
Mercury		270		0.054 U	0.051 U
Nickel		2400	130	2.9 B	3.8 B
Potassium				206 B	223 B
Selenium			5	0.96 U	0.94 U
Silver		4100	34	0.2 U	0.2 U
Sodium				110 BJ	242 BJ
Thallium		2		1 UJ	1 UJ
Vanadium		7100	6000	6.2 B	6.9 B
Zinc		1500	12000	17.1	115

302792

B - Analyte detected in associated blank

J - Reported value estimated in quantity

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)_	(B)	(C)	MA-MW-12S	MA-MW-13S	MA-MW-14S	MA-MW-14S	MA-MW-15S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-12S-S	MA-MW-13S-S	MA-MW-14S-S-9	MA-MW-14S-S-9D	MA-MW-15S-S
Sample Date			F20	10/30/2001	10/30/2001	01/10/2002	01/10/2002	10/29/2001
Sample Interval	1		İ	5.4 - 15.4 ft	6.6 - 16.6 ft	7 - 20 ft	7 - 20 ft	6.8 - 16.8 ft
CLP Sample ID	1		İ	B0AW8	B0AX0	B0G11	B0G08	B0DH0
Chemical Name								
Pesticides and PCBs (ug/Kg)		,	•					
Aldrin	50000	170	500	5 NJ	2.1 U	2.1 UJ	2.1 UJ	1.9 UJ
BHC, alpha	·		0.5	2.1 U	1.9 J (c)	2.1 UJ	2.1 UJ	1.9 UJ
BHC, beta			3	· 2.1 U	3.9 (c)	2.1 UJ	2.1 UJ	1.9 UJ
BHC, delta			9	2.1 U	2.1 U	2.1 UJ	2.1 UJ	1.9 UJ
BHC, gamma (Lindane)	50000		9	2.1 U	1.3 J	2.1 UJ	2.1 UJ	1.9 UJ
Chlordane - alpha			23000	6.4 J	46	140 J	98 J	9.5 J
Chlordane - gamma (technical mixture)			10000	9.7 NJ	43 NJ	81 JN	52 JN	80 J
DDD-4,4	50000		16000	4.1 U	4.1 U	4.1 UJ	4.1 UJ	3.6 UJ
DDE-4,4	50000	9000	54000	11 J	450 J	140 JN	96 J	5.3 J
DDT-4,4	500000	9000	32000	4:1 U.	75 NJ	36 R	25 R	12 NJ
Dieldrin	50000	180	4	26 J (c)	4.1 U	25 R	18 R	3.6 UJ
Endosulfan I (alpha)			18000	2.1 U	2.1 U	2.1 UJ	2.1 UJ	1.9 UJ
Endosulfan II (beta)				4.1 U	4.1 U	8 R	5.6 R	3.6 UJ
Endosulfan Sulfate			1000	4.1 U	37 J	4.1 UJ	4.1 UJ	3.6 UJ
Endrin	50000		1000	20	14 NJ	4.1 UJ	4.1 UJ	3.6 UJ
Endrin Aldehyde			1000	4.1 U	100 J	4.1 UJ	4.1 UJ	3.6 UJ
Endrin ketone			1000	18 J	12 NJ	8.3 NJ	4.1 UJ	3.6 UJ
Heptachlor	50000	650	23000	2.1 U	2.1 U	2.1 UJ	2.1 UJ	1.9 UJ
Heptachlor Epoxide		, , , , , , , , , , , , , , , , , , , ,	700	2.1 U	7.8 NJ	3.3 R	2.3 R	1.9 UJ
Methoxychlor	50000		160000	21 U	21 U	21 UJ	21 UJ	19 UJ
Pcb-araclor 1016				41 U	41 U	41 UJ	41 UJ	36 UJ
Pcb-araclor 1221				84 U	84 U	83 UJ	84 UJ	74 UJ
Pcb-araclor 1232				41 U	41 U	41 UJ	41 UJ	36 UJ
Pcb-araclor 1242				41 U	41 U	41 UJ	41 UJ	36 UJ
Pcb-araclor 1248				41 U	41 U	41 UJ	41 UJ	36 UJ
Pcb-araclor 1254		2000		41 U	41 U	2400 J (B)	1700 J	36 UJ
Pcb-araclor 1260		2000		41 U	41 U	41 UJ	41 UJ	36 UJ
Toxaphene	50000		31000	210 U	210 U	210 UJ	210 UJ	190 UJ

J - Reported value estimated in quantity

N-

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-16S	MA-MW-17S	MA-MW-18S	MA-MW-18S	MA-MW-19S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-16S-S	MA-MW-17S-S-4.5	MA-MW-18S-S-5	MA-MW-18S-S-5D	MA-MW-19S-S-3
Sample Date			F20	10/29/2001	11/07/2001	11/06/2001	11/06/2001	11/06/2001
Sample Interval				6.5 - 16.5 ft	8 - 18 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	5.05 - 15.05 ft
CLP Sample ID				B0DF8	B0AY0	B0AX5	B0AX6	B0AX8
Chemical Name								·
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.8 UJ	2:2 UJ	2 UJ	2.1 UJ	2.1 UJ
BHC, alpha			0.5	1.8 UJ	2.2 UJ	2 UJ	2.1 UJ	2.1 UJ
BHC, beta			3	1.8 UJ	2.2 NJ	2 UJ	2.1 UJ) 2.1 UJ
BHC, delta			9	1.8 UJ	2.2 UJ	2 UJ	2.1 UJ	2.1 UJ
BHC, gamma (Lindane)	50000		9	12 J (c)	2.2 UJ	2 UJ	2.1 UJ	2.1 UJ
Chlordane - alpha			23000	1.8 UJ	30 NJ	3.6 J	4.3 J	2.1 UJ
Chlordane - gamma (technical mixture)			10000	14 NJ	38 J	2 UJ	13 J	2.1 UJ
DDD-4,4	50000		16000	3.5 UJ	4.2 UJ	3.9 UJ	4 UJ	4 UJ
DDE-4,4	50000	9000	54000	30 J	47 J	4.4 J	5.5 J	4 UJ
DDT-4,4	500000	9000	32000	8.4 NJ	170 J	19 NJ	4 UJ	4 UJ
Dieldrin	50000	180	4	11 NJ (c)	27 NJ (c)	9:5-NJ+ (c)	13 NJ = (c)	4 UJ
Endosulfan I (alpha)			18000	1.8 UJ	2.2 UJ	2 UJ	2.1 UJ	2.1 UJ
Endosulfan II (beta)				3.6 UJ	4.2 UJ	3.9 UJ	4 UJ	4 UJ
Endosulfan Sulfate			1000	15 NJ	16 J	28 NJ	30 NJ	5.3 NJ
Endrin	50000		1000	18 J	11 NJ	27 NJ	41 NJ	4 UJ
Endrin Aldehyde			1000	18 NJ	4.2 UJ	5.5 NJ	7 NJ	4 UJ
Endrin ketone			1000	18 NJ	29 NJ	3.9 UJ	4 UJ	4 UJ
Heptachlor	50000	650	23000	1.8 UJ	2.9 NJ	2 UJ	2.1 UJ	· 2.1 UJ
Heptachlor Epoxide			700	1.8 UJ	4.1 NJ	6 NJ	6.6 NJ	2.1 UJ
Methoxychlor	50000		160000	18 UJ	46 NJ	20 UJ	24 NJ	21 UJ
Pcb-araclor 1016				35 UJ	42 UJ	39 UJ	40 UJ	40 UJ
Pcb-araclor 1221				72 UJ	85 UJ	79. UJ	81 UJ	82 UJ
Pcb-araclor 1232				35 UJ	42 UJ	39 UJ	40 UJ	40 UJ
Pcb-araclor 1242				35 UJ	. 42 UJ	39 UJ	40 UJ .	40 UJ
Pcb-araclor 1248				35 UJ	42 UJ	39 UJ	40 UJ	40 UJ
Pcb-araclor 1254		2000		35 UJ	42 UJ	200 NJ	250 NJ	40 UJ
Pcb-araclor 1260		2000		35 UJ	42 UJ	39 UJ	40 UJ	40 UJ
Toxaphene	50000		31000	180 UJ	220 UJ	200 UJ	200 UJ	210 UJ

J - Reported value estimated in quantity

N-

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20S	MA-MW-21S	MA-SB-02	MA-SB-04	MA-SB-06
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-MW-20S-S-7	MA-MW-21S-S-10	MA-SB02-S	MA-SB04-S	MA-SB06-S
Sample Date	1		F20	11/07/2001	01/10/2002	10/18/2001	10/16/2001	10/15/2001
Sample Interval	1		l l	7.9 - 17.9 ft	10 - 21 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID	1		, <u>†</u>	B0AX7	B0G09	B0DD5	B0DA7	B0D97
Chemical Name								
Pesticides and PCBs (ug/Kg)	<u> </u>	<u> </u>						
Aldrin	50000	170	500	1.8 UJ	1.9 UJ	1.9 U	4 R	3.5 UJ
BHC, alpha			0.5	1.8 UJ	1.9 UJ	1.9 U	1.8 R	3.5 UJ
BHC, beta			3	.1.8 UJ	1.9 UJ	7.7 R	51 R	3.5 UJ
BHC, delta			9	1.8 UJ	1.9 UJ	1.9 U	1.8 R	3.5 UJ
BHC, gamma (Lindane)	50000		9	1.8 UJ	1.9 UJ	1.9 UJ	1.8 R	3.5 .UJ
Chlordane - alpha			23000	1.8 UJ	1.9 UJ	7.	160 JN	3.5 UJ
Chlordane - gamma (technical mixture)			10000	1.8 UJ	1.9 UJ	5.7	180	3.5 UJ
DDD-4,4	50000		16000	3.5 UJ	3.7 UJ	3.8 U	3.5 R	6.9 UJ
DDE-4,4	50000	9000	54000	3.5 UJ	3.5 J	7.1	180	6.9 UJ
DDT-4,4	500000	9000	32000	3.5 UJ	12 J	3.8 UJ	68 R	6.9 UJ
Dieldrin	50000	180	4	3.5 UJ	3.7 UJ	3.8 U	81 R	6.9 UJ
Endosulfan I (alpha)			18000	1.8 UJ	1.9 UJ	1.9 U	13 R	3.5 UJ.
Endosulfan II (beta)				3.5 UJ	3.7 UJ	3.8 U	40 J	6.9 UJ
Endosulfan Sulfate			1000	3.5 UJ	3.7 UJ	3.8 U	39 J	6.9 UJ
Endrin	50000		1000	3.5 UJ	3.7 UJ	10 R	66 JN	6.9 UJ
Endrin Aldehyde			1000	3.5 UJ	3.7 UJ	3.8 U	53 J	6.9 UJ
Endrin ketone			1000	3.5 UJ	3.7 UJ	3.8 U	3.5 R	8.1 J
Heptachlor	50000	650	23000	1.8 UJ	1.9 UJ	1.9 U	1.8 R	3.5 UJ
Heptachlor Epoxide			700	1.8 UJ	1.9 UJ	1.9 U	1.8 R	3.5 UJ
Methoxychlor	50000		160000	18 UJ	19 UJ	.19 U	260 J	35 UJ
Pcb-araclor 1016				35 UJ	37 UJ	38 U	35 R	69 UJ
Pcb-araclor 1221				71 UJ	75 UJ	76 U	71 R	140 UJ
Pcb-araclor 1232				35 UJ	37 UJ	38 U	35 R	69 UJ
Pcb-araclor 1242				35 UJ	37 UJ	38 U	35 R	69 UJ
Pcb-araclor 1248				35 UJ	37 UJ	38 U	35 R	69 UJ
Pcb-araclor 1254		2000		35 UJ	37 UJ	38 U	35 R	69 UJ
Pcb-araclor 1260		2000		35 UJ	37 UJ	38 U	35 R	69 UJ
Toxaphene	50000		31000	180 UJ	190 UJ	190 U	180 R	350 UJ

J - Reported value estimated in quantity

N-

302795

R - Rejected Result

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-08	MA-SB-09	MA-SB-106	MA-SB-108	MA-SB-11
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB08-S	MA-SB09-S	MA-SB106-S	MA-SB108-S	MA-SB11-S
Sample Date		ĺ	F20	10/16/2001	10/15/2001	10/22/2001	10/22/2001	10/15/2001
Sample Interval		ļ		6.5 - 7 ft	· 3 - 3.5 ft	5 - 5.5 ft	4.5 - 5 ft	N/A
CLP Sample ID				B0DA8	B0D90	B0DG8	B0DG0	B0D92
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	120 JN	10 U	2 U	2.2 U	4 U
BHC, alpha			0.5	2.1 U	10 U	2 U	2.2 U	4 U
BHC, beta			3	2.1 U	28 J (c)	2 U	2.2 U	4 U
BHC, delta			9	2.1 U	10 U	2 U	2.2 U	4 U
BHC, gamma (Lindane)	50000		9	34 J (c)	10 UJ	2 U	2.2 U	4 UJ
Chlordane - alpha			23000	220 J	10 U	2 U	2.2 U	4 U
Chlordane - gamma (technical mixture)			10000	270 JN	180 R	3.6	4.5 J	4 U
DDD-4,4	50000		16000	4.1 U	20 U	3.9 U	7 NJ	7.9 U
DDE-4,4	50000	9000	54000	210	520	3.9 U	10	7.9 U
DDT-4,4	500000	9000	32000	4.1 UJ	20 UJ	3.9 U	32	7.9 UJ
Dieldrin	50000	180	4	4.1 U	330 J (BC)	3.9 U	5.7 NJ (c)	7.9 U
Endosulfan I (alpha)			18000	2.1 U	10 U	2 U	2.2 U	4 U
Endosulfan II (beta)				4.1 U	20 U	3.9 U	4.3 U	7.9 U
Endosulfan Sulfate			1000	4.1 U	20 U	3.9 U	4.3 U	7.9 U
Endrin	50000		1000	4.1 U	20 U	4.4	8.1 NJ	7.9 U
Endrin Aldehyde			1000	4.1 U	20 U	4.8 J	12 NJ	7.9 U
Endrin ketone	<u> </u>		1000	4.1 U	20 U	18 J	30 J	8.1
Heptachlor	50000	650	23000	2.1 U	10 U	2 U	2.2 U	4 U
Heptachlor Epoxide			700	2.1 U	10 U	2 U	2.2 U	4 U
Methoxychlor	50000		160000	21 U	100 U	20 UJ	22 UJ	40 U
Pcb-araclor 1016				41 U	200 U	39 U	43 U	79 U
Pcb-araclor 1221				83 U	410 U	79 U	88 U	160 U
Pcb-araclor 1232				41 U	200 U	39 U	43 U	79 U
Pcb-araclor 1242				41 U	200 U	39 U	43 U	79 U
Pcb-araclor 1248				41 U	200 U	39 U	43 U	79 U
Pcb-araclor 1254		2000		2300 (B)	17000 (B)	39 U	43 U	79 U
Pcb-araclor 1260		2000		1700	3800 (B)	39 U	43 U	79 U
Toxaphene	50000	l	31000	210 U	1000 U	200 U	220 U	400 U

J - Reported value estimated in quantity

Ν-

R - Rejected Result

(A, B, C) - Exceeds criteria
Exceedences highlighted
IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

302797

Table G.8

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-112	MA-SB-118	MA-SB-120	MA-SB-122	MA-SB-124
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB112-S	MA-SB118-S	MA-SB120-S	MA-SB122-S	MA-SB124-S
Sample Date	1		F20	10/17/2001	10/18/2001	10/19/2001	10/16/2001	10/17/2001
Sample Interval	1			4 - 4.5 ft	4.5 - 5 ft	2 - 2.5 ft	8 - 8.5 ft	4 - 4.5 ft
CLP Sample ID	1			B0DC2	B0DD6	B0DE7	B0DB2	B0DB5
Chemical Name					N			
		l .						
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2.1 U	2 U	4.4 UJ	2.3 U	240 (8)
BHC, alpha			0.5	2.1 U	2 U	4.4 UJ	2.3 U	4.2 U
BHC, beta			3	2.1 U	2 U	4.4 UJ	2.3 U	4.2 U
BHC, delta			9	2.1 U	2 U	4.4 UJ	2.3 U	4.2 U
BHC, gamma (Lindane)	50000		9	2.1 UJ	2 UJ	4.4 UJ	2.3 UJ	4.2 UJ
Chlordane - alpha			23000	94	12 R	140 J	16 J	970 J
Chlordane - gamma (technical mixture)			10000	79	2 U	170 JN	29	2800
DDD-4,4	50000		16000	4.1 U	3.9 U	8.5 UJ	4.4 U	8.2 U
DDE-4,4	50000	9000	54000	25 R	6.3 R	52 JN	8.2	740
DDT-4,4	500000	9000	32000	5.9 R	9.5 R	8.5 UJ	4.4 UJ	8.2 UJ
Dieldrin	50000	180	4	68:Jah (c)	6 JN (ć)	98 J (c)	3.6 J	690 SUBJ [®] 12-63 (BC)
Endosulfan I (alpha)			18000	31 J	17	4.4 UJ	2.3 U	8.5 R
Endosulfan II (beta)				4.1 U	. 3.9 U	8.5 UJ	4.4 U	8.2 U
Endosulfan Sulfate			1000	4.1 U	3.9 U	8.5 UJ	4.4 U	8.2 U
Endrin	50000		1000	16 J	3.9 U	8.5 UJ	4.4 U	34 J
Endrin Aldehyde			1000	4.1 U	9.9 J	8.5 UJ	4.4 U	8.2 U
Endrin ketone			1000	4.1 U	3.9 U	8.5 UJ	4.4 U	8.2 U
Heptachlor	50000	650	23000	2.1 U	2 U	4.4 UJ	2.3 U	4.2 U
Heptachlor Epoxide			700	4.6 R	2 U	4.4 UJ	4.9 J	4.2 U
Methoxychlor	50000		160000	21 U	20 U	44 UJ	23 U	42 U
Pcb-araclor 1016				41 U	39 U	85 UJ	44 U	82 U
Pcb-araclor 1221				83 U	80 U	170 UJ	89 U	170 U
Pcb-araclor 1232				41 U	39 U	85 UJ	44 U	82 U
Pcb-araclor 1242				41 U	39 U	85 UJ	44 U	82 U
Pcb-araclor 1248				41 U	39 U	85 UJ	44 U	82 U
Pcb-araclor 1254		2000		41 U	. 39 U	85 UJ	44 U	82 U
Pcb-araclor 1260	T	2000		41 U	. 39 U	3100° J - 1 (B)	44 U	1600
Toxaphene	50000		31000	210 U	200 U	440 UJ	230 U	420 U

J - Reported value estimated in quantity

N-

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria **Exceedences highlighted** IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-13	MA-SB-130	MA-SB-131	MA-SB-14	MA-SB-29
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB13-S	MA-SB130-S	MA-SB131-S	MA-SB14-S	MA-SB29-S-5.0
Sample Date			F20	10/19/2001	10/17/2001	10/19/2001	10/15/2001	12/12/2001
Sample Interval				8.5 - 9 ft	5 - 5.5 ft	5 - 5.5 ft	9 - 9.5 ft	5 - 5.5 ft
CLP Sample ID				B0DF6	B0DC1	B0DF1	B0D98	B0DX7
Chemical Name								
Pesticides and PCBs (ug/Kg)				·				
Aldrin	50000	170	500	2.5 UJ	3.1 U	2.1 U	2.2 U	2.1 UJ
BHC, alpha			0.5	2.5 UJ	3.1 U	2 J (c)	2.2 U	2.1 UJ
BHC, beta			3	5.8 JN (c)	3.1 U	2.1 U	2.2 U	2.1 UJ
BHC, delta			9	2.5 UJ	3.1 U	2.1 U	2.2 U	2.1 UJ
BHC, gamma (Lindane)	50000		9	2.5 UJ	3.1 UJ	2.1 U	2.2 UJ	2.1 UJ
Chlordane - alpha			23000	2.5 UJ	3.1 U	57 J	2.2 U	2.1 UJ
Chlordane - gamma (technical mixture)			10000	2.5 UJ	3.1 U	28	2.2 U	2.1 UJ
DDD-4,4	50000		16000	4.9 UJ	6 U	2.5 J	4.3 U	4.2 UJ
DDE-4,4	50000	9000	54000	4.9 UJ	6 U	94	4.3 U	4.2 UJ
DDT-4,4	500000	9000	32000	4.9 UJ	6 UJ	6.4 JN	4.3 UJ	4.2 UJ
Dieldrin	50000	180	4	4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Endosulfan I (alpha)			18000	2.5 UJ	3.1 U	2.1 U	2.2 U	2.1 UJ
Endosulfan II (beta)				4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Endosulfan Sulfate			1000	4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Endrin	50000		1000	4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Endrin Aldehyde			1000	4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Endrin ketone			1000	4.9 UJ	6 U	4.1 U	4.3 U	4.2 UJ
Heptachlor	50000	650	23000	2.5 UJ	3.1 U	2.1 U	2.2 U	2.1 UJ
Heptachlor Epoxide			700	2.5 UJ	3.1 U	2.1 U	2.2 U	2.1 UJ
Methoxychlor	50000		160000	25 UJ	31 U	-21 U	22 U	21 UJ
Pcb-araclor 1016				49 UJ	60 U	41 U	43 U	42 UJ
Pcb-araclor 1221				100 UJ	120 U	84 U	87 U	84 UJ
Pcb-araclor 1232				49 UJ	60 U	41 U	43 U	42 UJ
Pcb-araclor 1242				49 UJ	60 U	41 U	43 U	42 UJ
Pcb-araclor 1248				49 UJ	60 U	41 U	43 U	42 UJ
Pcb-araclor 1254		2000		49 UJ	60 U,	41 U	43 U	42 UJ
Pcb-araclor 1260		2000		49 UJ	60 U	41 U	110	42 UJ
Toxaphene	50000	L	31000	250 UJ	310 U	210 U	220 U	210 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

N.

R - Rejected Result

U - Analyte not detected above reporting limit

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-31	MA-SB-42	MA-SB-47	MA-SB-56	MA-SB-60
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB31-S	MA-SB42-S	MA-SB47-S	MA-SB56-S	MA-SB60-S
Sample Date	}		F20	10/17/2001	10/18/2001	10/18/2001	10/16/2001	10/16/2001
Sample interval	}			6.5 - 7 ft	4.5 - 5 ft	4.5 - 5 ft	8.5 - 9 ft	6.5 - 7 ft
CLP Sample ID				B0DC3	B0DC7	B0DC8	B0DA1	B0DA2
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2.1 U	2 U	2.1 U	2.1 U	2.7 U
BHC, alpha			0.5	2.1 ∪	2 U	2.1 U	2.1 U	2.7 U
BHC, beta			3	49 (C)	2 U	3.8, J (c)	13 J (C)	5.9 JN (c)
BHC, delta	<u> </u>		9	2.1 U	2 U	2.1 U	2.1 U	2.7 U
BHC, gamma (Lindane)	50000		9	2.1 UJ	2 UJ	2.1 UJ	2.1 UJ	2.7 UJ
Chlordane - alpha			23000	2.1 U	2 U	2.1 U	6.7 J	2.7 U
Chlordane - gamma (technical mixture)			10000	3.5 R	2 U	2.1 U	2.1 U	2.7 U
DDD-4,4	50000		16000	7 JN	3.9 U	. 4 U	4.1 U	5.2 U
DDE-4,4	50000	9000	54000	4.1 U	3.9 U	4 U	4.9 R	5.2 U
DDT-4,4	500000	9000	32000	4.9 J	3.9 UJ	4 UJ	7.4 J	5.2 UJ
Dieldrin	50000	180	4	4.1 U	3.9 U	5.6	4.4 R	5.2 U
Endosulfan I (alpha)			18000	2.1 U	2 U	2.1 U	2.7 JN	2.7 U
Endosulfan II (beta)				4.1 U	3.9 U	4 U	4.1 U	5.2 U
Endosulfan Sulfate			1000	4.1 U	3.9 U	4 U	4.1 U	5.2 U
Endrin	50000		1000	7.2 R	3.9 U	4 U	4.1 U	5.2 U
Endrin Aldehyde			1000	4.1 U	4.6 JN	4 U	4.1 U	5.2 U
Endrin ketone			1000	25 R	3.9 U	4 U	4.1 U	5.2 U
Heptachlor	50000	650	23000	2.1 U	. 2 U	2.1 U	2.1 U	2.7 U
Heptachlor Epoxide			700	2.1 U	2 U	2.1 U	2.1 U	2.7 U
Methoxychlor	50000		160000	110	20 U	21 U	21 U	27 U
Pcb-araclor 1016				41 U	39 U	40 U	41 U	52 U
Pcb-araclor 1221				83 U	79 U	82 U	84 U	110 U
Pcb-araclor 1232				41 U	39 U	40 U	41 U	52 U
Pcb-araclor 1242				41 U	39 U	40 U	41 U	52 U
Pcb-aracior 1248				41 U	39 U	40 U	41 U	52 U
Pcb-araclor 1254		2000		41 U	39 U	40 U	41 U	52 U
Pcb-araclor 1260		2000		41 U	39 U	40 U	41 U	52 U
Toxaphene	50000		31000	210 U	200 U	210 U	210 U	270 U

J - Reported value estimated in quantity

302799

N-

R - Rejected Result

U - Analyte not detected above reporting limit

⁽A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-62	MA-SB-66	MA-SB-67	MA-SB-68	MA-SB-69
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB62-S-5.0	MA-SB66-S-4.5	MA-SB67-S-5.0	MA-SB68-S-4.5	MA-SB69-S-2.0
Sample Date	1		F20	12/12/2001	12/13/2001	12/12/2001	12/13/2001	12/12/2001
Sample Interval	1		ľ	5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	2 - 2.5 ft
CLP Sample ID	1		 	B0DX2	B0FS8	B0DX3	B0DY8	B0DW8
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
BHC, alpha			0.5	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
BHC, beta			. 3	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
BHC, delta			9	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ.
BHC, gamma (Lindane)	50000		9	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
Chlordane - alpha			23000	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
Chlordane - gamma (technical mixture)			10000	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
DDD-4,4	50000		16000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
DDE-4,4	50000	9000	54000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
DDT-4,4	500000	9000	32000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Dieldrin	50000	180	4	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Endosulfan I (alpha)		Ī	18000	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
Endosulfan II (beta)		1		13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Endosulfan Sulfate			1000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Endrin	50000		1000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Endrin Aldehyde			1000	13 UJ	4.3 UJ	3.9 UJ	4.3 UJ	3.9 UJ
Endrin ketone			1000	13 UJ	4.3 UJ	5.1 J	4.3 UJ	3.9 UJ
Heptachlor	50000	650	23000	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
Heptachlor Epoxide			700	6.7 UJ	2.2 UJ	2 UJ	2.2 UJ	2 UJ
Methoxychlor	50000		160000	67 UJ	22 UJ	20 UJ	22 UJ	20 UJ
Pcb-araclor 1016				130 UJ	43 UJ	39 UJ	43 UJ	39 UJ
Pcb-araclor 1221				260 UJ	87 UJ	79 UJ	88 UJ	80 UJ
Pcb-araclor 1232				130 UJ	43 UJ	39 UJ	43 UJ	39 UJ
Pcb-aracior 1242				130 UJ	43 UJ	39 UJ	43 UJ	39 UJ
Pcb-araclor 1248				130 UJ	43 UJ	39 UJ	43 UJ	. 39 UJ
Pcb-araclor 1254		2000		130 UJ	43 UJ	39 UJ	43 UJ	39 UJ
Pcb-araclor 1260		2000		130 UJ	43 UJ	39 UJ	43 UJ	39 UJ
Toxaphene	50000		31000	670 UJ	220 UJ	200 UJ	220 UJ	200 UJ

J - Reported value estimated in quantity

N-

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

R - Rejected Result

U - Analyte not detected above reporting limit

3.02801

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-71	MA-SB-72	MA-SB-75	MA-SB-77	MA-SB-78
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB71-S-6.0	MA-SB72-S-6.0	MA-SB75-S-4.5	MA-SB77-S-5.0	MA-SB78-S-6.0
Sample Date			F20	12/13/2001	12/13/2001	12/12/2001	12/12/2001	12/13/2001
Sample Interval	1	1		6 - 6.5 ft	6 - 6.5 ft	4.5 - 5 ft	5 - 5.5 ft	6 - 6.5 ft
CLP Sample ID	1		ĺ	B0DZ4	B0DZ0	B0DX0DL	B0DX5	B0DY6
Chemical Name						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
								,
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
BHC, alpha			0.5	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
BHC, beta			3	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
BHC, delta			9	2 UJ	2.1 UJ	23 UJ .	1.9 UJ	1.9 UJ
BHC, gamma (Lindane)	50000		9	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
Chlordane - alpha			23000	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 ŲJ
Chlordane - gamma (technical mixture)			10000	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
DDD-4,4	50000		16000	3.9 UJ	4_UJ	45 UJ	3.7 UJ	3.7 UJ
DDE-4,4	50000	9000	54000	3.9 UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
DDT-4,4	500000	9000	32000	3.9 UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
Dieldrin	50000	180	4	3.9 UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
Endosulfan I (alpha)			18000	2 UJ	2.1 UJ	23 UJ -	1.9 UJ	1.9 UJ
Endosulfan II (beta)				3.9 UJ	6.2 NJ	45 UJ	3.7 UJ	3.7 UJ
Endosulfan Sulfate			1000	3.9, UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
Endrin	50000		1000	3.9 UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
Endrin Aldehyde			1000	3.9 UJ	4 UJ	45 UJ	3.7 UJ	3.7 UJ
Endrin ketone			1000	3.9 UJ	4 UJ	93 NJ	3.7 UJ	3.7 UJ
Heptachlor	50000	650	23000	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
Heptachlor Epoxide			700	2 UJ	2.1 UJ	23 UJ	1.9 UJ	1.9 UJ
Methoxychlor	50000		160000	20 UJ	21 UJ	230 UJ	19 UJ	19 UJ
Pcb-araclor 1016				39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Pcb-araclor 1221				80 UJ	81 UJ	910 UJ	75 UJ	76 UJ
Pcb-araclor 1232				39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Pcb-aracior 1242				39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Pcb-araclor 1248				39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Pcb-araclor 1254		2000		39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Pcb-araclor 1260		2000		39 UJ	40 UJ	450 UJ	37 UJ	37 UJ
Toxaphene	50000		31000	200 UJ	210 UJ	2300 UJ	190 UJ	190 UJ

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

N-

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-79	MA-SB-81	MA-SB-82	MA-SB-85	MA-SB-96
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB79-S-5.0	MA-SB81-S	MA-SB82-S	MA-SB85-S-6.0	MA-SB96-S
Sample Date			F20	12/13/2001	10/18/2001	10/19/2001	12/17/2001	10/22/2001
Sample Interval	1			5 - 5.5 ft	4.5 - 5 ft	4 - 4.5 ft	6 - 6.5 ft	4.5 - 5 ft
CLP Sample ID			Ì	B0DZ2	B0DE0	B0DE3	B0FW7	B0DG6
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
BHC, alpha			0.5	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
BHC, beta			3	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
BHC, delta			9	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
BHC, gamma (Lindane)	50000		9	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
Chlordane - alpha			23000	1.9 UJ	1.9 U	19 JN	1.9 U	2.1 U
Chlordane - gamma (technical mixture)			10000	1.9 UJ	75 J	29 J	1.9 U	2.1 U
DDD-4,4	50000		16000	3.7 UJ	6.8	3.8 U	3.7 U	4 U
DDE-4,4	50000	9000	54000	3.7 UJ	3.8 U	30	3.7 U	4 U
DDT-4,4	500000	9000	32000	3.7 UJ	3.8 U	130	3.7 U	4 U
Dieldrin	50000	180	4	3.7 UJ	3.8 U	3.8 U	3.7 U	4 U
Endosulfan I (alpha)			18000	1.9 UJ	1.9 U	1.9 U	1.9 U	2.1 U
Endosulfan II (beta)				3.7 UJ	3.8 U	7.4 J	3.7 U	4 U
Endosulfan Sulfate			1000	3.7 UJ	20 JN	4.4 R	3.7 U	4 U
Endrin	50000		1000	3.7 UJ	3.8 U	3.8 U	3.7 U	4 U
Endrin Aldehyde			1000	3.7 UJ	3.8 U	2.5 R	3.7 U	7.3
Endrin ketone			1000	3.7 UJ	3.8 U	3.8 U	3.7 U	13 J
Heptachlor	50000	650	23000	1.9, UJ	1.9 U	2	1.9 U	2.1 U
Heptachlor Epoxide			700	1.9 UJ	1.9 U	2.3 JN	1.9 U	2.1 U
Methoxychlor	50000		160000	19 UJ	64	19 U	19 U	22 J
Pcb-araclor 1016				37 UJ	38 U	38 U	37 U	40 U
Pcb-araclor 1221				75 UJ	76 U	76 U	76 U	81 U
Pcb-araclor 1232				37 UJ	38 U	38 U	37 U	40 U
Pcb-araclor 1242		I		37 UJ	38 U	38 U	37 U	40 U
Pcb-araclor 1248				37 UJ	38 U	38 U	37 U	40 U
Pcb-araclor 1254		2000		37 UJ	38 U	38 U	37 U	40 U
Pcb-araclor 1260		2000		37 UJ	38 U	38 U	37 U	40 U
Toxaphene	50000		31000	190 UJ	190 U	190 U	190 U	200 U

J - Reported value estimated in quantity

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

N-

R - Rejected Result

U - Analyte not detected above reporting limit

Table G.8

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SB-97	MA-SB-98	MA-SO-201	MA-SO-202	MA-SO-203
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SB97-S	MA-SB98-S	MA-SO201-S	MA-SO202-S-13	MA-SO203-S
Sample Date]		F20	10/22/2001	10/22/2001	10/17/2001	12/14/2001	10/19/2001
Sample Interval	1			4.5 - 5 ft	5 - 5.5 ft	4.5 - 5 ft	13 - 13.5 ft	4 - 4.5 ft
CLP Sample ID	1		ĺ	B0DG4	B0DH1	B0DB6	B0FT1	B0DF2
Chemical Name						7.		
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2 U	2.4 U	34 R	2 U	23 JN
BHC, alpha			0.5	2 U	2.4 U	20 U	2 U	18 U
BHC, beta			_3	2 U	2.4 U	20 U	2 U	18 U
BHC, delta			9	2 U	2.4 U	20 U	2 U	18 U
BHC, gamma (Lindane)	50000		9	2 U	2.4 U	20 UJ	2 U	18 U
Chlordane - alpha			23000	2 U	2.4 U	20 U	2 U	7500 J
Chlordane - gamma (technical mixture)			10000	2.8 J	3.2	20 U	. 2 U	9900
DDD-4,4	50000		16000	3.8 U	4.6 U	40 U	4 U	74 R
DDE-4,4	50000	9000	54000	3.8 U	4.6 U	19000 (B)	4 U	610 JN
DDT-4,4	500000	9000	32000	3.8 U	4.6 U	1000 R	4 U	230 J
Dieldrin	50000	180	4	3.8 U	4.6 U	40 .U	4 U	440 (BC)
Endosulfan I (alpha)			18000	2 U	2.4 U	20 U	2 U	18 U
Endosulfan II (beta)				3.8 U	4.6 U	40 U	4 U .	35 U
Endosulfan Sulfate			1000	3.8 U	4.6 U	380 R	4 U	. 77 J
Endrin	50000		1000	3.8 U	4.6 U	40 U_	4 U	250 R
Endrin Aldehyde			1000	3.8 U	4.7 J	40 U	4 U	77 JN
Endrin ketone			1000	9.7	9.7 NJ	140 R	4 U	35 U
Heptachlor	50000	650	23000	2 U	2.4 U	20 U	2 U	18 U
Heptachlor Epoxide			700	2 U	2.4 U	20 U	2 U	900 JN (c)
Methoxychlor	50000		160000	20 UJ	24 UJ	200 U	20 U	180 U
Pcb-araclor 1016				38 U	46 U	400 U	40 U	350 U
Pcb-aracior 1221				77 U	93 U	810 U	81 U	710 U
Pcb-araclor 1232				38 U	46 U	400 U	40 U	350 U
Pcb-araclor 1242				38 U	46 U	400 U	40 U	350 U
Pcb-araclor 1248				38 U	46 U	400 U	40 U	350 U
Pcb-araclor 1254		2000		38 U	46 U	48000 (B)	40 U	350 U
Pcb-araclor 1260		2000		38 U	46 U	400 U	40 U	350 U
Toxaphene	50000		31000	200 U	240 U	2000 U	200 U	1800 U

J - Reported value estimated in quantity

N -

302803

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-204	MA-SO-206	MA-SO-208	MA-SO-209	MA-SO-210
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO204-S-5.0	MA-SO206-S-5.0	MA-SO208-S	MA-SO209-S	MA-SO210-S-5.0
Sample Date]		F20	12/17/2001	12/17/2001	10/22/2001	10/22/2001	12/14/2001
Sample Interval]			5 - 5.5 ft	5 - 5.5 ft	4.5 - 5 ft	5 - 5.5 ft	5 - 5.5 ft
CLP Sample ID]	}	·	B0FW6	B0FT9	B0DH5	B0DH7	B0FW2
Chemical Name					<u> </u>			
Pesticides and PCBs (ug/Kg)				,				
Aldrin	50000	170	500	40 JN	1.9 U	2 U	1.8 U	3.1 NJ
BHC, alpha			0.5	2 U	1.9 U	2 U	1.8 U	2.2 U
BHC, beta			3	(c) NJ: (c)	1.9 U	2 U	1.8 U	2.2 U
BHC, delta			9	2 U	1.9 U	2 U	1.8 U	2.2 U
BHC, gamma (Lindane)	50000		9	2 U	1.9 U	2 U	1.8 U	2.2 U
Chlordane - alpha			23000	13 R	1.9 U	2 U	1.8 U	2.2 U
Chlordane - gamma (technical mixture)			10000	21	0.96 J	2 U	1.8 U	2.2 U
DDD-4,4	50000	<u></u>	16000	6.1 NJ	3.8 U	7.4 J	3.6 U	4.2 U
DDE-4,4	50000	9000	54000	92 J	3.8 U	3.9 U	3.6 U	4.2 U
DDT-4,4	500000	9000	32000	14 NJ	3.8 U	12	3.6 U	4.2 U
Dieldrin	50000	180	4	47 NU (c)	3.8 U	3.9 U	3.6 U	4.2 U
Endosulfan i (alpha)			18000	2 U	1.9 U	2 U	1.8 U	2.2 U
Endosulfan II (beta)				3.8 U	3.8 U	3.9 U	3.6 U	4.2 U
Endosulfan Sulfate			1000	3.8 U	3.8 U	3.9 U	3.6 U	4.2 U
Endrin	50000	<u> </u>	1000	3.8 U	3.8 U	3.9 U	3.6 U	4.2 U
Endrin Aldehyde			1000	7.9 R	3.8 U	39 J	3.6 U	4.2 U
Endrin ketone			1000	3.8 U	3.8 U	10	3.6 U	13
Heptachlor	50000	650	23000	.7 J	1.9 U	2 U	1.8 U	2.2 U
Heptachlor Epoxide		<u></u>	700	2 U	1.9 U	2 U	1.8 U	2.2 Ų
Methoxychlor	50000		160000	20 U	19 U	20 UJ	18 UJ	22 U
Pcb-araclor 1016				38 U	38 U	39 U	35 U	42 U
Pcb-araclor 1221	<u> </u>			78 U	. 77 U	79 U	72 U	86 U
Pcb-araclor 1232				38 U	38 U	39 U	35 U	42 U
Pcb-araclor 1242	ļ			38 U	38 U	39 U	35 U	42 U
Pcb-araclor 1248				38 U	38 U	39 U	35 U	42 U
Pcb-araclor 1254		2000		2100 (B)	38 U	39 U	35 U	42 U
Pcb-araclor 1260		2000		38 U	38 U	39 U	35 U	42 U
Toxaphene	50000		31000	200 U	190 U	200 U	180 U	220 U

J - Reported value estimated in quantity

N-

R - Rejected Result

U - Analyte not detected above reporting limit

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-211	MA-SO-212	MA-SO-213	MA-SO-214	MA-SO-301
Sample ID	IGWSCC	NRDCSCC		MA-SO211-S-4.5	MA-SO212-S-5.0	MA-SO213-S-5.5	MA-SO214-S	MA-SO301-S-5.0
Sample Date			F20	12/14/2001	12/14/2001	12/14/2001	10/18/2001	12/13/2001
Sample Interval				4.5 - 5 ft	5 - 5.5 ft	5.5 - 6 ft	4 - 4.5 ft	5 - 5.5 ft
CLP Sample ID		\ \		B0FT3	B0FT6	B0FW0	B0DC9	B0DY1
Chemical Name								1
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2.5 NJ	2.3 U	2.1 U	2 U	5.6 UJ
BHC, alpha			0.5	2 U	2.3 U	2.1 U	2 U	5.6 UJ
BHC, beta			3	2 U	2.3 U	2.1 U	3: J 4: (c)	5.6 UJ
BHC, delta			9	2 U	2.3 U	2.1 U	2 U	5.6 UJ
BHC, gamma (Lindane)	50000		9	2 U	2.3 U	2.1 U	2 UJ	5.6 UJ
Chlordane - alpha			23000	2 U	2.3 U	2.1 U	2 U	5.6 UJ
Chlordane - gamma (technical mixture)			10000	2 U	2.3 U	2.1 U	2 U	5.6 UJ
DDD-4,4	50000		16000	3.9 U	4.4 ⁻ U	4.1 U	3.9 U	11 UJ
DDE-4,4	50000	9000	54000	3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
DDT-4,4	500000	9000	32000	3.9 U	4.4 U	4.1 U	3.9 UJ	11 UJ
Dieldrin	500 <u>00</u>	180	4	3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
Endosulfan I (alpha)			18000	2 U	2.3 U	2.1 U	2 U	5.6 UJ
Endosulfan II (beta)				3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
Endosulfan Sulfate			1000	3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
Endrin	50000		1000	3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
Endrin Aldehyde			1000	3.9 U	4.4 U	4.1 U	3.9 U	11 UJ
Endrin ketone			1000	12 NJ	4.4 U	4.1 U	3.9 U	11 UJ
Heptachlor	50000	650	23000	2 U	2.3 U	2.1 U	2 U	5.6 UJ
Heptachlor Epoxide			700	2 U	2.3 U	2.1 U	2 U	5.6 UJ
Methoxychlor	50000		160000	20 U	23 U	21 U	20 U	56 UJ
Pcb-araclor 1016				39 U	44 U	41 U	39 U	110 UJ
Pcb-araclor 1221				79 U	90 U	83 U	79 U	220 UJ
Pcb-araclor 1232				39 U	44 U	41 U	39 U	110 UJ
Pcb-araclor 1242				39 U	44 U	41 U	39 U	110 UJ
Pcb-araclor 1248				39 U	44 U	41 U	39 U	110 UJ
Pcb-araclor 1254		2000		39 U	44 U	41 U	39 U	110 UJ
Pcb-araclor 1260		2000		39 U	44 U	41 U	39 U	110 UJ
Toxaphene	50000		31000	200 U	230 U	210 U	200 U	560 UJ

J - Reported value estimated in quantity

N-

302805

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

Table G.8 Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-302	MA-SO-303	MA-SO-401	MA-SO-402	MA-SO-403
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO302-S-6.0	MA-SO303-S-6.0	MA-SO401-S-10.0	MA-SO402-S-10.5	MA-SO403-S-10.0
Sample Date]		F20	12/12/2001	12/13/2001	12/17/2001	12/17/2001	12/17/2001
Sample Interval	1		· ·	6 - 6.5 ft	6 - 6.5 ft	10 - 10.5 ft	10.5 - 11 ft	10 - 10.5 ft
CLP Sample ID	1			B0AY2	B0DY4	B0FW9	B0FX0	B0FX1
Chemical Name								
Pesticides and PCBs (ug/Kg)								
Aldrin	50000	170	500	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
BHC, alpha			0.5	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
BHC, beta			3	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
BHC, delta			9	2 UJ	2 UJ	. 1.8 U	1.8 U	1.8 U
BHC, gamma (Lindane)	50000		9	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
Chlordane - alpha			23000	1.4 J	2 UJ	1.8 U	1.8 U	1.8 U
Chlordane - gamma (technical mixture)			10000	2 UJ	2 UJ	1.8 Ü	1.8 U	1.8 U
DDD-4,4	50000		16000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
DDE-4,4	50000	9000	54000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
DDT-4,4	500000	9000	32000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Dieldrin	50000	180	4	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Endosulfan I (alpha)			18000	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
Endosulfan II (beta)				3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Endosulfan Sulfate			1000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Endrin	50000		1000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Endrin Aldehyde			1000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Endrin ketone			1000	3.9 UJ	3.9 UJ	3.6 U	3.5 U	3.5 U
Heptachlor	50000	650	23000	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
Heptachlor Epoxide			700	2 UJ	2 UJ	1.8 U	1.8 U	1.8 U
Methoxychlor	50000		160000	20 UJ	20 UJ	18 U	18 U	18 U
Pcb-araclor 1016				39 UJ	39 UJ	36 U	35 U	35 U
Pcb-araclor 1221				78 UJ	80 UJ	73 U	71 U	71 U
Pcb-araclor 1232				39 UJ	39 UJ	36 U	35 U	35 U
Pcb-araclor 1242				39 UJ	39 UJ	36 U	35 U	35 U
Pcb-araclor 1248				39 UJ	39 UJ	36 U	35 U	35 U
Pcb-araclor 1254		2000		39 UJ	39 UJ	36 U	35 U	35 U
Pcb-araclor 1260		2000		39 UJ	39 UJ	36 U	35 U	35 U
Toxaphene	50000		31000	200 UJ	200 UJ	180 U	180 U	180 U

J - Reported value estimated in quantity

Ν-

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

Subsurface Soil - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-SO-404
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	MA-SO404-S-8.5
Sample Date	1		F20	12/17/2001
Sample Interval			1	8.5 - 9 ft
CLP Sample ID]		İ	B0FX3
Chemical Name				
Pesticides and PCBs (ug/Kg)				
Aldrin	50000	170	500	1.8 U
BHC, alpha			0.5	1.8 U
BHC, beta			3	1.8 U
BHC, delta			9	1.8 U
BHC, gamma (Lindane)	50000		9	1.8 U
Chlordane - alpha			23000	11 J
Chlordane - gamma (technical mixture)			10000	12
DDD-4,4	50000		16000	3.5 U
DDE-4,4	50000	9000	54000	3.5 U
DDT-4,4	500000	9000	32000	3.5 U
Dieldrin	50000	180	4	3.5 U
Endosulfan I (alpha)			18000	1.8 U
Endosulfan II (beta)	l			3.5 U
Endosulfan Sulfate			1000	3.5 U
Endrin	50000		1000	3.5 U
Endrin Aldehyde			1000	3.5 U
Endrin ketone			1000	3.5 U
Heptachlor	50000	650	23000	1.3 J
Heptachlor Epoxide			700	1.8 U
Methoxychlor	50000		160000	18 U
Pcb-araclor 1016				35 U
Pcb-araclor 1221				70 U
Pcb-araclor 1232	1			35 U
Pcb-araclor 1242				35 U
Pcb-araclor 1248	1			35 U
Pcb-araclor 1254		2000		35 U
Pcb-araclor 1260	<u> </u>	2000		35 U
Toxaphene	50000		31000	180 U

J - Reported value estimated in quantity

Ν-

R - Rejected Result

(A, B, C) - Exceeds criteria Exceedences highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date			06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID			B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Volatile Organic Compounds (ug/L)						·.	
Acetone	700		5 R	5 U	5 U	7.8 U	5 U
Benzene	1	5	0.5 R	0.5 U	0.5 U	0.3 J	0.5 U
Bromoform	4	80	0.5 R	1.1 UJ	0.5 U	0.5 U	0.5 U
Bromomethane	10		0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	2	5	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	4	100	0.5 R	0.5 U	1.1	0.94	0.5 U
Chlorobromomethane			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	6		0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	30		0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane			0.5 R	0.19 J	0.5 U	0.5 U	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.5 R	0.5 U	0.84	0.73	0.5 U
Dichlorobenzene-1,3	600		0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 R	0.5 U	0.5 U	0.25 J	0.5 U
Dichlorobromomethane	1	80	0.5 R	0.5 U	0.5 U	0.5 U	0.5 Ü
Dichlorodifluoromethane			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dichloroethane-1,1	70		0.5 R	0.61	1.9	1.8	0.5 U
Dichloroethane-1,2	2	5	0.5 R	0.23 J	0.5 U	0.5 U	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 R	0.5 U	0.5 U	0.21 J	0.5 U
Dichloroethylene-1,1	2	7	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dichloroethylene-1,2 cis	10	70	1.8 J	1.9	9.5	8.6	0.5 U
Dichloropropane-1,2	1	5	0.5 R	0.5 U	. 1:6 (A)	1.7 (A)	0.5 U
Dichloropropene-1,3 cis			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	700	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted 05/26/2004

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date	•		06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID			B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone-2			5 R	5 U	5 U	5 U	5 U
Isopropylbenzene			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate			0.5 R	0.29 J	0.5 U	0.5 U	0.5 U
Methyl cyclohexane			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 R	5 U	5 U	5 U	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 R	5 U	5 U	5 U	5 U
Methyl tertiary butyl ether (MTBE)			1 J	0.86	23	26	2
Methylene chloride	2	5	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	100	100	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 R	0.5 U	0.5 U	0.15 J	0.5 U
Toluene	1000	1000	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,3			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	1	5	0.5 R	0.5 U	0.5 U	0.45 J	0.96
Trichlorofluoromethane			0.5 R	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	5	2	0.5 R	2.6 (B)	0.5 U	0.5 U	0.5 U
Xylenes, total	40	10000	0.5 R	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date			09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			B0QB7	B0KY5	B0QB6	B0KX9	B0QB5
Chemical Name					****		
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 UJ	8.7 U	5 UJ	5 U
Benzene	1	5	0.5 U	0.5 UJ	0.32 J	2.J. (A)	2.4 (A)
Bromoform	4	- 80	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Bromomethane	10		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Carbon disulfide	····		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.25 J
Carbon tetrachloride	2	. 5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 UJ.	0.37 J	1.8 J	0.5 U
Chlorobromomethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloroethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloroform	6		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloromethane	30		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Cyclohexane			0.5 U	0.5 UJ	0.5 U	1.7 J	0.61
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Dichlorobenzene-1,2	600	600	0.5 U	0.5 UJ	0.5 U	9.3 J	6
Dichlorobenzene-1,3	600		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.66
Dichlorobenzene-1,4	75	75	0.5 U	0.5 UJ	0.5 U	1.8 J	1.5
Dichlorobromomethane	1	80	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethane-1,1	70		0.5 U	0.5 UJ	0.5 U	7.2 J	9
Dichloroethane-1,2	2	5.	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	0.5 UJ	0.5 U	11 J	10
Dichloroethylene-1,1	2	7	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.41 J
Dichloroethylene-1,2 cis	10	70	0.25 J		14 (A)	180 Ü (AB)	
Dichloropropane-1,2	1	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 UJ	0.5 U	33 J	2.1

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date			09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			B0QB7	B0KY5	B0QB6	B0KX9	B0QB5
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Hexanone-2			5 U	5 UJ	5 U	5 UJ	5 U
Isopropylbenzene			0.5 U	0.5 UJ	0.5 U	13 J	1
Methyl acetate			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Methyl cyclohexane			0.5 U	0.5 UJ	0.5 U	4.4 J	1.4
Methyl ethyl ketone (2-butanone)	300		5 U	5 UJ	· 5 U	5 UJ	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 UJ	5 U	5 UJ	5 U
Methyl tertiary butyl ether (MTBE)			1.8	38 J	48	0.5 UJ	0.5 U
Methylene chloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Styrene	100	100	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Tetrachioroethane-1,1,2,2	. 2		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 UJ
Tetrachloroethylene	. 1	5	0.29 J	0.5 UJ	0.5 U	0.5 UJ	0.2 J
Toluene	1000	1000	0.5 U	0.5 UJ	0.5 U	0.88 UJ	0.88
Trichlorobenzene-1,2,3			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.29 J
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 UJ	0.5 U	3.1 J	2.2
Trichloroethane-1,1,1	30	200	0.5 U	0.5 UJ	0.5 U	0.55 J	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Trichloroethylene	1	5	1.2 (A)	0.5 UJ	0.5 U	2.7 J (A)	5.5 (AB
Trichlorofluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Vinyl chloride	5	2	0.5 U	3:3, J (B)	2.4 (B)	58 J (AB)	.410 J (AB
Xylenes, total	40	10000	0.5 U	0.5 UJ	0.5 U	4.6 J	0.63 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name					, .		
Volatile Organic Compounds (ug/L)							
Acetone	700		5 R	5 R	6.1 U	· 5 U	NA NA
Benzene	1	5	0.5 R	0.5 R	2.6 (A)	1.3 · (A)	69 J (AB)
Bromoform	4	80	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Bromomethane	10		0.5 R	0.5 R	0.5 U	0.5 UJ	. 0.5 UJ
Carbon disulfide			0.5 R	0.5 R	0.5 U	0.5 U	19 J
Carbon tetrachloride	2	5	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Chlorobenzene	4	100	0.5 R	0.5 R	0.22 J	0.24 J	NA
Chlorobromomethane			0.5 R	0.5 R	0.5 U	_0.5 U	0.5 UJ
Chloroethane			0.5 R	0.5 R	0.33 J	0.19 J	0.5 UJ
Chloroform	6		0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Chloromethane	30		0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Cyclohexane			0.5 R	0.5 R	0.61	0.25 J	NA NA
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dibromochloromethane	10	80	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dibromoethane-1,2	0.05	0.05	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorobenzene-1,2	600	600	0.5 R	0.5 R	0.17 J	0.5 U	14 J
Dichlorobenzene-1,3	600		0.5 R	0.5 R	0.5 U	0.5 U	NA NA
Dichlorobenzene-1,4	75	75	0.5 R	0.5 R	0.5 U	0.5 U	NA
Dichlorobromomethane	1	80	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorodifluoromethane			0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethane-1,1	70		0.5 R	0.5 R	0.71	0.38 J	3.5 J
Dichloroethane-1,2	2	5	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethene-1,2 trans	100	100	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethylene-1,1	2	7	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethylene-1,2 cis	10	70	12 J 🕌 🖂 (A)	14 J - (A)	8.7	111 J 2 (A)	12 J (A)
Dichloropropane-1,2	1	5	0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloropropene-1,3 cis			0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloropropene-1,3 trans			0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Ethylbenzene	700	700	0.5 R	0.5 R	0.4 J	0.2 J	45 J

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name							····
			•				
Volatile Organic Compounds (ug/L)		_,					
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Hexanone-2			5 R	5 R	5 U	0.5 U	NA .
Isopropylbenzene			0.5 R	0.5 R	0.5 UJ	0.5 U	2.3 J
Methyl acetate			0.5 R	0.5 R	0.5 U	0.5 U	NA NA
Methyl cyclohexane			0.5 R	0.5 R	3	1.4	NA NA
Methyl ethyl ketone (2-butanone)	300		5 R	5 R	1.9 J	5 U	180 J
Methyl isobutyl ketone (4-methyl-2-pent	400		5 R	5 R	5 U	0.22 J	240 J
Methyl tertiary butyl ether (MTBE)			8.6 J	10 J	4.6	4.9	NA
Methylene chloride	2	5	0.5 R	0.5 R	0.5 U	0.5 UJ	0.5 UJ
Styrene	100	100	0.5 R	0.5 R	0.5 U	0.5 U	NA NA
Tetrachloroethane-1,1,2,2	- 2		0.5 R	0.5 R	0.5 U	0.5 UJ	0.5 UJ
Tetrachloroethylene	1	5	0.5 R	0.5 R	0.5 U	0.5 U	0.55 J
Toluene	1000	1000	0.5 R	0.5 R	0.5 U	0.5 U	17 J
Trichlorobenzene-1,2,3			0.5 R	0.5 R	0.5 U	0.5 U	3.3 J
Trichlorobenzene-1,2,4	9	70	0.5 R	0.5 R	0.5 U	0.5 U	11 J (A)
Trichloroethane-1,1,1	30	200	0.5 R	0.5 R	0.25 J	0.5 U	0.5 UJ
Trichloroethane-1,1,2	3	5	0.5 R	0.5 R	0.5 U	0.43 J	0.5 UJ
Trichloroethylene .	1	. 5	0.5 R	0.5 R	0.5 U	0.5 U	1.1 J (A)
Trichlorofluoromethane			0.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Vinyl chloride	5	2	0.5 R	0.5 R	0.5	0.57	0.5 UJ
Xylenes, total	40 .	10000	0.5 R	0.5 R	0.5 U	0.5	57 J (A

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Table G.9

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13S	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14R
Sample ID	GWQC	MCL	MA-MW-13S-R1	MA-MW-13S-R2	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1
Sample Date		•	06/28/2002	09/25/2002	06/18/2002	09/24/2002	06/18/2002
Sample Interval			6.6 - 16.6 ft	6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft
CLP Sample ID			B0KX8DL	B0QB8	B0KY2	B0QB9	B0KY0
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	700		25 R	44 J	5 U	5 U	5 UJ
Benzene	1	5	NA	0.91 J	0.5 U	0.5 U	0.5 UJ
Bromoform	4	80	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Bromomethane	10		NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Carbon disulfide			NA	" " 0.23 [,] J	0.5 U	0.5 U	0.5 UJ
Carbon tetrachloride	2	5	NA.	0.5 R	0.5 U	0.5 U	0.5 UJ
Chlorobenzene	4	100	2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Chlorobromomethane			NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Chloroethane			NA NA	0.5 R	0.5· U	0.5 U	0.5 UJ
Chloroform	6		NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Chloromethane	30		NANA	0.5 R	0.5 U	0.6	0.5 UJ
Cyclohexane			2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
DBCP (1,2-dibromo-3-chloropropane)		0.2	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dibromochloromethane	10	80	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dibromoethane-1,2	0.05	0.05	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorobenzene-1,2	600	600	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorobenzene-1,3	600		2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorobenzene-1,4	75	75	2.5 R	0.29 J	0.5 U	0.5 U	0.5 UJ
Dichlorobromomethane	1	80	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichlorodifluoromethane			NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethane-1,1	70		NA NA	0.5 R	0.5 U	0.5 U	0.87 J
Dichloroethane-1,2	2	5	NA NA	0.5 R	0.5 U	0.84	0.5 UJ
Dichloroethene-1,2 trans	100	100	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethylene-1,1	2	7	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloroethylene-1,2 cis	10	70	NA	0.5 R	0.56	0.85	6.5 J
Dichloropropane-1,2	1	5	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloropropene-1,3 cis			. NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Dichloropropene-1,3 trans			NA NA	0.5 R	.0.5 U	0,5 U	0.5 UJ
Ethylbenzene	700	700	NA NA	0.31 J	0.5 U	0.5 U	0.5 UJ

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13S	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14R
Sample ID	GWQC	MCL	MA-MW-13S-R1	MA-MW-13S-R2	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1
Sample Date			06/28/2002	09/25/2002	06/18/2002	09/24/2002	06/18/2002
Sample Interval			6.6 - 16.6 ft	6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft
CLP Sample ID			B0KX8DL	B0QB8	B0KY2	B0QB9	B0KY0
Chemical Name							
Volatile Organic Compounds (ug/L)		<u></u>					
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Hexanone-2	****		25 R	5 R	5 U	5 U	5 UJ
Isopropylbenzene			NA .	0.5 R	0.5 U	0.5 U	0.5 UJ
Methyl acetate			2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Methyl cyclohexane			2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Methyl ethyl ketone (2-butanone)	300		NA NA	7.2 J	5 U	5 U	5 UJ
Methyl isobutyl ketone (4-methyl-2-pent	400		NA NA	6.2 J	5 U	5 U	5 UJ
Methyl tertiary butyl ether (MTBE)			2.5 R	0.5 R	0.87	1.3	4.9 J
Methylene chloride	2	5	NA NA	0.51 UJ	0.5 U	0.5 U	0.5 UJ
Styrene	100	100	2.5 R	0.5 R	0.5 U	0.5 U	0.5 UJ
Tetrachloroethane-1,1,2,2	2		NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Tetrachloroethylene	. 1	5	NA NA	0.5 R	0.5 U	0.21 J	0.5 UJ
Toluene	1000	1000	NA NA	0.23 J	0.5 U	0.5 U	0.5 UJ
Trichlorobenzene-1,2,3			NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Trichlorobenzene-1,2,4	9	70	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Trichloroethane-1,1,1	30	200	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Trichloroethane-1,1,2	3	5	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Trichloroethylene	11	5	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Trichlorofluoromethane			NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ
Vinyl chloride	. 5	2	NA.	0.5 R	0.5 U	0.5 U	0.5 UJ
Xylenes, total	40	10000	NA NA	0.5 R	0.5 U	0.5 U	0.5 UJ

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14R	MA-MW-14S	MA-MW-14S	MA-MW-14S	MA-MW-15M
Sample ID	GWQC	MCL	MA-MW-14R-R2	MA-MW-14S-R1	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1
Sample Date			09/24/2002	06/18/2002	09/24/2002	09/24/2002	06/19/2002
Sample Interval			109.5 - 119.5 ft	7 - 20 ft	7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft
CLP Sample ID			B0QC3	B0KY4	B0QC1	B0QA9	B0KY8
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	700		9.3 U	5 UJ	5 U	5 U	5 U
Benzene	1	5	0.22 J	0.84	1.1 (A)	(A)	0.53
Bromoform	4	80	0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U
Bromomethane	10		0.5 U	0.5 U	0.5 R	0.5 UJ	0.5 U
Carbon disulfide			0.5 U	0.5 U	0.5 R	0.5 UJ	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	4	100	0.43 J	0.5 U	0.53	0.57	0.5 U
Chlorobromomethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane			0.5 U	0.5 U	0.5 R	0.5 UJ	0.5 U
Chloroform	6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	30		1.1 U	0.5 U	0.5 R	0.5 UJ	0.5 U
Cyclohexane			0.39 J	0.5 U	0.36 J	0.5 U	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.25 J	2.8	3.1	3.2	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 U	0.3 J	0.34 J	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 U	0.22 J	0.5 U	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 U	0.5 R	0.5 UJ	0.5 U
Dichloroethane-1,1	70		1.1	5.6	7.8	8.6	1.1
Dichloroethane-1,2	2	5	0.25 J	0.5 U	0.5 U	0.5 U	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	15	21	20	0.5 U
Dichloroethylene-1,1	2	7	0.17 J	0.5 U	0.54	0.5 U	0.5 U
Dichloroethylene-1,2 cis	10	. 70	8.8	320 (AB)	330 (AB)	380 (AB)	40 · · · (A)
Dichloropropane-1,2	1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	700	0.5 U	2.8	0.58	0.61	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

302816

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted 05/26/2004

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14R	MA-MW-14S	MA-MW-14S	MA-MW-14S	MA-MW-15M
Sample ID	GWQC	MCL	MA-MW-14R-R2	MA-MW-14S-R1	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1
Sample Date			09/24/2002	06/18/2002	09/24/2002	09/24/2002	06/19/2002
Sample Interval			109.5 - 119.5 ft	7 - 20 ft	7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft
CLP Sample ID			B0QC3	B0KY4	B0QC1	B0QA9	B0KY8
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor		-	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone-2			5 U	5 U	5 U	5 U	5 U
isopropylbenzene			0.5 U	. 0.5 U	0.24 J	0.26 J	0.5 U
Methyl acetate			0.5 UJ	0.5 U	0.5 U	0.5 R	0.5 U
Methyl cyclohexane			0.5 U	1.1	1.6	1.3	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 U	5 UJ	5 U	5 U	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 U	5 U	5 U .	5 U
Methyl tertiary butyl ether (MTBE)			14 J	0.5 U	0.5 U	0.5 U	16
Methylene chloride	2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	100	1.00	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	1000	1000	0.5 U	0.5 U	0.5 U	0.17 J	0.5 U
Trichlorobenzene-1,2,3			0.5 U	0.68	0.64	0.71	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	1.9	1.8	2	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	11	5	0.15 J	8.1 (AB)	11 (AB)	11 (AB)	0.5 U
Trichlorofluoromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	5	2	3.8 (8)	48 (AB)	17 J (AB)	5.1 J (AB)	16 (AB
Xylenes, total	40	10000	0.5 U	0.5 U	1.2	1.2	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-15M	MA-MW-15S	MA-MW-15S	MA-MW-16S	MA-MW-16S
Sample ID	GWQC	MCL	MA-MW-15M-R2	MA-MW-15S-R1	MA-MW-15S-R2	MA-MW-16S-R1	MA-MW-16S-R2
Sample Date			09/23/2002	06/19/2002	09/25/2002	06/27/2002	09/25/2002
Sample Interval			59.4 - 69.4 ft	6.8 - 16.8 ft	6.8 - 16.8 ft	6.5 - 16.5 ft	6.5 - 16.5 ft
CLP Sample ID			B0N57	B0KZ0	B0QE1	B0L33	B0QD7
Chemical Name							:
Volatile Organic Compounds (ug/L)							
Acetone	700		16 U	5 R	20 J	5 R	5 U
Benzene	1	5	0.77	9.2 J (AB)	38 (AB)	22. J. (AB)	3.1 (AB)
Bromoform	4	80	0.5 U	0.5 UJ	0.46 J	0.5 R	0.3 J
Bromomethane	10		0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 R
Carbon disulfide			0.5 U	0.5 UJ	0.6	0.84 J	0.44 J
Carbon tetrachloride	2	55	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Chlorobenzene	4	100	0.58	0.5 R	1.3	0.5 R	0.5 U
Chlorobromomethane			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Chloroethane			0.5 U	2.4 J	3	5.3 J	0.5 R
Chloroform	6		0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Chloromethane	30	<u> </u>	0.95 U	0.5 UJ	0.5 U	0.5 R	0.5 R
Cyclohexane		<u> </u>	1.1	2.8 J	2.1	5.4 J	8.8
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,2	600	600	0.35 J	0.5 R	0.59	0.83 J	1.2
Dichlorobenzene-1,3	600		0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,4	75	75	. 0.5 U	. 0.5 R	0.5 U	0.5 R	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 R
Dichloroethane-1,1	70		1.4	3.9 J	0.89	120 James (A)	41
Dichloroethane-1,2	2	5	0.46 J	1.5 J	0.5 U	0.5 R	3.5 (A)
Dichloroethene-1,2 trans	100	100	0.16 J	1.6 J	2.2	0.57 J	0.7
Dichloroethylene-1,1	2	7	0.6	0.5 UJ	0.5 U	0.5 R	0.47 J
Dichloroethylene-1,2 cis	10	70	37 (A)		1.6	12.J (A)	9.6
Dichloropropane-1,2	11	5	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 R	0.65	1.6 J	2.4

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted 05/26/2004
GWQC - Groundwater Quality Criteria
MCL - Maximum Contaminant Level

302818

Table G.9 Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-15M	MA-MW-15S	MA-MW-15S	MA-MW-16S	MA-MW-16S
Sample ID	GWQC	MCL	MA-MW-15M-R2	MA-MW-15S-R1	MA-MW-15S-R2	MA-MW-16S-R1	MA-MW-16S-R2
Sample Date			09/23/2002	06/19/2002	09/25/2002	06/27/2002	09/25/2002
Sample Interval			59.4 - 69.4 ft	6.8 - 16.8 ft	6.8 - 16.8 ft	6.5 - 16.5 ft	6.5 - 16.5 ft
CLP Sample ID			B0N57	B0KZ0	B0QE1	B0L33	B0QD7
Chemical Name							
Volatile Organic Compounds (ug/L)	<u> </u>						
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Hexanone-2	· · · · · · · · · · · · · · · · · · ·		5 U	5 R	5 U	5 R	5 U
Isopropylbenzene			0.5 U	0.5 R	1.5	2.3 J	4.1
Methyl acetate			0.5 UJ	0.5 UJ	0.5 U	0.5 R	0.5 U
Methyl cyclohexane			0.5 U	0.87 J	0.59 J	8.4 J	11 J
Methyl ethyl ketone (2-butanone)	300		5 UJ	5 R	4.5 J	5 R	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 R	5 U	5 R	5 U
Methyl tertiary butyl ether (MTBE)			21	3.4 J	5.2	1.7 J	1.9
Methylene chloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Styrene	100	100	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 UJ	0.5 U	0.75 J	0.33 J
Toluene	1000	1000	0.5 U	0.5 R	3	5.5 J	2.9
Trichlorobenzene-1,2,3			0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 UJ	0.5 U	87 J (A)	18
Trichloroethane-1,1,2	3	5	0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Trichloroethylene	1	5	0.56	1.4 J (A)	0.17 J	1.8 J (A)	1.5 (A)
Trichlorofluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 R	0.5 U
Vinyl chloride	5	2	1.7: (AB	3 J (B)	1.2	3.1.1 (8)	5.7 × (AB)
Xylenes, total	40	10000	0.5 U	0.77 J	2.8	9 J	10

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17M	MA-MW-17S	MA-MW-17S	MA-MW-18D
Sample ID	GWQC	MCL	MA-MW-17M-R1	MA-MW-17M-R2	MA-MW-17S-R1	MA-MW-17S-R2	MA-MW-18D-R1
Sample Date			06/14/2002	09/18/2002	06/14/2002	09/18/2002	06/17/2002
Sample Interval			41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft	8 - 18 ft	140 - 152 ft
CLP Sample ID			B0L34	B0QE0	B0L35	B0QD9	B0L30
Chemical Name							
				·			
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 U	5 R	5 U	5 U
Benzene	1	5	0.5 U	8:3 J (AB)	0.5 R	2 J (A)	0.5 U
Bromoform	4	80	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Bromomethane	10		0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Carbon disulfide	,		0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Chlorobromomethane			0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U
Chloroethane			0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Chloroform	66		0.5 U	0.5 UJ	0.5 UJ	0.5 UJ	0.5 U
Chloromethane	30		0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Cyclohexane			0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5. U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U_
Dichlorodifluoromethane			0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethane-1,1	70		0.5 U	0.5 UJ	0.5 UJ	0.15 J	0.5 U
Dichloroethane-1,2	2	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethylene-1,1	2	7	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethylene-1,2 cis	10	70	14 (A)	1.5	0.5 UJ	0.28 J	0.5 U
Dichloropropane-1,2	1	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Ethylbenzene	700	700	0.5 U	2.4	0.5 R	0.63	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted 05/26/2004

GWQC - Groundwater Quality Criteria MCL - Maximum Contaminant Level

Page 13 of 30

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17M	MA-MW-17S	MA-MW-17S	MA-MW-18D
Sample ID	GWQC	MCL	MA-MW-17M-R1	MA-MW-17M-R2	MA-MW-17S-R1	MA-MW-17S-R2	MA-MW-18D-R1
Sample Date			06/14/2002	09/18/2002	06/14/2002	09/18/2002	06/17/2002
Sample Interval			41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft	8 - 18 ft	140 - 152 ft
CLP Sample ID			B0L34	B0QE0	B0L35	B0QD9	B0L30
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor	•		0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Hexanone-2			5 U	5 U	5 R	5 U	5 U
sopropyibenzene			0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Methyl acetate			0.5 R	0.5 U	0.5 R	0.5 U	0.5 R
Methyl cyclohexane			0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 UJ	5 U	5 R	5 U	5 UJ
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 U	5 R	5 U	5 U
Methyl tertiary butyl ether (MTBE)			4.1	16 J	0.5 R	3.3 J	0.84
Methylene chloride	2	5	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Styrene	100	100	0.5 U	0.19 J	0.5 R	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Toluene	1000	1000	0.5 U	19	0.5 R	4.5	0.5 U
Frichlorobenzene-1,2,3			0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 U	0.5 R	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Trichloroethylene	1	5	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Trichlorofluoromethane			0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Vinyl chloride	5	2	2.8 J (8)	0.55	0.5 UJ	0.5 U	0.5 UJ
Xylenes, total	40	10000	0.5 U	18	0.5 R	1.1	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18D	MA-MW-18M	MA-MW-18M	MA-MW-18S	MA-MW-18S
Sample ID	GWQC	MCL	MA-MW-18D-R2	MA-MW-18M-R1	MA-MW-18M-R2	MA-MW-18S-R1	MA-MW-18S-R2
Sample Date			09/18/2002	06/17/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			140 - 152 ft	31.77 - 41.77 ft	31.77 - 41.77 ft	7.8 - 17.8 ft	7.8 - 17.8 ft
CLP Sample ID			B0N52	B0L31	B0N54	B0L32	B0N53
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 R	7 U .	5 U	7.2 U
Benzene	1	5	0.17 J	0.5 R	0.23 J	0.5 U	0.22 J
Bromoform	4	80	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Bromomethane	10		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Carbon disulfide			0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Chlorobromomethane			0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ
Chloroethane			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Chloroform	6		0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ
Chloromethane	30		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Cyclohexane			0.5 U	0.5 R	0.5 U	0.5 U	0.34 J
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,2	600	- 600	. 0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethane-1,1	70		0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ
Dichloroethane-1,2	2	5	0.23 J	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethylene-1,1	2	7	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethylene-1,2 cis	10	70	0.5 U	7.4 J	2.8	0.5 U	0.5 U
Dichloropropane-1,2	1	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 UJ	0.5 U	0.5 U	0.21 J
Dichloropropene-1,3 trans			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	700	0.94	0.5 R	0.5 U	0.5 U	0.16 J

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted 05/26/2004

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18D	MA-MW-18M	MA-MW-18M	MA-MW-18S	MA-MW-18S
Sample ID	GWQC	MCL	MA-MW-18D-R2	MA-MW-18M-R1	MA-MW-18M-R2	MA-MW-18S-R1	MA-MW-18S-R2
Sample Date			09/18/2002	06/17/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			140 - 152 ft	31.77 - 41.77 ft	31.77 - 41.77 ft	7.8 - 17.8 ft	7.8 - 17.8 ft
CLP Sample ID			B0N52	B0L31	B0N54	B0L32	B0N53
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Hexanone-2			5 U	5 R	5 U	5 U	5 U
Isopropylbenzene			0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Methyl acetate			0.5 U	0.5 R	0.5 R	0.5 R	0.5 U
Methyl cyclohexane			0.5 U	0.5 R	0.5 UJ	0.5 U	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 U	5 R	0.5 U	5 UJ	0.5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 R	5 U	5 U	5 U
Methyl tertiary butyl ether (MTBE)			0.59 J	2.5 J	1.8 J	0.87	0.43 J
Methylene chloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Styrene	100	100	0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Tetrachioroethylene	1	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Toluene	1000	1000	0.31 J	0.5 R	0.23 J	0.5 U	0.52
Trichlorobenzene-1,2,3			0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 R	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichloroethylene	1	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Vinyl chloride	5	2	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Xylenes, total	40	10000	0.5 U	0.5 R	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

302824

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-19S
Sample ID	GWQC	MCL	MA-MW-19M-R1	MA-MW-19M-R2	MA-MW-19R-R1	MA-MW-19R-R2	MA-MW-19S-R1
Sample Date	:	1	06/17/2002	09/19/2002	06/17/2002	09/19/2002	06/17/2002
Sample Interval			42 - 52 ft	42 - 52 ft	103 - 113 ft	103 - 113 ft	5.05 - 15.05 ft
CLP Sample ID		.	B0L28	B0N55	B0L27	B0N56	B0L29
Chemical Name					tan at a second		
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	6.6 U	5 U	0.5 U	5 U
Benzene	1	5	0.5 U	0.5 UJ	.0.5 U	0.16 J	0.5 U
Bromoform	4	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	. 10		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 U	0.5 U	0.15 J	0.5 U
Chlorobromomethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	. 6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	30		0.5 U	0.5 U	0.5 U	. 0.5 U	0.5 U
Cyclohexane			0.5 U	. 0.5 UJ	0.5 U	0.5 U	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	. 0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane			0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethane-1,1	70		0.5 U	0.5 U	0.74	0.33 J	0.5 U
Dichloroethane-1,2	2	5	0.5 U	0.5 U	0.5 U	0.21 J	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 UJ .	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethylene-1,1	2	7	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Dichloroethylene-1,2 cis	10	70	1.3	1.6	3.2	3.6	0.5 U
Dichloropropane-1,2	11	5	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-19S
Sample ID	GWQC	MCL	MA-MW-19M-R1	MA-MW-19M-R2	MA-MW-19R-R1	MA-MW-19R-R2	MA-MW-19S-R1
Sample Date		,	06/17/2002	09/19/2002	06/17/2002	09/19/2002	06/17/2002
Sample Interval			42 - 52 ft	42 - 52 ft	103 - 113 ft	103 - 113 ft	5.05 - 15.05 ft
CLP Sample ID			B0L28	B0N55	B0L27	B0N56	B0L29
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Hexanone-2			5 U	5 U	5 U	5 U	5 U
Isopropylbenzene			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate			0.5 R	0.5 R	0.5 R	0.5 U	0.5 R
Methyl cyclohexane			0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 UJ	5 UJ	5 UJ	5 U.	5 UJ
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 U	5 U	5 U	5 U
Methyl tertiary butyl ether (MTBE)			6.5	5.6 J	1.3	1.5 J	1.4
Methylene chloride	_ 2	5	0.5 UJ	0.5 U	0.5 UJ	0.5 U	0.5 UJ
Styrene	100	100	0.5 U	0.5 Ü	0.5 U	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	1000	1000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,3			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	. 70	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	1	5	0.82	0.46 J	0.76	0.46 J	0.5 U
Trichlorofluoromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	5	2	0.5 UJ	0.5 U	0.5 UJ	2.4 (B)	0.5 UJ
Xylenes, total	40	10000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Table G.9

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19S	MA-MW-01M	MA-MW-01M	MA-MW-01S	MA-MW-01S
Sample ID	GWQC	MCL	MA-MW-19S-R2	MA-MW-1M-R1	MA-MW-1M-R2	MA-MW-1S-R1	MA-MW-1S-R2
Sample Date			09/19/2002	06/20/2002	09/23/2002	06/20/2002	09/23/2002
Sample Interval			5.05 - 15.05 ft	50 - 60 ft	50 - 60 ft	4 - 14 ft	4 - 14 ft
CLP Sample ID			B0N60	B0KZ2	B0N59	B0KZ4	B0N58
Chemical Name						:	
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 R	5.7 U	5 R	5.8 U
Benzene	1	5	0.5 U	0.58 J	0.64 J	0.53 J	0.35 J
Bromoform	4	80	0.5 U	. 0.5 UJ	0.5 U	0.5 UJ	0.27 J
Bromomethane	10		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Carbon disulfide			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 R	0.5	0.5 R	0.5 U
Chlorobromomethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloroethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloroform	6		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Chloromethane	30		0.5 ·U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Cyclohexane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dibromochloromethane	_10	80	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichlorobenzene-1,2	600	600	0.5 U	0.5 R	0.29 J	0.5 R	0.5 U
Dichlorobenzene-1,3	600·		0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Dichlorobromomethane	11	80	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethane-1,1	70		0.5 U	0.5 UJ	0.17 J	0.5 UJ	0.68
Dichloroethane-1,2	2	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloroethylene-1,1	22	7	0.5 U	0.5 UJ	0.22 J	0.5 UJ	0.5 U
Dichloroethylene-1,2 cis	10	70	1.4		22 (A)		2.1
Dichloropropane-1,2	11	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

30282

R - Rejected result

(A, B) - Exceeds criteria **Exceedances highlighted**

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19S	MA-MW-01M	MA-MW-01M	MA-MW-01S	MA-MW-01S
Sample ID	GWQC	MCL	MA-MW-19S-R2	MA-MW-1M-R1	MA-MW-1M-R2	MA-MW-1S-R1	MA-MW-1S-R2
Sample Date			09/19/2002	06/20/2002	09/23/2002	06/20/2002	09/23/2002
Sample Interval			5.05 - 15.05 ft	50 - 60 ft	50 - 60 ft	4 - 14 ft	4 - 14 ft
CLP Sample ID			B0N60	B0KZ2	B0N59	B0KZ4	B0N58
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor		· ·	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Hexanone-2			5 U_	5 R	5 U	5 R	0.24 J
Isopropylbenzene			0.5 U	0.5 R	0.5 U	0.5 R	0.5 ป
Methyl acetate			0.5 U	0.5 UJ	0.5 R	0.5 UJ	0.5 U
Methyl cyclohexane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 U	5 R	5 U	5 R	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 R	5 U	5 R	5 U
Methyl tertiary butyl ether (MTBE)			1.2 J	65 J	60	0.5 UJ	5.6
Methylene chloride	2	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Styrene	100	100	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Toluene	1000	1000	0.5 U	0.5 R	0.5 U	0.61 UJ	0.26 J
Trichlorobenzene-1,2,3			0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.75
Trichloroethane-1,1,2	3	5	0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Trichloroethylene	1	5	0.17 J	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Trichlorofluoromethane			0.5 U	0.5 UJ	0.5 U	0.5 UJ	0.5 U
Vinyl chloride	5	2	0.89	7.3 J (AB)	9.4: 4 ² (AB)	0.5 UJ	0.63
Xylenes, total	40	10000	0.5 U	0.5 R	0.5 U	0.5 R	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

30282

Groundwater - Volatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20D	MA-MW-20M	MA-MW-20M	MA-MW-20R
Sample ID	GWQC	MCL	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20M-R1	MA-MW-20M-R2	MA-MW-20R-R1
Sample Date		}	06/13/2002	09/20/2002	06/13/2002	09/20/2002	06/13/2002
Sample Interval			123 - 133 ft	123 - 133 ft	42 - 52 ft	42 - 52 ft	113 - 123 ft
CLP Sample ID		·	B0L25	B0N63	B0L24	B0N61	B0L26
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 U	5 U	6.2 U	5 U
Benzene	1	5	0.5 U	0.33 J	0.5 U	0.28 J	0.5 U
Bromoform	4	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromomethane	10		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	4	100	0.5 U	0.5 U	0.54	0.43 J	0.5 U
Chlorobromomethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	6		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	30		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Cyclohexane			0.5 U	0.29 J	0.5 U	0.26 J	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.5 U	0.5 U	0.5 U	0.37 J	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 U	0.5 U	0.16 J	0.5 U
Dichlorobromomethane	1	80	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloroethane-1,1	70		2.6	1.9	0.52	1.3	2.4
Dichloroethane-1,2	2	5	0.5 U	0.87	0.5 U	_0.37 J	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
Dichloroethylene-1,1	2	7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloroethylene-1,2 cis	10	70	18 注意 (A)	4 14 (A)	0.5 UJ	9.4	16 (A)
Dichloropropane-1,2	1	5	0.5 U	0.5 U	0.5 U	0.25 J	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20D	MA-MW-20M	MA-MW-20M	MA-MW-20R
Sample ID	GWQC	MCL	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20M-R1	MA-MW-20M-R2	MA-MW-20R-R1
Sample Date		,	06/13/2002	09/20/2002	06/13/2002	09/20/2002	06/13/2002
Sample Interval			123 - 133 ft	123 - 133 ft	42 - 52 ft	42 - 52 ft	113 - 123 ft
CLP Sample ID			B0L25	B0N63	B0L24	B0N61	B0L26
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor	_		0.5 U	0.5 U	0.5 U	0.5 ป	0.5 U
Hexanone-2			5 UJ	5 U	5 UJ	5 U	5 UJ
Isopropylbenzene			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate			0.5 R	0.5 U	0.5 R	0.5 U	0.5 R
Methyl cyclohexane			0.5 U	0.5 U	0.5 U_	0.5 <u>U</u>	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 UJ	5 U	5 UJ	5 U	5 ŲJ
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 U	5 U	5 U	5 U
Methyl tertiary butyl ether (MTBE)	_		0.85	0.5 U	18	18	0.55
Methylene chloride	2	5	0.5 U	0.18 J	0.5 U	0.5 U	0.5 U
Styrene	100	100	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	1000	1000	0.5 U	0.27 J	2.4	0.23 J	0.5 U
Trichlorobenzene-1,2,3			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethylene	1	5	1:5 (A)	3 (A)	0.5 U	0.51	1.4 A
Trichlorofluoromethane			0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	5	2	(AB)	8 (AB)	0.5 U	f 4.2	9:3 (AB
Xylenes, total	40	10000	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20R	MA-MW-20S	MA-MW-20S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R2	MA-MW-21S-R1	MA-MW-21S-R2
Sample Date			09/20/2002	06/13/2002	09/20/2002	06/12/2002	09/17/2002
Sample Interval			113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			B0N62	B0L22	B0N66	B0L21	B0N68
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	700		5 U	5 U	5 U .	5 R	5 U
Benzene	1	5	0.26 J	0.5 U	0.5 U	0.5 R	0.5 U
Bromoform	4	80	0.5 U	0.5 U	0.5 ·U	0.5 UJ	0.93 J
Bromomethane	10		0.5 U	0.5 U	0.5 U	0.5 UJ	··· 0.5 U
Carbon disulfide			0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	4	100	0.18 J	0.5 U	0.5 U	0.78 J	0.53
Chlorobromomethane			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Chloroethane			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Chloroform	6		0.5 U	0.5 U	0.21 J	0.5 UJ	0.5 U
Chloromethane	30		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Cyclohexane			0.27 J	0.5 U	0.5 U	0.5 R	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Dibromochloromethane	10	80	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Dichlorobenzene-1,2	600	600	0.2 J	0.5 U	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,3	600		0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,4	75	75	0.5 U	0.5 U	0.5 U	0.5 R	0.16 J
Dichlorobromomethane	1	80	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichloroethane-1,1	70		2.3	1.1	4	0.5 UJ	0.5 U
Dichloroethane-1,2	2	5	0.53	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichloroethylene-1,1	_ 2	7	0.5 U	0.5 U	0.5 U	0.5 UJ`	0.5 U
Dichloroethylene-1,2 cis	10	70	9.8	0.5 U	0.61	0.5 UJ	0.35 J
Dichloropropane-1,2	1	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 cis			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

302830

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20R	MA-MW-20S	MA-MW-20S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R2	MA-MW-21S-R1	MA-MW-21S-R2
Sample Date			09/20/2002	06/13/2002	09/20/2002	06/12/2002	09/17/2002
Sample Interval	•		113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			B0N62	B0L22	B0N66	B0L21	B0N68
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Hexanone-2			5 U	5 UJ	5 U	5 R	5 U
Isopropylbenzene			0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Methyl acetate			0.5 U	0.5 R	0.5 U	0.5 R	0.5 U
Methyl cyclohexane			0,5 U	0.5 U	0.5 U	0.5 R	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 U	5 UJ	5 U	5 R	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 U	5 U	5 R	5 U
Methyl tertiary butyl ether (MTBE)			4.4	0.5 U	0.32 J	0.5 R	0.35 J
Methylene chloride	2	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Styrene	100	100	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 UJ
Tetrachioroethylene	1	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Toluene	1000	1000	0.5 U	0.51	0.5 U	0.5 R	0.5 U
Trichlorobenzene-1,2,3	· · · · · · · · · · · · · · · · · · ·		0.5 U	0.5 U	0.5 U	0.5 R	0.5 U
Trichlorobenzene-1,2,4	9	70	0,5 U	0.5 U	0.5 U	0.5 R	0.5 U
Trichloroethane-1,1,1	30	200	22	50 (A)	60; (A)	0.5 UJ	0.5 U
Trichloroethane-1,1,2	3 .	5	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Trichloroethylene	11	5	1.1 (A)	0.92	1.6. (A)	0.5 UJ	0.5 U
Trichlorofluoromethane			0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U
Vinyl chloride	5	2	6.1 (AB)	0.5 U	0.5 U	0.5 UJ	0.5 U
Xylenes, total	40	10000	0.5 U	0.5 U	0.5 U	0.5 R	0.5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

302832

Table G.9

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-22S	MA-MW-04S	MA-MW-04S	MA-MW-05S
Sample ID	GWQC	MCL	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-4S-R1	MA-MW-4S-R2	MA-MW-5S-R1
Sample Date			06/12/2002	09/17/2002	06/12/2002	09/17/2002	06/27/2002
Sample Interval			10 - 21 ft	10 - 21 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft
CLP Sample ID			B0L23	B0N67	B0KZ9	B0N72	B0KZ7
Chemical Name					-	1	
Volatile Organic Compounds (ug/L)							
Acetone	700		5 R	5 U	5 U	5 U	16 J
Benzene	1	5	0.5 R	0.5 U	0,5 U	0.5 U	150 J (AB)
Bromoform	4	80	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5_R
Bromomethane	10		0.5 UJ	0.15 J	0.5 U	0.5 U	0.5 R
Carbon disulfide	:		0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Carbon tetrachloride	2	. 5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Chlorobenzene	4	100	0.5 R	0.5 U	0.5 U	0.5 U	2.3 J
Chlorobromomethane			0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 R
Chloroethane			0.5 UJ	. 0.5 U	0.5 U	0.5 U	3.9 J
Chloroform	6		0.5 UJ	1.3 J	0.5 U	0.5 U	0.5 R
Chloromethane	30		0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Cyclohexane			0.5 R	0.5 U	0.5 U	0.5 U	33 J
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dibromochloromethane	10	80	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dibromoethane-1,2	0.05	0.05	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichlorobenzene-1,2	600_	600	0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Dichlorobenzene-1,3	600		0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Dichlorobenzene-1,4	75	75	0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Dichlorobromomethane	1	80	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichlorodifluoromethane			0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloroethane-1,1	70		0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 R
Dichloroethane-1,2	2	. 5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloroethene-1,2 trans	100	100	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloroethylene-1,1	2	7	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloroethylene-1,2 cis	10	70	0.5 UJ	0.5 U	0.5 U	0.5 U	0.71 J
Dichloropropane-1,2	1	5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloropropene-1,3 cis			0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Dichloropropene-1,3 trans			0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Ethylbenzene	700	700	0.5 R	0.5 U	. 0.5 U	0.5 U	27 J

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-22S	MA-MW-04S	MA-MW-04S	MA-MW-05S
Sample ID	GWQC	MCL	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-4S-R1	MA-MW-4S-R2	MA-MW-5S-R1
Sample Date		1	06/12/2002	09/17/2002	06/12/2002	09/17/2002	06/27/2002
Sample Interval			10 - 21 ft	10 - 21 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft
CLP Sample ID			B0L23	B0N67	B0KZ9	B0N72	B0KZ7
Chemical Name							
/olatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Hexanone-2			5 R	5 U	5 UJ	5 U	5 R
sopropylbenzene			0.5 R	0.5 U	0.5 U	0.5 U	13 J
Methyl acetate			0.5 R	0.5 U	0.5 R	0.5 U	0.5 R
Methyl cyclohexane			0.5 R	0.5 U	0.5 U	0.5 U	200 J
Methyl ethyl ketone (2-butanone)	300		5 R	1.8 J	5 UJ	1 J	5.R
Methyl isobutyl ketone (4-methyl-2-pent	400		5 R	5 U	5 U	5 U	5 R
Methyl tertiary butyl ether (MTBE)			0.5 R	0.5 U	0.5 U	0.5 U	11 J
Methylene chloride	2	5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Styrene	100	100	0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Tetrachloroethane-1,1,2,2	2		0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Tetrachloroethylene	1	5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Toluene	1000	1000	0.78 J	0.5 U	0.57	0.5 U	2.2 J
Frichlorobenzene-1,2,3			0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Trichlorobenzene-1,2,4	9	70	0.5 R	0.5 U	0.5 U	0.5 U	0.5 R
Frichloroethane-1,1,1	30	200	0.5 UJ	0.35 J	0.5 U	0.5 U	0.5 R
Frichloroethane-1,1,2	3	5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Trichloroethylene	1	5	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Trichlorofluoromethane			0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Vinyl chloride	5	2	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 R
Xylenes, total	40	10000	0.5 R	0.5 U	0.5 U	0.5 U	89-J

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Volatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-05S	MA-MW-05S	MA-MW-08S	MA-MW-08S	MA-MW-09D
Sample ID	GWQC	MCL	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-8S-R1	MA-MW-8S-R2	MA-MW-9D-R1
Sample Date			06/27/2002	09/25/2002	06/12/2002	09/17/2002	06/19/2002
Sample Interval			6 - 16 ft	6 - 16 ft	4 - 14 ft	4 - 14 ft	44 - 54 ft
CLP Sample ID			B0KZ8	B0N64	B0KY7	B0N70	B0KY6
Chemical Name							
Volatile Organic Compounds (ug/L)							
Acetone	_ 700		10 UJ	100 U	5 R	5 U	5 U
Benzene	1	5 .	150 J (AB)	110 (AB)	0.5 R	0.5 U	0.5 U
Bromoform	4	80	0.5 R	10 U	0.5 U	0.5 U	0.5 U
Bromomethane	10		0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Carbon disulfide			0.5 R	10 U	0.5 R	0.28 J	0.5 U
Carbon tetrachloride	2	5	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Chlorobenzene	4	100	2.2 J	10 U	0.5 R	0.5 U	0.5 U
Chlorobromomethane			0.5 R	· 10 U	0.5 UJ	0.5 U	0.5 U
Chloroethane			0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Chloroform	6		0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Chloromethane	30		0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Cyclohexane			- 53 J	28	0.5 R	0.5 U	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dibromochloromethane	10	80	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichlorobenzene-1,2	600	600	0.5 R	10 U	0.5 R	0.5 U	0.5 U
Dichlorobenzene-1,3	600		0.5 R	10 U	0.5 R	0.5 U	0.5 U
Dichlorobenzene-1,4	75	75	0.5 R	10 U	0.5 R	0.5 U	0.5. U
Dichlorobromomethane	1	- 80	0.5 R	10 U	0.5 UJ	0.5 U .	0.5 U
Dichlorodifluoromethane			0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloroethane-1,1	70		0.5 R	10 U	0.5 UJ	0.5 U	0.68
Dichloroethane-1,2	2	5	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloroethene-1,2 trans	100	100	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloroethylene-1,1	2	7	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloroethylene-1,2 cis	10	70	0.69 J	10 U	0.5 UJ	0.5 U	3232 Haras (A)
Dichloropropane-1,2	11	5	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloropropene-1,3 cis			0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Dichloropropene-1,3 trans			0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Ethylbenzene	700	700	26 J	26	0.5 R	0.5 U	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-05S	MA-MW-05S	MA-MW-08S	MA-MW-08S	MA-MW-09D
Sample ID	GWQC	MCL	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-8S-R1	MA-MW-8S-R2	MA-MW-9D-R1
Sample Date			06/27/2002	09/25/2002	06/12/2002	09/17/2002	06/19/2002
Sample Interval			6 - 16 ft	6 - 16 ft	4 - 14 ft	4 - 14 ft	44 - 54 ft
CLP Sample ID		ļ	B0KZ8	B0N64	B0KY7	B0N70	B0KY6
Chemical Name							
Volatile Organic Compounds (ug/L)							
Freon 113 (1,1,2-trichloro-1,2,2-trifluor	·	T	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Hexanone-2			5 R	100 U	5 R	5 U	5 U
Isopropylbenzene	· · · · · · · · · · · · · · · · · · ·		13 J	5.8 J	0.5 R	0.5 U	0.5 U
Methyl acetate			0.5 R	10 U	0.5 R	0.5 U	0.5 U
Methyl cyclohexane			190 J	180	0.5 R	0.5 U	0.5 U
Methyl ethyl ketone (2-butanone)	300		5 R	100 U	5 R	5 U	5 U
Methyl isobutyl ketone (4-methyl-2-pent	400		5 R	100 U	5 R	5 U	5 U
Methyl tertiary butyl ether (MTBE)			10 J	10 U	0.5 R	0.5 U	9.2
Methylene chloride	2	5	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Styrene	100	100	0.5 R	10 U	0.5 R	0.5 U	0.5 U
Tetrachloroethane-1,1,2,2	2		0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Tetrachloroethylene	1	5	0.5 R	10 U	0.5 UJ	0.5 U	1.77
Toluene	1000	1000	2.3 J	10 U	0.5 R	5.9	0.5 U
Trichlorobenzene-1,2,3			0.5 R	10 U	0.5 R	0.5 U	0.5 U
Trichlorobenzene-1,2,4	9	70	0.5 R	10 U	0.5 R	0.5 U	0.5 U
Trichloroethane-1,1,1	30	200	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Trichloroethane-1,1,2	3	5	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Trichloroethylene	1	5	0.5 R	10 U	0.5 UJ	0.5 U	0.94
Trichlorofluoromethane			0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Vinyl chloride	5	2	0.5 R	10 U	0.5 UJ	0.5 U	0.5 U
Xylenes, total	40	10000	90 J (A)	17	0.5 R	0.5 U	0.5 U

NA - Not analyzed

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09D	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R2
Sample Date			09/19/2002	06/19/2002	09/19/2002
Sample Interval		1	44 - 54 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID		,	B0N65	B0KX6	B0N69
Chemical Name					
Volatile Organic Compounds (ug/L)		- 44		1	
Acetone	700		. 5 U	5 R	5 U
Benzene	1	5	0.19 J	0.5 R	0.58
Bromoform	4	80	0.24 J	0.64 J	0.5 U
Bromomethane	10		0.5 U	0.5 R	0.5 U
Carbon disulfide			0.5 U	0.5 R	0.5 U
Carbon tetrachloride	2	5	0.5 U	0.5 R	0.5 U
Chlorobenzene	4	100	0.37 J	0.5 R	0.44 J
Chlorobromomethane			0.5 U	0.5 R	0.5 UJ
Chloroethane			0.5 U	0.5 R	0.5 U
Chloroform	6		0.5 U	0.5 R	0.5 UJ
Chloromethane	30		0.5 U	0.5 R	0.5 U
Cyclohexane			0.5 UJ	0.5 R	0.5 U
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	0.5 R	0.5 U
Dibromochloromethane	10	80	0.5 U	0.5 R	0.5 U
Dibromoethane-1,2	0.05	0.05	0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,2	600	600	0.51	0.5 R	0.25 J
Dichlorobenzene-1,3	,600		0.5 U	0.5 R	0.5 U
Dichlorobenzene-1,4	75	75	0.24 J	0.5 R	0.2 J
Dichlorobromomethane	1	80	0.5 UJ	0.5 R	0.5 U
Dichlorodifluoromethane			0.5 U	0.5 R	0.5 U
Dichloroethane-1,1	70		1.8	1.4 J	0.65 J
Dichloroethane-1,2	2	5	0.5 U	0.5 R	0.5 U
Dichloroethene-1,2 trans	100	100	0.19 J	0.5 R	0.18 J
Dichloroethylene-1,1	2	7	0.5 U	0.5 R	0.5 U
Dichloroethylene-1,2 cis	10	70	6.6		23 (A)
Dichloropropane-1,2	1	5	0.74 J	1.2 J (A)	0.64
Dichloropropene-1,3 cis			0.18 J	0.5 R	0.5 U
Dichloropropene-1,3 trans			0.5 U	0.5 R	0.5 U
Ethylbenzene	700	700	0.5 U	0.5 R	0.5 U

J - Reported value estimated in quantity

NA - Not analyzed

30283

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09D	MA-MW-09S	MA-MW-09S	
Sample ID	GWQC	MCL	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R2	
Sample Date			09/19/2002	06/19/2002	09/19/2002	
Sample Interval			44 - 54 ft	16 - 26 ft	16 - 26 ft	
CLP Sample ID			B0N65	B0KX6	B0N69	
Chemical Name						
Volatile Organic Compounds (ug/L)		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	0.5 R	0.5 U	
Hexanone-2			5 U	5 R	5 U	
Isopropylbenzene			0.5 U	0.5 R	0.5 U	
Methyl acetate			0.5 R	0.5 R	0.5 U	
Methyl cyclohexane			0.5 UJ	0.5 R	0.5 U	
Methyl ethyl ketone (2-butanone)	300		2.2 J	5 R	5 U	
Methyl isobutyl ketone (4-methyl-2-pent	400		5 U	5 R	5 U	
Methyl tertiary butyl ether (MTBE)			5.7 J	9.4 J	5.5 J	
Methylene chloride	2	5	0.5 U	0.5 R	0.5 U	
Styrene	100	100	0.5 U	0.5 R	0.5 U	
Tetrachloroethane-1,1,2,2	2		0.5 U	0.5 R	0.5 U	
Tetrachloroethylene	1	5	0.78	0.86 J	1.5	
Toluene	1000	1000	0.5 U	0.5 R	0.5 U	
Trichlorobenzene-1,2,3			0.5 U	0.5 U	0.5 U	
Trichlorobenzene-1,2,4	9	70	0.5 U	0.5 U	0.5 U	
Trichloroethane-1,1,1	30	200	0.5 U	0.5 R	0.5 U	
Trichloroethane-1,1,2	3	5	0.5 U	0.5 R	0.25 J	
Trichloroethylene	1 .	5 .	1.35 (A)	1.7 Jan (A)	1.7	
Trichlorofluoromethane			0.5 U	0.5 R	0.5 U	
Vinyl chloride	5	2	1	0.5 R	0.5 U	
Xylenes, total	40	10000	0.5 U	0.5 R	0.5 U	

NA - Not analyzed

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date	7		06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID	7		B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Semivolatile Organic Compounds	s (ug/L)						
Acenaphthene	400		5 U	5 U	5 UJ	5 U	5 U
Acenaphthylene			5 U	5 U	5 UJ	5 U	5 U
Acetophenone			5 U	5 U	5 UJ	5 U	5 U.
Anthracene	2000		5 U	5 U	5 UJ	5 U	5 UJ
Atrazine	3	3	5 U	5 UJ	5 UJ	5 UJ	5 UJ
Benzaldehyde			5 U	5 U	5 UJ	5 U	5_U
Benzo(a)anthracene			5 U	5 U	5 UJ	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 UJ	5 U	5 UJ
Benzo(b)fluoranthene			. 5 U	5 U	5 UJ	5 U	5 UJ
Benzo(g,h,i)perylene			5 U	5 U	5 UJ	5 U	5 UJ
Benzo(k)fluoranthene			5 U	5 U	5 UJ	5 U	5 UJ
Biphenyl			5 U	_5 U	5. UJ	5 U	5 U
Bromophenyl-4 Phenyl Ether	<u> </u>		5 U	5 U	5 UJ	5 U	5 U
Butylbenzyl phthalate	100	<u> </u>	5 U	5 U	5. UJ	5 U	
Caprolactam			5 U	5 UJ	5 UJ	5 U	5 U
Chloroaniline-4			5 U	5 U	5 UJ	5 U	5 U
Chloronaphthalene-2			5 U	5 U	5 UJ	5 U	5 U
Chlorophenol-2	40		5 U .	5 UJ	5. UJ	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 UJ _	5 U	-5 U
Chrysene			5 U	5 U	5 UJ	5 U	5 U
Cresol-4,6-dinitro-ortho			20 U	20 U	20 UJ	20 UJ	20 U
Cresol-o			5 U	5 U	5 UJ	5 U	5 U
Cresol-p			5 U	5 U	5 UJ	5 U	5 U
Cresol-parachloro-meta	_		5 U	5 U	5 UJ	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 UJ	5 U	5 UJ
Dibenzofuran		<u> </u>	5 U	5 U	5 UJ	5 U	5 U
Dichlorobenzidine-3,3	60		5· U	. 5 R	5 UJ	5 UJ	5 U
Dichlorophenol-2,4	20		5 U	5 U	5 W	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 UJ	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date			06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID			B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Semivolatile Organic Compounds (ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 UJ	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 UJ	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 UJ	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	2.1 J	2.8 J	5 U
Ether, bis-chloroisopropyl			5 U	5 UJ	5 UJ	5 U	5 U
Fluoranthene	300		5 U	5 U	5 UJ	5 U	5 U
Fluorene	300		5 U	5 U	5 UJ	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 U	5 UJ	5 U	5 UJ
Hexachlorobutadiene	1		5 U	5 U	5 UJ	5 U	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 UJ	5 U	5 ป
Hexachloroethane	10		5 U	5 U	5 UJ -	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 UJ	5 U	5 UJ
Isophorone	100		5 U	5 U	5 UJ	1.1 J	5 U .
Methane, bis(2-chloroethoxy)			5 U	5 U	5 UJ	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 UJ	5 U	5 U
Naphthalene	<u> </u>		5 U	5 U	5 UJ	5 U	5 U
Nitroaniline-2			20 U	20 U	20 UJ	20 U	20 U
Nitroaniline-3			20 U	20 U	20 UJ	20 U	20 U
Nitroaniline-4			20 U	20 U	20 UJ	20 U	20 U
Nitrobenzene	10		5 U	5 U	5 UJ	5 U	5 U
Nitrophenol-2			5 U	5 U	5 UJ	5 U	5 U
Nitrophenol-4			20 U	20 U	20 UJ	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 UJ	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 UJ	5 UJ	5 U	5 U
PCP (Pentachiorophenol)	1	1	5 U	5 U	5 UJ	5 U	5 U
Phenanthrene			5 U	5 U	5 UJ	5 U	5 UJ
Phenol	4000		5 U	5 U	5 UJ	5 U	. 5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	1.4 J	5 UJ	5 U	5 U.
Phthalate, di-n-butyl	900		5 U	5 U	5 UJ	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date			06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID		_	B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Semivolatile Organic Compound	ds (ug/L)						:
Phthalate, dì-n-octyl	100		5 U	5 U	5 UJ	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 UJ	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 UJ ·	5 U	5 U
Pyrene	200		5 U	5 U	5 UJ .	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 UJ	5· U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 UJ	20 U	20 U
Trichlorophenol-2,4,6	20	,	5 U	5 U	5 UJ	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date			09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			B0QB7	B0KY5	B0QB6	B0KX9	B0QB5
Chemical Name							
Semivolatile Organic Compound	ls (ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 UJ	5 U	5 UJ	5 U
Atrazine	3	3	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Benzaldehyde			5 U	5 U	5 U	. 5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 R	5 U	5 UJ	5 U
Benzo(b)fluoranthene			5 U	5 R	5 U	5 UJ	5 U
Benzo(g,h,i)perylene			5 U	5 R	5 U	5 UJ	5 U
Benzo(k)fluoranthene			5 U	5 R	5 U	5 UJ	5 U
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 U	5 U	5 U	5 U	5 U
Chloroaniline-4	.		5 U	5 U	5 U	5 R	5 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	5 U	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho		<u> </u>	20 UJ	20 U	20 UJ	20 U	20 U
Cresol-o			5 U	5 U	5 U.	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 R	5 U	5 UJ	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 UJ	5 U	5 UJ	5 R	5 UJ
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100	<u> </u>	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

302842

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date	7		09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID	7		B0QB7	B0KY5	B0QB6	B0KX9	B0QB5
Chemical Name							
	-						
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	· 5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 U	5 U	5 U	5 U	5 U
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	· 5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 UĴ	5 U	5 UJ	5 U
Hexachlorobutadiene	1		5 U	- 5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 R	5 U
Hexachloroethane	10	İ.	· 5 · U	5 U · ·	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			· 5·U	5 R	5 U	5 UJ	5 U
Isophorone	100		5 U	5 U	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3		<u> </u>	20 U	20 U	20 U	20 U	. 20 U
Nitroaniline-4			20 U	20 U	20 U	. 20 U	20 U
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4	<u> </u>		20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 U	5 U
PCP (Pentachlorophenol)	1	11	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	5 UJ	5 U	5 UJ	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	1.3 J	5 U_	5 U
Phthalate, di-n-butyl	900		,5 U	5 U	5 U	. 5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date			09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID		·	B0QB7	B0KY5	B0QB6	B0KX9	B0QB5
Chemical Name							
Semivolatile Organic Compoun	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 ป	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20	, ,	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name							
Semivolatile Organic Compound	s (ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	300 U
Acenaphthylene			5 U	5 U	5 U	5 U	300 U
Acetophenone			5 U	5 U	5 U	5 U	300 U
Anthracene	2000		5 U	5 U	5 U	5 U	300 U
Atrazine	3	3	5 U	5 U	5 UJ	5 UJ	_300 U
Benzaldehyde			5 U	5 U	5 [.] U	5 U	300 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	300 U
Benzo(a)pyrene		0.2	5 UJ	5 UJ	5 U	5 U	300 U
Benzo(b)fluoranthene			5 UJ	5 UJ	5 U	5 U	300 U
Benzo(g,h,l)perylene			5 UJ	5 UJ	5 U	5 U	300 U
Benzo(k)fluoranthene			5 UJ	5 UJ	5 U	5 U	300 U
Biphenyl			5 U	5 U	5 U	5 U	300 U
Bromophenyi-4 Phenyl Ether			5 U	5 U	5 U	5 U	300 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	300 U
Caprolactam			5 U	5 U	5 U	5 U	300 U
Chloroaniline-4			5 U	5 U	5 U	5 U	300 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	300 U
Chlorophenol-2	40	_	5 U	5 U	5 U	5 U	300 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	300 U
Chrysene			5 U	5 U	5 U	5 U	300 U
Cresol-4,6-dinitro-ortho		ļ	20 U	20 U	20 U	20 UJ	1200 U
Cresol-o			5 U	5 U	5 U	5 U	490
Cresol-p			5 U	5 U	5 U	5 U	1400
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	300 U
Dibenzo(a,h)anthracene			5 UJ	5 W	5 U	5 U	300 U
Dibenzofuran			5 U	5 U	5 U .	5 U	300 U
Dichlorobenzidine-3,3	60		5 U	5 Ų	5 UJ	5 UJ	300 U
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	300 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 U	300 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date]		06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval]		48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name							
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	1200 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	300 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	300 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	300 U
Ether, bis-chloroisopropyl			5 U	5 U	5 U	5 U	300 U
Fluoranthene	300		5 U	5 U	5 U	5 U	300 U
Fluorene	300		5 U	5 U	5 U	5 U	300 U
Hexachlorobenzene	10	11	5 U	5 U	5 U	5 U	300 U
Hexachlorobutadiene	1		5 U	5 U	5 U	5 U	300 U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 U	300 U
Hexachloroethane	10		5 U	5 U	5 U	5 U	300 U
Indeno(1,2,3-cd)pyrene			5 UJ	5 UJ	5 U	5 U	300 U
Isophorone .	100		5 U	5 U	5 U	5 U	300 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	300 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	300 U
Naphthalene		· · · · · · · · · · · · · · · · · · ·	5 U	5 U	4.6 J	1.8 J	2600
Nitroaniline-2			20 U	20 U	20 U	20 U	1200 U
Nitroaniline-3			20 U	20 U	20 U	20 U	1200 U
Nitroaniline-4			20 U	20 U	20 U	20 U	1200 U
Nitrobenzene	10		5 U	5 U	5 U	5 U	300 U
Nitrophenol-2			5 U	5 U	. 5 U	5 U	300 U
Nitrophenol-4			20 U	20 U	20 U	20 U	1200 U
Nitroso-di-n-propyl-amine-N	20		. 5 U	5 U	5 U	5 U	300 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	 	70 J (A):
PCP (Pentachlorophenol)	11	11	5 U	5 U	5 U	5 U	300 U
Phenanthrene			5 U	5 U	5 U	5 U	300 U
Phenol	4000		5 U	5 U	1.8 J	5 U	7200 (A)
Phthalate, bis(2-ethylhexyl) (DEHP)	30	66	5 U	. 5 U	5 U	5 U	300 U
Phthalate, di-n-butyl	900		5 U	5 U	5 U	1.1 J	300 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name							
Semivolatile Organic Compoun	ds (ug/L)						
hthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	300 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	300 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	300 U
Pyrene	200		5 U	5 U	5 U	5 U	300 U
Fetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	300 U
richlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	1200 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	300 U

R - Rejected result

302846

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R	MA-MW-14S
Sample ID	GWQC	MCL	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1	MA-MW-14R-R2	MA-MW-14S-R1
Sample Date			06/18/2002	09/24/2002	06/18/2002	09/24/2002	06/18/2002
Sample Interval			170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft	7 - 20 ft
CLP Sample ID			B0KY2	B0QB9	B0KY0	B0QC3	B0KY4
Chemical Name							
Semivolatile Organic Compounds	(ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 UJ	5 U	5 U	5 U	5 U
Atrazine	3 .	3	5 UJ	5 UJ	5 U	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 UJ	5 U	5 U	5 U	5 U
Benzo(b)fluoranthene	<u> </u>		5 UJ	5 U	5 U	5 U	5 U
Benzo(g,h,l)perylene			5 UJ	5 U	5 U	5 U	5 U
Benzo(k)fluoranthene			5 UJ	5 U	5 U	5 U	5 U
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 U	5 U	5 U	5 U	5 U
Chloroaniline-4			5 U	5 U	5 U	5 U	5 R
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	5 U	5 U	5 U
Chlorophenyl-4 phenyl ether	<u> </u>		5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 U	20 UJ	20 U	20 UJ	20 U
Cresol-o			5 . U	5 UJ	5 U	5 U	5 U
Cresol-p			5 U	5 UJ	5 U	5 U	5 U
Cresol-parachloro-meta	<u> </u>		5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 UJ	5 U	5 U	5 U	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60	1 1	5 U	5 UJ	5 U	5 UJ	5 R
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100	<u> </u>	5 U	5 UJ	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R	MA-MW-14S
Sample ID	GWQC	MCL	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1	MA-MW-14R-R2	MA-MW-14S-R1
Sample Date	1		06/18/2002	09/24/2002	06/18/2002	09/24/2002	06/18/2002
Sample Interval	1		170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft	7 - 20 ft
CLP Sample ID	1		B0KY2	B0QB9	B0KY0	B0QC3	B0KY4
Chemical Name	 					:	
Semivolatile Organic Compounds	(ua/L)	·					
Dinitrophenol-2,4	40	T	20 U	20 U	20 U	20 U	20 R
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10	,	5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 U	5 U	5 U	5 U	5 U
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 UJ	5 U	5 U	5 U	5 U
Hexachlorobutadiene	1		5 U	5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 U	5 R
Hexachloroethane	10		5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene	<u> </u>		5 UJ	- 5 U	5 U	5 U	5 U
Isophorone	100		5 U	5 U .	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)	<u> </u>		5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2	<u> </u>		5 U	· 5 U	5 U	5 U	5 U
Naphthalene		ļ	5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 R
Nitroaniline-3			20 U	· 20 U	20 U	20 U	20 R
Nitroaniline-4			20 U	20 U	20 U	20 U	20 R
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	· 5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 R
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 U	5 U
PCP (Pentachlorophenol)	1	11	5 U	5.U	5 U	5 U	5 U
Phenanthrene			5 UJ	5 U	5 U	5 U	5 U
Phenol	4000		5 ป	5 U	5 U_	5 U	1.1 J
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900	<u></u>	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R	MA-MW-14S
Sample ID	GWQC	MCL	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1	MA-MW-14R-R2	MA-MW-14S-R1
Sample Date			06/18/2002	09/24/2002	06/18/2002	09/24/2002	06/18/2002
Sample Interval		•	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft	7 - 20 ft
CLP Sample ID			B0KY2	B0QB9	B0KY0	B0QC3	B0KY4
Chemical Name							
Semivolatile Organic Compoun	ds (ug/L)						
Phthalate, di-n-octyl	100	•	5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15S
Sample ID	GWQC	MCL	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1	MA-MW-15M-R2	MA-MW-15S-R1
Sample Date			09/24/2002	09/24/2002	06/19/2002	09/23/2002	06/19/2002
Sample Interval			7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.8 - 16.8 ft
CLP Sample ID			B0QC1	B0QA9	B0KY8	B0N57	B0KZ0
Chemical Name							,
Semivolatile Organic Compour	nds (ug/L)	•					
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			.5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5. U	5 U	5 U
Atrazine	3	3	5 UJ	5 UJ	5 U	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	. 5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 U	5 U	5 UJ
Benzo(b)fluoranthene			5 U	5 U	5 U	5 U	5 UJ
Benzo(g,h,l)perylene		l	5 U	5 U	5 U	5 U	5 UJ
Benzo(k)fluoranthene			5 U	5 U	5 U	5 U	5 UJ
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		1.2 J	1.3 J	5 U	5 U	5 U
Caprolactam			5 U	5 U	5 U	5 UJ	5 U
Chloroaniline-4			5 U	5 U	5 U	5 U	5 R
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	5 U	5 UJ	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 UJ	20 U	20 U	20 U
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 U	5 U	5 UJ
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 ÚJ	5 UJ	5 U	5 R	5 R
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 U	1.7 J

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Table G.10 Groundwater - Semivolatile Organic Compound Results

Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15S
Sample ID	GWQC	MCL	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1	MA-MW-15M-R2	MA-MW-15S-R1
Sample Date			09/24/2002	09/24/2002	06/19/2002	09/23/2002	06/19/2002
Sample Interval			7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.8 - 16.8 ft
CLP Sample ID			B0QC1	B0QA9	B0KY8	B0N57	B0KZ0
Chemical Name							
Semivolatile Organic Compounds (ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 U	5 U	5 U	5 UJ	5 U
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	.5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	1		5 U	5 U	5 U	5 U	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 U	5 R
Hexachloroethane	10		5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene	·		5 U	5 U	5 U	5 U	5 UJ
Isophorone	100		5 U	5 U	5 U	5 U	5 Ú
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 U	20 U	20 U	20 U	20 U
Nitrobenzene	10		5 U	5 Ų	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	. 20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	· 5 U	5 U	5 UJ	5 U
PCP (Pentachlorophenol)	1	11	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	5 U	5 U	5 U	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900		1.1 J	1.3 J	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15S
Sample ID	GWQC	MCL	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1	MA-MW-15M-R2	MA-MW-15S-R1
Sample Date			09/24/2002	09/24/2002	06/19/2002	09/23/2002	06/19/2002
Sample Interval			7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.8 - 16.8 ft
CLP Sample ID			B0QC1	B0QA9	B0KY8	B0N57	B0KZ0
Chemical Name							
Semivolatile Organic Compound	ds (ug/L)			<u></u>			
Phthalate, di-n-octyl	100		5 U	5 U	5 <u>U</u>	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M	MA-MW-17S
Sample ID	GWQC	MCL	MA-MW-16S-R1	MA-MW-16S-R2	MA-MW-17M-R1	MA-MW-17M-R2	MA-MW-17S-R1
Sample Date			06/27/2002	09/25/2002	06/14/2002	09/18/2002	06/14/2002
Sample Interval			6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft
CLP Sample ID			B0L33	B0QD7	B0L34	B0QE0	B0L35
Chemical Name				· · · · · · · · · · · · · · · · · · ·			
					,		· · · · · · · · · · · · · · · · · · ·
Semivolatile Organic Compound	s (ug/L)						
Acenaphthene	400	1	5 U	. 5 U	5 U	5 U	- 5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5 UJ	5 UJ	5 U
Atrazine	3	3	5 U	5 UJ	5 UJ	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 UJ	5 U	5 U
Benzo(b)fluoranthene			5 U	5 U	5 UJ	5 U	5 U
Benzo(g,h,l)perylene			5 U	5 U	5 UJ	5 U	5 U
Benzo(k)fluoranthene			5 U	5 U	5 UJ	5 U	5 U
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether		<u> </u>	5 U	5 U	5 U	5 Ų	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 U	5 U	5 U -	5 UJ	5 U
Chloroaniline-4			5 U	5 U	5 U	5 U	5 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40	ļ	5 U	5 U	5 U	5 U	·5 U
Chlorophenyl-4 phenyl ether			5 U .	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 U	20 U	20 UJ	20 U
Cresol-o			2.9 J	1.4 J	5 U	5 U	5 U
Cresol-p			5.9	1.3 J	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene	·		5 U	5 U	5 UJ	5 U	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 U	5 UJ	5 UJ	5 R	5 UJ
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100	<u> </u>	5 U	1.2 J	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M	MA-MW-17S
Sample ID	GWQC	MCL	MA-MW-16S-R1	MA-MW-16S-R2	MA-MW-17M-R1	MA-MW-17M-R2	MA-MW-17S-R1
Sample Date]		06/27/2002	09/25/2002	06/14/2002	09/18/2002	06/14/2002
Sample Interval]		6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft
CLP Sample ID	1		B0L33	B0QD7	B0L34	B0QE0	B0L35
Chemical Name							
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		1.9 J	2.6 J	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 U	5 U	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 U	5 UJ	5 UJ	5 UJ
Hexachlorobutadiene	1		5 U	5 U	5 UJ	5 U	5 UJ
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 UJ	5 U	5 UJ
Hexachloroethane	10		5 U -	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 UJ	5 U	5 U
Isophorone	100		5 U	5 U	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			1.2 J	1.9 J	5 U	5 U	5 U
Naphthalene			190	170	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 U	20 U	20 UJ	20 U	20 UJ
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 Ú	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		. 5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		1.7 J	4.9 J	5 U	5 U	5 U
PCP (Pentachlorophenol)	1	1	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	5 U	5 UJ	5 UJ	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900		5 U	1.2 J	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M	MA-MW-17S
Sample ID	GWQC	MCL	MA-MW-16S-R1	MA-MW-16S-R2	MA-MW-17M-R1	MA-MW-17M-R2	MA-MW-17S-R1
Sample Date			06/27/2002	09/25/2002	06/14/2002	09/18/2002	06/14/2002
Sample Interval			6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft
CLP Sample ID			B0L33	B0QD7	B0L34	B0QE0	B0L35
Chemical Name							
						·	
Semivolatile Organic Compound	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		2.5 J	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Frichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18M	MA-MW-18M
Sample ID	GWQC	MCL	MA-MW-17S-R2	MA-MW-18D-R1	MA-MW-18D-R2	MA-MW-18M-R1	MA-MW-18M-R2
Sample Date			09/18/2002	06/17/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			8 - 18 ft	140 - 152 ft	140 - 152 ft	31.77 - 41.77 ft	31.77 - 41.77 ft
CLP Sample ID			B0QD9	B0L30	B0N52	B0L31	B0N54
Chemical Name							
Semivolatile Organic Compound	ls (ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5· U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	<u>5</u> U	5 U
Anthracene	2000		5 U	5 UJ	5 U ··	<u>5 U</u> J	5 U
Atrazine	3	3	5 UJ	5 UJ	5 <u>UJ</u>	5 UJ	5 UJ
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 UJ	5 U	5 R	5 U
Benzo(b)fluoranthene			5 U	5 UJ	· 5 U	5 R	5 U
Benzo(g,h,I)perylene			5 U	5 UJ	5 <u>U</u>	5 R	_ 5 U
Benzo(k)fluoranthene			5 U	5 UJ	5 U	5 R	5 U
Biphenyl			5 U	5 U	5 <u>U</u>	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 UJ	5 U	5 UJ	5 U	5 UJ
Chloroaniline-4			5 U	5 U	5 U	5 U	5 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	5 UJ	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	. 5 U	5 U	5 U	5 U
Chrysene			- 5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 U	20 U	20 U	20 UJ
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	_5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 UJ	5 U	5 R	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 R	5 UJ	5 R	5 UJ	5 R
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18M	MA-MW-18M
Sample ID	GWQC	MCL	MA-MW-17S-R2	MA-MW-18D-R1	MA-MW-18D-R2	MA-MW-18M-R1	MA-MW-18M-R2
Sample Date]		09/18/2002	06/17/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			8 - 18 ft	140 - 152 ft	140 - 152 ft	31.77 - 41.77 ft	31.77 - 41.77 ft
CLP Sample ID	1		B0QD9	B0L30	B0N52	B0L31	B0N54
Chemical Name	<u> </u>						
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 ∪	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 UJ	5 U	5 UJ	5 U
Hexachlorobutadiene	1		5 U	5 UJ	5 U	5 UJ	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 UJ	5 U	5 UJ	5 U
Hexachloroethane	10		5 U	5 UJ	5 U	5 UJ	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 UJ	5 U	5 R	5 U
Isophorone	100		5 U	5 UJ	5 U	5 UJ	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2	<u></u>		5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2	<u> </u>		20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 U	20 UJ	20 U	20 UJ	20 U
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 U	5 U
PCP (Pentachlorophenol)	11	11	5 U	5 U	5 U	5 U	5 U
Phenanthrene		1	5 U	5 UJ	5 U	5 UJ	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	1.6 J
Phthalate, di-n-butyl	900	1	5 U	5 UJ	5 U	5 UJ	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18M	MA-MW-18M
Sample ID	GWQC	MCL	MA-MW-17S-R2	MA-MW-18D-R1	MA-MW-18D-R2	MA-MW-18M-R1	MA-MW-18M-R2
Sample Date			09/18/2002	06/17/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			8 - 18 ft	140 - 152 ft	140 - 152 ft	31.77 - 41.77 ft	31.77 - 41.77 ft
CLP Sample ID			B0QD9	B0L30	B0N52	B0L31	B0N54
Chemical Name					·		
Semivolatile Organic Compound	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl		-	5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U .	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U .	5 U	5 U

R - Rejected result U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M	MA-MW-19R
Sample ID	GWQC	MCL	MA-MW-18S-R1	MA-MW-18S-R2	MA-MW-19M-R1	MA-MW-19M-R2	MA-MW-19R-R1
Sample Date			06/17/2002	09/18/2002	06/17/2002	09/19/2002	06/17/2002
Sample Interval			7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft	103 - 113 ft
CLP Sample ID			B0L32	B0N53	B0L28	B0N55	B0L27
Chemical Name				<u> </u>			
Semivolatile Organic Compound	is (ua/L)		1	T			
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5 UJ	5 U	5 U
Atrazine	. 3	3	5 U	5 UJ	5 UJ	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 UJ	5 U	5 UJ
Benzo(b)fluoranthene			5 U	5 U	5 UJ	5 U	5 UJ
Benzo(g,h,l)perylene			5 U	5 U	5 UJ	5 U	5 UJ
Benzo(k)fluoranthene			5 U	5 U	5 UJ	5 U	5 UJ
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 U	5 UJ	5 U	5 UJ	5 U
Chloroaniline-4			5 U	5 U	5 U	5 U	5 U
Chloronaphthalene-2			5 U	5 U .	5 U	5 U	5 U
Chlorophenol-2	40 .	<u> </u>	5 U	5 U	5 U	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 U	20 UJ	20 U	20 U	20 U
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene		 	5 U	5 U	5 UJ	5 U	5 UJ
Dibenzofuran		·	5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 UJ	5 R	5 UJ	. 5 R	5 UJ
Dichlorophenol-2,4	20	ļ	5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M	MA-MW-19R
Sample ID	GWQC	MCL	MA-MW-18S-R1	MA-MW-18S-R2	MA-MW-19M-R1	MA-MW-19M-R2	MA-MW-19R-R1
Sample Date			06/17/2002	09/18/2002	06/17/2002	09/19/2002	06/17/2002
Sample Interval			7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft	103 - 113 ft
CLP Sample ID			B0L32	B0N53	B0L28	B0N55	B0L27
Chemical Name							·
					:		
Semivolatile Organic Compounds	(ug/L)			1.00			
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U -	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 UJ	5 U	5. UJ	5 U	5 UJ
Hexachlorobutadiene	1		5 UJ	5 U	5 UJ	5 U	5 UJ
Hexachlorocyclopentadiene	50	50	5 UJ	5 U _	5 UJ	. 5 U	5 UJ
Hexachloroethane	10		5 U	5 U	5 U	5 U	5 UJ
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 UJ	5 U	5 UJ -
Isophorone	100		5 U	5 U	5 U	5 U	5 UJ
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 · U	5 U	5 U	. 5 U	5 U
Naphthalene			5 U	5 U	5 · U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 UJ	20 U	20 UJ	20 U	20 UJ
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 <u>U</u>	5 U
PCP (Pentachlorophenol)	1	1	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	5 U	5 UJ	5 U	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	1.2 J	5 U	5 U
Phthalate, di-n-butyl	900		5 U	5 U	5 U	5 U	5 UJ

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Station ID	(A)	. (B)	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M	MA-MW-19R
Sample ID	GWQC	MCL	MA-MW-18S-R1	MA-MW-18S-R2	MA-MW-19M-R1	MA-MW-19M-R2	MA-MW-19R-R1
Sample Date			06/17/2002	09/18/2002	06/17/2002	09/19/2002	06/17/2002
Sample Interval			7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft	103 - 113 ft
CLP Sample ID			B0L32	B0N53	B0L28	B0N55	B0L27
Chemical Name							
Semivolatile Organic Compoun		·					
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-19R	MA-MW-19S	MA-MW-19S	MA-MW-01M	MA-MW-01M
Sample ID	GWQC	MCL	MA-MW-19R-R2	MA-MW-19S-R1	MA-MW-19S-R2	MA-MW-1M-R1	MA-MW-1M-R2
Sample Date]		09/19/2002	06/17/2002	09/19/2002	06/20/2002	09/23/2002
Sample Interval			103 - 113 ft	5.05 - 15.05 ft	5.05 - 15.05 ft	50 - 60 ft	50 - 60 ft
CLP Sample ID			B0N56	B0L29	B0N60	B0KZ2	B0N59
Chemical Name						,	
Semivolatile Organic Compounds (ug/L)						
Acenaphthene	400		5 U	5 U	. 5 U	5 UJ	5 U
Acenaphthylene			5 U	5 U	5 U	5 UJ	5 U
Acetophenone			5 U	5 U	5 U	5 UJ	5 U
Anthracene	2000		5 U	5 U	5 U	5 UJ	5 U
Atrazine	3	3	5 UJ	5 U	5 UJ	5 UJ	. 5 UJ
Benzaldehyde .			5 U	5 U	5.U	. 5 UJ	. 5 U
Benzo(a)anthracene	İ		5 U	5 U	. 5 U	5 UJ	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 U .	5 UJ	5 U
Benzo(b)fluoranthene			5 U .	5 U	5 U	. 5 UJ	5 U
Benzo(g,h,l)perylene	L		5 U	5 U	5 U	5 UJ	5 U
Benzo(k)fluoranthene			5 U	5 U	5 U	5 UJ	5 U
Biphenyl			5 U	5 U	5 U	5 UJ	5 U
Bromophenyl-4 Phenyl Ether	·		5 U	5 U	5 U	5 UJ	5 U
Butylbenzyl phthalate	100		5 U	5 U	.5 U	. 5 UJ	5 U
Caprolactam			5 UJ	5 U	5 UJ	5 UJ	5 U
Chloroaniline-4			5 U	5 U	5 U	5 UJ	5 U
Chloronaphthalene-2			5 U	5 U	5 U	. 5 UJ	5 U
Chiorophenol-2	40		5 U	5 U	5 U	5 UJ.	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 W	5 U
Chrysene			5 U	5 U	5 U	5 UJ	5 U
Cresol-4,6-dinitro-ortho			20 U	20 U	20 U	20 UJ	20 UJ
Cresol-o			5 U	5 U	5 U	5 UJ	5 U
Cresol-p			5 U	5 U	5 U	5 UJ	5 U
Cresol-parachloro-meta			5 U	5 U	5 U .	5 UJ	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 U	5 UJ	5 U
Dibenzofuran			5 U	5 U	5 U	5 UJ	5 U
Dichlorobenzidine-3,3	-60		5 R	5 UJ	5 R	5 UJ	5 UJ
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 UJ	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 UJ	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19R	MA-MW-19S	MA-MW-19S	MA-MW-01M	MA-MW-01M
Sample ID	GWQC	MCL	MA-MW-19R-R2	MA-MW-19S-R1	MA-MW-19S-R2	MA-MW-1M-R1	MA-MW-1M-R2
Sample Date]		09/19/2002	06/17/2002	09/19/2002	06/20/2002	09/23/2002
Sample Interval			103 - 113 ft	5.05 - 15.05 ft	5.05 - 15.05 ft	50 - 60 ft	50 - 60 ft
CLP Sample ID			B0N56	B0L29	B0N60	B0KZ2	B0N59
Chemical Name							
Semivolatile Organic Compounds	ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 UJ	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 UJ	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 UJ	5 U .
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 UJ	5 U
Ether, bis-chloroisopropyl			5 UJ	5 UJ	5 UJ	5 UJ	5 U
Fluoranthene	300		5 U	5 U	5 U	5 UJ	5 U
Fluorene	300		5 U	5 U	5 U	5 UJ	5 U
Hexachlorobenzene	10	. 1	5 U	5 UJ	5 U	5 UJ	5 U -
Hexachlorobutadiene	1		5 U_	5 UJ	5 U	5 UJ	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 UJ	5 U	5 UJ	5 U
Hexachloroethane	10		5 U	5 UJ	5 U	5 UJ	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 U	5 UJ	5 U
isophorone	100		5 U	5 UJ	5 U	5 UJ	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 UJ	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 UJ	5 U
Naphthalene	<u> </u>		5 U	5 U	5 U	5 UJ	5 U
Nitroaniline-2			20 U	20 U	20 U	20 UJ	20 U
Nitroaniline-3			20 U	20 U	20 U	20 UJ	20 U
Nitroaniline-4			20 U	20 UJ	20 U	20 UJ	20 U
Nitrobenzene	10		5 U	5 U	5 U	5 UJ	5 U
Nitrophenol-2			5 U	5 U	5 U	5 UJ	5 U
Nitrophenol-4			20 U	20 U	20 U	20 UJ	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 UJ	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	. 5 UJ	5 U
PCP (Pentachlorophenol)	1	1	5 U	5 U	5 U	5 UJ	5 U
Phenanthrene			5 U	5 U	5 U	5 UJ	5 U
Phenol	4000		5 U	5 U	5 U	5 UJ	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	1.4 J	5 UJ	5 U
Phthalate, di-n-butyl	900	L	5 U	5 UJ	5 U	5 UJ	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19R	MA-MW-19S	MA-MW-19S	MA-MW-01M	MA-MW-01M
Sample ID	GWQC	MCL	MA-MW-19R-R2	MA-MW-19S-R1	MA-MW-19S-R2	MA-MW-1M-R1	MA-MW-1M-R2
Sample Date			09/19/2002	06/17/2002	09/19/2002	06/20/2002	09/23/2002
Sample Interval			103 - 113 ft	5.05 - 15.05 ft	5.05 - 15.05 ft	50 - 60 ft	50 - 60 ft
CLP Sample ID			B0N56	B0L29	B0N60	B0KZ2	B0N59
Chemical Name							
Semivolatile Organic Compoun	ids (ua/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 UJ	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 UJ	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 UJ	5 U
Pyrene	200		5 U	5 U	5 U	5 UJ	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 Ų	5 U .	5 UJ	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 UJ .	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 UJ	5 U

302864

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01S	MA-MW-01S	MA-MW-20D	MA-MW-20D	MA-MW-20M
Sample ID	GWQC	MCL	MA-MW-1S-R1	MA-MW-1S-R2	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20M-R1
Sample Date			06/20/2002	09/23/2002	06/13/2002	09/20/2002	06/13/2002
Sample Interval			4 - 14 ft	4 - 14 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft
CLP Sample ID			B0KZ4	B0N58	B0L25	B0N63	B0L24
Chemical Name							
· · · · · · · · · · · · · · · · · · ·							
Semivolatile Organic Compound	ds (ug/L)						
Acenaphthene	400		5 UJ	5 U	5 U	5 U	5 U
Acenaphthylene			5 UJ	5 U	5 · U	5 U	5 U
Acetophenone			5 UJ	5 U	5 U	5 U	5 U
Anthracene	2000		5 UJ	5 U	5 U	5 U	5 U
Atrazine	3	3	5 UJ	5 UJ	5 U	5 UJ	5 U
3enzaldehyde			5 UJ	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 UJ	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 UJ	5 U	5 U	5 U	5 U
Benzo(b)fluoranthene			5 UJ	5 U	5 U	5 U	5 U
Benzo(g,h,l)perylene			5 UJ	5 U	5 U	5 U	5 U
Benzo(k)fluoranthene			5 UJ	5 U	5 U	5 U	5 U
Biphenyl			5 UJ	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 UJ	5 U	5 U	5 U	- 5 U
Butylbenzyl phthalate	100		5 UJ	5 U	5 U	5 U	5 U
Caprolactam			5 UJ	5 U	5 U	5 UJ	5 U
Chloroaniline-4			5 UJ	5 U	5 U	5 U	5 U
Chloronaphthalene-2			5 UJ	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 UJ	5 U	5 U	5 UJ	5 U
Chlorophenyl-4 phenyl ether			5 UJ	5 U	5 U	5 U	5 U
Chrysene			5 UJ	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 UJ	20 U	20 U	20 U
Cresol-o			5 UJ	5 U	5 U	5 U	5 U
Cresol-p			5 UJ	2.2 J	5 U	5 U	5 U
Cresol-parachloro-meta			5 UJ	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 UJ	5 U	5 U	5 U	5 U
Dibenzofuran		·	5 UJ	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 UJ	5 UJ	5 UJ	5 R	5 UJ
Dichlorophenol-2,4	20		5 UJ	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 UJ	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01S	MA-MW-01S	MA-MW-20D	MA-MW-20D	MA-MW-20M
Sample ID	GWQC	MCL	MA-MW-1S-R1	MA-MW-1S-R2	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20M-R1
Sample Date]		06/20/2002	09/23/2002	06/13/2002	09/20/2002	06/13/2002
Sample Interval			4 - 14 ft	4 - 14 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft
CLP Sample ID	1		B0KZ4	B0N58	B0L25	B0N63	B0L24
Chemical Name							
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 UJ	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 UJ	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 UJ	. 5 U	5 U _	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 UJ	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 UJ	5 U	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 UJ	5 U	5 U	5 U	5 U
Fluorene	300		5 UJ	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 UJ	5 U .	5 UJ	5 U	5 UJ
Hexachlorobutadiene	1		5 UJ	5 U	5 UJ	5 U	5 UJ
Hexachlorocyclopentadiene	50	50	5 UJ	5 U	5 UJ	5 U	5 UJ
Hexachioroethane	10		5 UJ	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 UJ	5 U	5 U	5 U _	5 U
Isophorone	100		5 UJ	5 U	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)			5 UJ	5 U	5_U	5 U	5 U
Methylnaphthalene-2			5 UJ	5 U	5 U	5 U	5 U
Naphthalene			5 UJ	1.6 J	5 U	5 U	5 U
Nitroaniline-2		·	20 UJ	20 U	20 U	20 U	20 U
Nitroaniline-3			20 UJ	20 U	20 U	20 U	20 U
Nitroaniline-4			20 UJ	20 U	20 UJ	20 U	20 UJ
Nitrobenzene	10		5 UJ	5 U	5 U	5 U	5 U
Nitrophenol-2			5 UJ	5 Ü	5 U	5 U	5 U
Nitrophenol-4			20 UJ	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 UJ	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		14 J	38 (A)	. 5 U	5 UJ	5 U
PCP (Pentachlorophenol)	1	. 1	5 UJ	5 U	5 U	5 U	5 U
Phenanthrene			5 UJ	5 U	5 U	5 U	5 U
Phenol	4000		5 UJ	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 UJ	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900		5 UJ	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Station ID	(A)	(B)	MA-MW-01S	MA-MW-01S	MA-MW-20D	MA-MW-20D	MA-MW-20M
Sample ID	GWQC	MCL	MA-MW-1S-R1	MA-MW-1S-R2	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20M-R1
Sample Date			06/20/2002	09/23/2002	06/13/2002	09/20/2002	06/13/2002
Sample Interval			4 - 14 ft	4 - 14 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft
CLP Sample ID			B0KZ4	B0N58	B0L25	B0N63	B0L24
Chemical Name							
Semivolatile Organic Compound	is (ug/L)						
Phthalate, di-n-octyl	100		5 UJ	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 UJ	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 UJ	5 U	5 U	5 U	5 U
Pyrene	200		5 UJ	5 U	5 U	5 U	5 U
Fetrachlorobenzene-1,2,4,5			5 UJ	5 U	5 U	5 U	5 U
Frichlorophenol-2,4,5	700		20 UJ	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 UJ	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

302868

Table G.10

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	MA-MW-20M-R2	MA-MW-20R-R1	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R2
Sample Date	}		09/20/2002	06/13/2002	09/20/2002	06/13/2002	09/20/2002
Sample Interval	1		42 - 52 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID]		B0N61	B0L26	B0N62	B0L22	B0N66
Chemical Name							
Semivolatile Organic Compounds	ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	-5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5 U	5 U	5_U
Atrazine	3	3	5 UJ	5 U	5 · UJ	5 U	5 UJ
Benzaldehyde			5 U	5 U	- 5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5_U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 U	5 UJ	5 U
Benzo(b)fluoranthene			5 U	5 U	5 U	5 UJ	5 U
Benzo(g,h,l)perylene			5 U	5 U	5 U	5 UJ	5 U
Benzo(k)fluoranthene			5 U	5 U .	5 U	5 UJ	5 U
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 UJ	5 U	5 UJ	5 U	5 UJ
Chloroaniline-4			5 U	5 U	5 U	5 U	5 U
Chloronaphthalene-2			5 U	5 U	5. U	5 U	5 U
Chlorophenol-2	40		5 UJ	5 U	5 UJ	5 U	5 UJ
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 U	20 U	20 U	20 U	20 UJ
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	5 U.
Cresol-parachloro-meta			5 U .	. 5 U	5 U	5 U	5 U_
Dibenzo(a,h)anthracene			5 U	5 U	5 U	5 UJ	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 R	5 UJ	5 R	5 UJ	5 R
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5_U	5_U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	MA-MW-20M-R2	MA-MW-20R-R1	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R2
Sample Date			09/20/2002	06/13/2002	09/20/2002	06/13/2002	09/20/2002
Sample Interval			42 - 52 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID			B0N61	B0L26	B0N62	B0L22	B0N66
Chemical Name							
Semivolatile Organic Compounds (ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		1.2 J	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropy!			5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 UJ	5 U	5 UJ	5 U
Hexachlorobutadiene	1		5 U	5 UJ	5 U	5 UJ	5 U
Hexachlorocyclopentadiene	50	50	5 U	5 UJ	5 U	5 UJ	5 U
Hexachloroethane	10		5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 U	5 UJ	5 U
Isophorone	100		5 U	5 U	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4		<u> </u>	20 U	20 UJ	20 U	20 UJ	20 U
Nitrobenzene	10		5_U	5 U	5 U	5 U	5 U
Nitrophenol-2	1		5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 UJ	5 U	5 UJ	5 U	5 UJ
PCP (Pentachlorophenol)	1	11	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	.5 U	5 U	5 U	5 U
Phenol	4000		5 U	5 U .	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	MA-MW-20M-R2	MA-MW-20R-R1	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R2
Sample Date			09/20/2002	06/13/2002	09/20/2002	06/13/2002	09/20/2002
Sample Interval			42 - 52 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID			B0N61	B0L26	B0N62	B0L22	B0N66
Chemical Name					·		
Semivolatile Organic Compoun	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	_ 5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit

302870

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-21S	MA-MW-21S	MA-MW-22S	MA-MW-22S	MA-MW-04S
Sample ID	GWQC	MCL	MA-MW-21S-R1	MA-MW-21S-R2	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-4S-R1
Sample Date	· 		06/12/2002	09/17/2002	06/12/2002	09/17/2002	06/12/2002
Sample Interval			10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	4 - 14 ft
CLP Sample ID	· ·		B0L21	B0N68	B0L23	B0N67	B0KZ9
Chemical Name							
Semivolatile Organic Compound	s (ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5 U	5 U	5 U
Atrazine	3	3	5 U	5 UJ	5 U	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 UJ	5 U	5 UJ
Benzo(b)fluoranthene			5 U	5 U	5 UJ	5 U	5 UJ
Benzo(g,h,l)perylene	-		5 U	5 U	5 UJ	5 U	5 UJ
Benzo(k)fluoranthene			5 U	5 U	5 UJ	5 U	5 UJ
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 U	. 5 UJ	5 U	3.2 J	5 U
Chloroaniline-4			5 U	5 U	5 R	5 R	5 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	5 U	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho		<u> </u>	20 U	20 UJ	20 U	20 UJ	20 U
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p		<u> </u>	5 U	5 U	5 U	5 U	5 U
Cresol-parachioro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 UJ	5 U	5 UJ
Dibenzofuran		<u> </u>	5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 UJ	5 R	5 R	5 R	5 UJ
Dichlorophenol-2,4	. 20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100	1	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

30287

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-21S	MA-MW-21S	MA-MW-22S	MA-MW-22S	MA-MW-04S
Sample ID	GWQC	MCL	MA-MW-21S-R1	MA-MW-21S-R2	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-4S-R1
Sample Date]		06/12/2002	09/17/2002	06/12/2002	09/17/2002	06/12/2002
Sample Interval	1		10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	4 - 14 ft
CLP Sample ID	1		B0L21	B0N68	B0L23	B0N67	B0KZ9
Chemical Name						,	
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl			5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 UJ	5 U	5 UJ	5 U	5 UJ
Hexachlorobutadiene	1		5 UJ	5 U	5 UJ	5 U	5 UJ
Hexachlorocyclopentadiene	50	50	5 UJ	5 U	5 R	5 R	5 UJ
Hexachloroethane	10		5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 UJ	5 U	5 UJ
Isophorone	100		5 U	5 U	5 U	5 U	<u>5</u> U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4		· · · · · · · · · · · · · · · · · · ·	20 UJ	20 U	20 UJ	20 U	20 UJ
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 U	5 U	5 U	5 U	
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 U	5 U
PCP (Pentachlorophenol)	1	1	5 U	5 U	5 U	5 U	5 U
Phenanthrene			5 U	5 U	5 U	5 U	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	5 U
Phthalate, di-n-butyl	900		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-21S	MA-MW-21S	MA-MW-22S	MA-MW-22S	MA-MW-04S
Sample ID	GWQC	MCL	MA-MW-21S-R1	MA-MW-21S-R2	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-4S-R1
Sample Date			06/12/2002	09/17/2002	06/12/2002	09/17/2002	06/12/2002
Sample Interval			10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	4 - 14 ft
CLP Sample ID			B0L21	B0N68	B0L23	B0N67	B0KZ9
Chemical Name							
Semivolatile Organic Compound	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 <u>U</u>
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

302874

Table G.10

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-04S	MA-MW-05S	MA-MW-05S	MA-MW-05S	MA-MW-08S
Sample ID	GWQC	MCL	MA-MW-4S-R2	MA-MW-5S-R1	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-8S-R1
Sample Date]		09/17/2002	06/27/2002	06/27/2002	09/25/2002	06/12/2002
Sample Interval]		4 - 14 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft	4 - 14 ft
CLP Sample ID	1		B0N72	B0KZ7	B0KZ8	B0N64	В0КҮ7
Chemical Name							
				_			
Semivolatile Organic Compounds	ug/L)						
Acenaphthene	400		5 U	5 U	1.8 J	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone_			5 U	5 U	5 U	5 U_	5 U
Anthracene	2000		5 U	5 U	5 U	5 U	· 5 U
Atrazine	3	3	5 UJ	5 U .	5 U	5 UJ	5 U
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 U	5 U	5 UJ
Benzo(b)fluoranthene			5 U	5 U	5 U	5 U	5 UJ
Benzo(g,h,l)perylene			5 U	5 U	5 U	5 U	5 UJ
Benzo(k)fluoranthene			5 U	. 5 U	5 U	5 U	5 UJ
Biphenyl			5 U	5 U	5 U	5 U_	5 U
Bromophenyl-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 <u>U</u>
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			2.1 J	5 U	5 U_	5 U	1.5 J
Chloroaniline-4		<u> </u>	5 U	15 U	5 U	5 U	5 [.] U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	40		5 U	5 U	. 5 U	5 U	5 U
Chlorophenyl-4 phenyl ether			.5 U	5 U	5 U	5 U	5 U
Chrysene			5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 U	20 U	20 U	20 U
Cresol-o			5 U	5 U	5 U	5 U	5 U
Cresol-p			5 U	5 U	5 U	5 U	6.3
Cresol-parachloro-meta			5 U _	5 U	5 U	5 U_	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 U	5 U	5 UJ
Dibenzofuran			5 U	5 U	5 U	5 U	5 U
Dichlorobenzidine-3,3	60		5 R	5 U	5 U	5 UJ	5 UJ
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100	L	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-04S	MA-MW-05S	MA-MW-05S	MA-MW-05S	MA-MW-08S
Sample ID	GWQC	MCL	MA-MW-4S-R2	MA-MW-5S-R1	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-8S-R1
Sample Date	1	·	09/17/2002	06/27/2002	06/27/2002	09/25/2002	06/12/2002
Sample Interval	1		4 - 14 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft	4 - 14 ft
CLP Sample ID	1		B0N72	B0KZ7	B0KZ8	B0N64	B0KY7
Chemical Name							
				·			
Semivolatile Organic Compounds ((ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6	,		5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	5 U	5 U	5 U
Ether, bis-chloroisopropyl		·	5 UJ	5 U	5 U	5 U	5 UJ
Fluoranthene	300		5 U	5 U	3.3 J	5 U	5 U
Fluorene	300		5 U	5 U	1.7 J	1.1 J	5 U
Hexachlorobenzene	10	1	5 U	5 U	5 U	5 U	5 UJ
Hexachlorobutadiene	1		5 U	5 U	5 U	5 U	5 UJ
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 U	5 UJ
Hexachioroethane	10		5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	5 U	5 U	5 U	5 UJ
Isophorone	100		5 U	5 U	5 U	5 U	5 U
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	1.8 J	5 U	4 J	. 5 U
Naphthalene			5 U	38	7.6	79	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3		<u> </u>	20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 U	20 U	20 U	20 U	20 UJ
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4		·	20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	. 20		5 U	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	3.5 J	3 J	5.4	5 U -
PCP (Pentachlorophenol)	11	11	5 U	5 U	5 U	5 U	5 U
Phenanthrene	ļ	<u> </u>	5 U	2 J	10	2.2 J	5 U
Phenol	4000	<u> </u>	5 U	1.1 J	15	2.4 J	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5.U	5 U	5 U	5 U
Phthalate, di-n-butyl	900	l	5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-04S	MA-MW-05S	MA-MW-05S	MA-MW-05S	MA-MW-08S
Sample ID	GWQC	MCL	MA-MW-4S-R2	MA-MW-5S-R1	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-8S-R1
Sample Date			09/17/2002	06/27/2002	06/27/2002	09/25/2002	06/12/2002
Sample Interval			4 - 14 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft	4 - 14 ft
CLP Sample ID			B0N72	B0KZ7	B0KZ8	B0N64	В0КҮ7
Chemical Name				1			
Semivolatile Organic Compound	ds (ug/L)						
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	3.3 J	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	20 U	20 U	20 U
Trichlorophenol-2,4,6	20		. 5 U	5 U	5 U.	5 U	. 5 U

J - Reported value estimated in quantity

302876

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-08S	MA-MW-09D	MA-MW-09D	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-8S-R2	MA-MW-9D-R1	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R2
Sample Date			09/17/2002	06/19/2002	09/19/2002	06/19/2002	09/19/2002
Sample Interval]		4 - 14 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID			B0N70	B0KY6	B0N65	B0KX6	B0N69
Chemical Name							
Semivolatile Organic Compounds (ug/L)						
Acenaphthene	400		5 U	5 U	5 U	5 U	5 U
Acenaphthylene			5 U	5 U	5 U	5 U	5 U
Acetophenone			5 U	5 U	5 U	5 U	5 U
Anthracene	2000		5 U	5 U	5 U	5 UJ	5 U
Atrazine	3	3	5 UJ	5 U	5 UJ	5 UJ	5 UJ
Benzaldehyde			5 U	5 U	5 U	5 U	5 U
Benzo(a)anthracene			5 U	5 U	5 U	5 U	5 U
Benzo(a)pyrene		0.2	5 U	5 U	5 U	5 UJ	5 U
Benzo(b)fluoranthene	_		5 U	5 U	5 U	5 UJ	5 U
Benzo(g,h,l)perylene	,		5 U	5 U	5 U	5 UJ	5 U
Benzo(k)fluoranthene			5 U	5 U	5 U	5 UJ	5 U
Biphenyl			5 U	5 U	5 U	5 U	5 U
Bromophenyi-4 Phenyl Ether			5 U	5 U	5 U	5 U	5 U
Butylbenzyl phthalate	100		5 U	5 U	5 U	5 U	5 U
Caprolactam			5 UJ	5 U	5 UJ	5 U	5 UJ
Chloroaniline-4			5 U	5 U	5 U	5 Ü	5 U
Chloronaphthalene-2			5 U	5 U	5 U	5 U	5 U
Chlorophenol-2	. 40		5 U	5 U	5 U	5 U	5 U
Chlorophenyl-4 phenyl ether			5 U	5 U	5 U	5 U	5 U
Chrysene	:	·	5 U	5 U	5 U	5 U	5 U
Cresol-4,6-dinitro-ortho			20 UJ	20 U	20 UJ	20 U	20 U
Cresol-o			5 U	.5 U	5 U	5 U	5 U
Cresol-p		<u> </u>	5 U	5 U	5 U	5 U	5 U
Cresol-parachloro-meta			5 U	5 U	5 U	5 U	5 U
Dibenzo(a,h)anthracene			5 U	5 U	5 U	5 UJ	5 U
Dibenzofuran			5 U	5 U	5 U	5 U	5 U '
Dichlorobenzidine-3,3	60		5 R	5 U	5 R	5 U	5 R
Dichlorophenol-2,4	20		5 U	5 U	5 U	5 U	5 U
Dimethylphenol-2,4	100		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

(A, B) - Exceeds criteria Exceedances highlighted

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-08S	MA-MW-09D	MA-MW-09D	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-8S-R2	MA-MW-9D-R1	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R2
Sample Date			09/17/2002	06/19/2002	09/19/2002	06/19/2002	09/19/2002
Sample Interval	1		4 - 14 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID	1		B0N70	B0KY6	B0N65	B0KX6	B0N69
Chemical Name							
Semivolatile Organic Compounds	(ug/L)						
Dinitrophenol-2,4	40		20 U	20 U	20 U	20 U	20 U
Dinitrotoluene-2,4	10		5 U	5 U	5 U	5 U	5 U
Dinitrotoluene-2,6			5 U	5 U	5 U	5 U	5 U
Ether, bis(2-chloroethyl)	10		5 U	5 U	_ 5 U	7.2	15 (A)
Ether, bis-chloroisopropyl			5 UJ	5 U	5 UJ	5 U	5 UJ .
Fluoranthene	300		5 U	5 U	5 U	5 U	5 U
Fluorene	300		5 U	5 U	5 U	5 U	5 U
Hexachlorobenzene	10	1	5 U	5 U	5 U	5 UJ	5 U
Hexachlorobutadiene	1		5 U	5 U	5 ∪	5 U	5 .U
Hexachlorocyclopentadiene	50	50	5 U	5 U	5 U	5 U	5 U
Hexachloroethane	10		_5 U	5 U	5 U	5 U	5 U
Indeno(1,2,3-cd)pyrene			5 U	_ 5 U	5 U	5 UJ	5 U
Isophorone	100		5 U	5 U	5 U	5 U	3.2 J
Methane, bis(2-chloroethoxy)			5 U	5 U	5 U	5 U	5 U
Methylnaphthalene-2			5 U	5 U	5 U	5 U	5 U
Naphthalene			5 U	5 U	5 U	5 U	5 U
Nitroaniline-2			20 U	20 U	20 U	20 U	20 U
Nitroaniline-3			20 U	20 U	20 U	20 U	20 U
Nitroaniline-4			20 U	20 U	20 U	20 U	20 U
Nitrobenzene	10		5 U	5 U	5 U	5 U	5 U
Nitrophenol-2			5 U	5 U	5 U	5 U	5 U
Nitrophenol-4			20 U	20 U	20 U	20 U	20 U
Nitroso-di-n-propyl-amine-N	20		5 Ü	5 U	5 U	5 U	5 U
Nitrosodiphenylamine-n	20		5 U	5 U	5 U	5 U	5 U
PCP (Pentachlorophenol)	1	1	5 U	5 U_	5 U	5 U	5 U
Phenanthrene			5 U	5 U	5 U	5 UJ	5 U
Phenol	4000		5 U	5 U	5 U	5 U	5 U
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	5 U	5 U	5 U	5 U	2.6 J
Phthalate, di-n-butyl	900		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Semivolatile Organic Compound Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-08S	MA-MW-09D	MA-MW-09D	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-8S-R2	MA-MW-9D-R1	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R2
Sample Date			09/17/2002	06/19/2002	09/19/2002	06/19/2002	09/19/2002
Sample Interval			4 - 14 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID			B0N70	B0KY6	B0N65	B0KX6	B0N69
Chemical Name							
Semivolatile Organic Compoun	ds (ug/L)	1					
Phthalate, di-n-octyl	100		5 U	5 U	5 U	5 U	5 U
Phthalate, diethyl	5000		5 U	5 U	5 U	5 U	5 U
Phthalate, dimethyl			5 U	5 U	5 U	5 U	5 U
Pyrene	200		5 U	5 U	5 U	5 U	5 U
Tetrachlorobenzene-1,2,4,5			5 U	5 U	5 U	5 U	5 U
Trichlorophenol-2,4,5	700		20 U	20 U	-20 U	20 U	20 U
Trichlorophenol-2,4,6	20		5 U	5 U	5 U	5 U	5 U

J - Reported value estimated in quantity

R - Rejected result

U - Analyte not detected above reporting limit

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-10S	MA-MW-10S	MA-MW-11M
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-10S-R2	MA-MW-11M-R1
Sample Date			06/19/2002	06/19/2002	09/19/2002	09/19/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	8 - 18 ft	8 - 18 ft	46 - 56 ft
CLP Sample ID	-	·	MB0KR8	MB0KW8	MB0NQ1-Dissolved	MB0NQ2	MB0KS1
Chemical Name							
Metals (ug/L)							
Aluminum	200		200 U	200 U	57.7 U	566 (A)	200 U
Antimony	20	6	14 U	14 U	1.6 U	1.6 U	14 U
Arsenic	8	10	480) (AB)	470 (AB)	462 J (AB)	523 J. (AB)	8 U
Barium	2000	2000	800	420	1100	1940	74
Beryllium	20	4	5 U	5 U	0.2 U	0.2_U	5 U
Cadmium	4	5	4 U	4 U	111.1 (AB)	45:7 (AB)	4 U
Calcium			130	130	122000	129000	71
Calcium	·		130	130	122000	129000_	71
Chromium	100	100	6 U	6 U	3 B	5.5 B	6 <u>U</u>
Cobalt			8 U	8 U	0.4 U	0.48_B	9.9
Copper	1000	1300	10 U	10 Ù	1.8 B	12.5_B	15
Cyanide	200		0.7_UJ	NA NA	_NA	2.2 B	0.7 <u>UJ</u>
Iron	300		12000 (A)	12000 (A)	10000 (A)	12500 (A)	200 U
Lead	10	15	7 U	7 U	0.7 U	35.5 J (AB)	7 U
Magnesium			52	51	40700	42300	36
Magnesium			52	51	40700	42300	36
Manganese	50		700 (A)	690 (A)	616LA (A)	642 (A)	2000 (A)
Mercury	2	2	0.06 U	0.06 U	0.1 U	0.1 UJ	0.06 U
Nickel	100		5 U	5 U	4.4 B	5.5 B	18
Potassium			25	26	24600 J	26200 J	17
Potassium			25	26	24600 J	26200 J	17
Selenium	50	50	_7 U	18	2.9 U	2.9 UJ	7 U
Silver			6 U	6 U	0.7 U	0.7 U	6 U
Sodium	50		51 (A)	52 (A)	49900 (A)		96 (A):
Sodium	50000		51	52		52100 (A)	96
Thallium	10	2	20 U	20 U	3.1 B (8)	2.6 U	20 U
Vanadium			10 U	10 U	1.9 B	4.1 B	10 U
Zinc	5000		160	22	11.1 B	474	65

B - Analyte detected in associated blank

302880

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-11M	MA-MW-11M	MA-MW-11M	MA-MW-11S	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11M-R2	MA-MW-11S-R1	MA-MW-11S-R1
Sample Date			06/20/2002	09/23/2002	09/23/2002	06/20/2002	06/20/2002
Sample Interval			46 - 56 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft	11 - 21 ft
CLP Sample ID			MB0KW9	MB0NQ4- Dissolved	MB0NQ6	MB0KS5	MB0KW6
Chemical Name	1						-
Metals (ug/L)							
Aluminum	200		200 U	193 B	117 B	. 17000 (A)	200 U
Antimony	20	6	14 U	1.6 U	1.6 UJ	14 U	14 U
Arsenic	8	10	8 U	1.3 U	1.3 UJ	12 (AB)	8 U
Barium	2000	2000	74	80.2 B	89.7 B	510	68
Beryllium	20	4	5 U	0.2 U	0.2 U	5 U	5 U
Cadmium	4	5	4 U	4.1 B. (A)	8:3 (AB)	4 U	4.3 (A)
Calcium			73	73200	75500	48	41
Calcium			73	73200	75500	48	41
Chromium	100	100	6 U	0.6 U	1.1 B	54	9.3
Cobalt			9.5	8.4 B	9.4 B	13	8 U
Copper	1000	1300	16	12.4 B	20.8 B	26	10 U
Cyanide	200		NA	NA NA	1.5 U	0.7 UJ	NA
Iron	300		200 U	67.2 B	274	21000 (A)	200 U
Lead	10	15	7 U	0.7 U	1.7 B	51.2 * (AB)	7 U
Magnesium			35	35800	36200	38	30
Magnesium			35	35800	36200	38	30
Manganese	50		1900 (A)	A 1950 (A)	2060 (A)	1 90 (A)	11
Mercury	2	2	0.06 U	0.1 U	0.1 U	0.06 U	0.06 U
Nickel	100		17	15.6 B	16 B	35	9.6
Potassium			17	17600	16800 J	5.7	4.5
Potassium			17	17600	16800 J	5.7	4.5
Selenium	- 50	50	17	2.9 U	2.9 UJ	12	22
Silver		·	6 U	. 0.7 U	0.7 U	6 U	6 U
Sodium	50			79800 🛶 🗀 (A)	81000 (A)		19
Sodium	50000	ļ	98	79800 (A)	81000 (A)		19
Thallium	10	2	20 U	2.6 U	2.6 U	20 U	20 U
Vanadium			10 U	0.98 B	0.58 B	39	10 U
Zinc	5000		52	85.2	273	1300	1300

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12M
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R1	MA-MW-12M-R2
Sample Date			09/23/2002	09/23/2002	06/18/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	38.1 - 48.1 ft
CLP Sample ID			MB0NQ5	MB0NQ9- Dissolved	MB0KR6	MB0KT6	MB0NQ7- Dissolved
Chemical Name							
Metals (ug/L)							
Aluminum	200		1.360 (A)	57.7 U	2300 (A)	. 200 U	57.7 U
Antimony	20	6	1.6 UJ	1.6 U	. 14 U	14 U	2.2 B
Arsenic	- 8	10	5.4 BJ	1.3 U	- 21 (AB)	16 (AB)	21 (AB)
Barium	2000	2000	113 B	66.6 B	210	190	210
Beryllium	20	4	0.2 U	0.2 U	5 U	5 U	0.33 B
Cadmium	4	5	4.4 B (A)	[4.4 B A [(A)	4 U	4 U	0.2 U
Calcium			52100	46900	83	91	92600
Calcium			52100	46900	83	91	92600
Chromium	100	100	. 18.2	. 13.4	6 U	6 U	0.6 U
Cobalt			2.9 B	1.7 B	8 U	8 U	4.8 B
Copper	1000	1300	4.5 B	0.6 U	10 U	10 U	0.6 U
Cyanide	200		4.4 B	NA	0.7 UJ	NA	NA NA
Iron	300	·	17.80(A)	8.7 U	32000 (A)		29900 Laber La(A)
Lead	10	15	5.5	0.7 U	7 U	7 U	0.7 U
Magnesium			33900	31900	28	30	30300
Magnesium			33900	31900	28	30	30300
Manganese	50		23.1	11.8 B	420 (A)	450 (A)	442 (A)
Mercury	2	2	0.1 U	0.1 U	0.05 U	- 0.06 U	0.1 U
Nickel	100	·	12.3 B	9.2 B	5.5 U	5 U	2.2 B
Potassium			4240 B	4130 B	25	27	26100
Potassium			4240 B	4130 B	25	27	26100
Selenium	50	50	12.6 J	12.3	7 U	14	2.9 U
Silver		···	0.7 U	0.7 U	6 U	6 U .	0,7 U
Sodium	50			18000 (A)		(5.1 A. (A)	49200 - 15 (A)
Sodium	50000		17900	18000	46	51	49200
Thallium	10	2	2.6 U	2.6 U	20 U	20 U	2.6 U
Vanadium			3.4 B	0.4 U	11	10 U	0.4 U
Zinc	5000		1250	1210	16	8 U	5.2 B

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-12M	MA-MW-12S	MA-MW-12S	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R1	MA-MW-12S-R2	MA-MW-12S-R2
Sample Date			09/24/2002	06/18/2002	06/18/2002	09/24/2002	09/24/2002
Sample Interval			38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			MB0NQ8	MB0KR3	MB0KT7	MB0NR0	MB0NR2- Dissolved
Chemical Name				,			
Metals (ug/L)							
Aluminum	200		3980 (A)	1900 (A)	200 U	6870 (A)	57.7 U
Antimony	20	6	1.6 UJ	14 U	14 U	1.9 BJ	1.6 U
Arsenic	. 8	10	29.5 J (AB)	6.1 (AB)	50 👫 (AB)	44.8, J (AB)	31.1 (AB)
Barium	2000	2000	337	55	40	113 B	63.9 B
Beryllium	20	4	1.5 B	5 U	5 U	0.58 B	0.23 B
Cadmium	4	5	0.2 U	4 U	4 U	0.25 B	0.2 U
Calcium			106000	88	94	110000	105000
Calcium			106000	88	94	110000	105000
Chromium	100	100	17.3	9.8	6 U	32.1	3.6 B
Cobalt			10.3 B	11	10	10.1 B	3 B
Copper	1000	1300	18.1 B	10 U	10 U	15 B	0.6 U
Cyanide	200		2.3 B	1.5 BJ	NA NA	10	NA NA
Iron	300		57700 (A)	. 22000 (A)	21000 (A)		21600 (A)
Lead	10	15	6.4	7 U	7 U	24 (AB)	0.7 U
Magnesium			33400	77	76	59700	55600
Magnesium			33400	77	76	59700	55600
Manganese	50		590 (A)	(A)	560. (A)	528 . (A)	. √ 461 (A)
Mercury	2	2	0.1 U	0.05 U	0.06 U	0.18 B	0.1 U
Nickel	100		8.8 B	9	5 U	15.8 B	2.9 B
Potassium			27500 J	16	17	17400 J	16800
Potassium			27500 J	16	17	17400 J	16800
Selenium	50	50	3.4 BJ	7 U	16	4.3 BJ	2.9 U
Silver			0.7 U	6 U	6 U	0.7 U	0.7 U
Sodium	50		51700 (A)		7.5 (A)		80600 (A)
Sodium	50000		51700 (A)	67	75	83200 (A)	= 80600 (A)
Thallium	10	2	2.6 U	20 U	20 U	2.6 U	2.6 U
Vanadium			42.9 B	10 U	10 U	24.6 B	1.2 B
Zinc	5000		302	71	8 U	192	0.7 U

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R1-D	MA-MW-13M-R2
Sample Date			06/27/2002	06/27/2002	06/27/2002	06/27/2002	09/25/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft
CLP Sample ID			MB0KR0	MB0KT2	MB0KQ8	MB0KT3	MB0NR1- Dissolved
Chemical Name							
		·					
Metals (ug/L)							
Aluminum	200		210 (A)	200 U	200 U	200 U	105 B
Antimony	20	6	14 U	14 U	14 U	14 U	2 B
Arsenic	8	10	(AB)	130 (AB)	130 (AB)	######################################	125 (AB)
Barium	2000	2000	150	130	150	130	139 B
Beryllium	20	4	5 U	5 U	5 U	5 U	0.2 U
Cadmium	4	5	4 U	4 U	4 U	4 U	0.2 U
Calcium			87	86	86	87	84800
Calcium			87	86	86 ⁻	87	84800
Chromium	100	100	6 U	6 U	6 U	6 U	0.6 U
Cobalt			13	11	12	11	10.3 B
Copper	1000	1300	10 U	10 U	10 U	10 U	0.6 U
Cyanide	200		0.7 U	, NA	0.7 U	NA NA	NA_
Iron	300		22000 (A)	21000 (A)	22000 (A)	21000 × (A)	20400 (A)
Lead	10	15	7 U	7 U	7 U	7 U	0.7 U
Magnesium		*	28	27	28	27	26800
Magnesium			28	27	28	27	26800
Manganese	50.		760 (A)	740 (A)	760 (A)	740 (A)	696" (A)
Mercury	2	2	0.05 U	0.05 U	0.05 U	0.05 U	0.1 U
Nickel	100	·	5.3	5 U	5.3	5 U	3.8 B
Potassium			30	- 30	31	31	29000
Potassium			30	30	31	31	29000
Selenium	50	50	7 U	10	7 U	7 U	2.9 U
Silver			6 U	<u>6</u> U	6 U	6 U	0.7 U
Sodium	50000		79	77	80	79	69200 A (A)
Sodium	50		79: (A)		80 (A)		69200 (A)
Thallium	10	2	20 U	20 U_	20 U	20 U	2.6 U
Vanadium			10 U	10 U	10 U	10 U	0.4 U
Zinc	5000		290	280	280	290	279

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004
GWQC - Groundwater Quality Criteria
MCL - Maximum Contaminant Level

302884

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13M-R2-D	MA-MW-13S-R1	MA-MW-13S-R1
Sample Date			09/25/2002	09/25/2002	09/25/2002	06/28/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft	6.6 - 16.6 ft
CLP Sample ID			MB0NR5	MB0NP5- Dissolved	MB0NP6	MB0KR2	MB0KT4
Chemical Name							
Metals (ug/L)	***						
Aluminum	200		1810 (A)	67.5 B	1,600 J. (A)	400 (A)	200 U
Antimony	20	6	1.6 UJ	1.6 U	1.6 UJ	14 U	14 U
Arsenic	8	10	143 J (AB)	124 (AB)	138 J. (AB)	6400 (AB)	2000 (AB)
Barium	2000	2000	277	141 B	220	.26000 (AB)	1000
Beryllium	20	4	1.4 B	0.26 B	1.2 B	5 U	5 U
Cadmium	4	5	0.92 B	0.2 U	0.7 B	4 U	4 U
Calcium			89200	86200	88800	890	440
Calcium			89200	86200	88800	890	440
Chromium	100	100	18.5	0.6 U	14.6	18	9.1
Cobalt			15 B	10.8 B	14.2 B	8.4	8 U
Copper	1000	1300	24 B	0.6 U	23.4 B	16	10 U
Cyanide	200		7.3 B	NA	2.7 B	0.7 U	NA
Iron	300		45400 (A)	20800. (A)	44200 🚁 (A)	7.0000 (A)	990 (A)
Lead	10	15	2.2 B	0.7 U	1.8 B	7 U	7 U
Magnesium			27900	27400	28100	66	54
Magnesium			27900	27400	28100	66	54
Manganese	50		7.431 (A)	7.06 (A)	734 (A)	200: (A)	53 (A)
Mercury	2	2	0.1 U	0.1 U	0.1 U	0.17	0.05 U
Nickel	100		13.1 B	3.9 B	11 B	36	30
Potassium			28300 J	29600	28100 J	53	70
Potassium			28300 J	29600	28100 J	53	70
Selenium	50	50	3 BJ	2.9 U	2.9 UJ	7 U	23
Silver			0.7 U	0.7 U	0.7 U	6 U	6 U
Sodium	50		70500 (A)	69700 (A)	70400 (A)	4 . 88 (A)	-110 (A)
Sodium	50000		70500 v(A)	69700 (A)	7.0400 (A)	88	110
Thallium	10	2	2.6 U	2.6 U	2.6 U	20 U	20 U
Vanadium			29 B	0.4 U	25.6 B	14	15
Zinc	5000		540	284	480	130 U	29

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13S	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14D
Sample ID	GWQC	MCL	MA-MW-13S-R2	MA-MW-13S-R2	MA-MW-14D-R1	MA-MW-14D-R1	MA-MW-14D-R2
Sample Date			09/25/2002	09/25/2002	06/18/2002	06/18/2002	09/24/2002
Sample Interval			6.6 - 16.6 ft	6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	170 - 188 ft
CLP Sample ID			MB0NR3- Dissolved	MB0NR4	MB0KQ6	MB0KS9	MB0NR7
Chemical Name					 		=
Metals (ug/L)							
Aluminum	200		110 B	206 (A)	650 (A)	200 U	772 (A)
Antimony	20	6	23.7 B (AB)	6.4 BU (B)	14 U	14 U	1.6 UJ
Arsenic	8	10	5890 R	3550 R	8 U	8 U	2.4 BJ
Barium	2000	2000	3560 (AB)	36500 (AB)	34	28	38.3 B
Beryllium	20	4	0.2 U	0.2 U_	5 U	5 U	0.2 U
Cadmium	4	5	0.2 U	0.2 U	4 U	4 U	0.2 U
Calcium			976000	953000	5.9	5.8	6250
Calcium			976000	953000	5.9	5.8	6250
Chromium	100	100	9 B	35.8	6 U	6 U	4.1 B
Cobalt			2.9 B	4.4 B	8.8	8.9	12.5 B
Copper	1000	1300	0.6 U	34.7	23	10 U	7.8 B
Cyanide	200		NA NA	1.5 U	0.83 B	NA	1.5 U
Iron	300		235	11700 (A)	2600 (A)	2100° (A).	3660 (A)
Lead	10	15	0.7 U	3.9	7 U	7 U	2.6 B
Magnesium			42800 '	97800	1.5	1.5	1780 B
Magnesium			42800	97800	1.5	1.5	1780 B
Manganese	50		11 B	139 (A)	190ta (A)	190 (A)	214;(A)
Mercury	2	2	0.37	0.8	0.05 U	0.05 U	0.1 U
Nickel	100	·	16.4 B	33.8 B	. 6	5 U	6 B
Potassium			176000 J	119000 J	2.4	2.5	1990 B
Potassium			176000 J	119000 J	2.4	2.5	1990 B
Selenium	50	50	11.6	8.4 J	7 U	7 U	2.9 UJ
Silver			0.7 U	0.7 U	6 U	6 U	0.7 U
Sodium	50			145000 J. (A)	15	. 16	15400a (A)
Sodium	50000		2 184000 J	145000 J (A)	15	16	15400
Thallium	10	2	2.6 U	2.6 U_	20 U	20 U	2.6 U
Vanadium			39.5 B	28.1 B	10 U	10 U	4.7 B
Zinc	5000		15.1 B	50.8	21	17	30.8

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-14D	MA-MW-14R	MA-MW-14R	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	MA-MW-14D-R2	MA-MW-14R-R1	MA-MW-14R-R1	MA-MW-14R-R2	MA-MW-14R-R2
Sample Date			09/24/2002	06/18/2002	06/18/2002	09/24/2002	09/24/2002
Sample Interval			170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			MB0NR8- Dissolved	MB0KQ9	MB0KT1	MB0NR6- Dissolved	MB0NS1
Chemical Name							
Metals (ug/L)							
Aluminum	200		57.7 U	210 (A)	200 U	57.7 U	- 503 × 3, 3 (A)
Antimony	20	6	1.6 U	14 U	14 U	1.6 U	1.6 UJ
Arsenic	8	10	1.3 U	8 U	8 U	1.9 B	5 BJ
Barium	2000	2000	32.4 B	55	. 54	60.2 B	70.1 B
Beryllium	20	4	0.27 B	5 U	5 U	0.2 U	0.2 U
Cadmium	4	5	0.2 U	4 U	4 U	0.2 U	0.2 U
Calcium			5610	27	29	33700	37200
Calcium			5610	27	29	33700	37200
Chromium	100	100	0.6 U	6 U	6 U	0.6 U	3.2 B
Cobalt			9.6 B	29	30	31.9 B	34.8 B
Copper	1000	1300	0.6 U	10 U	10 U	0.6 U	5.2 B
Cyanide	200		NA	0.7 UJ	NA NA	NA	2.1 B
Iron	300		2320 (A)	11000 (A)	11000 A (A)	13100 (A)	. 14600 (A)
Lead	10	15	0.7 U	7 U	7 U	0.7 U	1.8 B
Magnesium			1620 B	11	11	12900	13800
Magnesium			1620 B	11	11	12900	13800
Manganese	50		198 (A)	1800 (A)	1900 (A)	2130 (A)	2290 (A)
Mercury	2	. 2	0.1 U	0.05 U	0.06 U	0.1 U	0.1 U
Nickel	100		4.1 B	. 10	9.9	9.8 B	11.4 B
Potassium			2070 B	6	6.3	6720	6800 J
Potassium			2070 B	6	6.3	6720	6800 J
Selenium	50	50	2.9 U	7 U	7.8	2.9 U	3.1 BJ
Silver			0.7 U	6 U	6 U	0.7 U	0.7 U
Sodium	50		15600 (A)	76 (A)	79 (A)		*
Sodium	50000		15600	76	79	76100 (A)	
Thallium	10	2	2.6 U	20 U	20 U	2.6 B (B)	2.7 B
Vanadium			0.4 U	10 U	10 U	0.4 U	5.4 B
Zinc	5000		19.5 B	11	10	5.4 B	18.1 B

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-14S	MA-MW-14S	MA-MW-14S
Sample ID	GWQC	MCL	MA-MW-14S-R1	MA-MW-14S-R1	MA-MW-14S-R2	MA-MW-14S-R2	MA-MW-14S-R2-D
Sample Date			06/18/2002	06/18/2002	09/24/2002	09/24/2002	09/24/2002
Sample Interval			7 - 20 ft	7 - 20 ft	7 - 20 ft	7 - 20 ft	7 - 20 ft
CLP Sample ID			MB0KQ7	MB0M60	MB0NR9- Dissolved	MB0NS0	MB0NP8
Chemical Name				· ************************************		,	
					,		
Metals (ug/L)							
Aluminum	200		250 (A)	200 U	57.7 U	97.6 B	109 B
Antimony	20	6	14 U	14 U	4 B	1.6 UJ	1.6 UJ
Arsenic	8	10	31 (AB)	27 (AB)	(AB)	42:14J±1. (AB)	42:6 J (AB)
Barium	2000	2000	37	38	50 B	48.7 B	51 B
Beryllium	20	4	5 U	5 U	0.2 U	0.2 U	0.2 U
Cadmium	4	5	4 U	4 U	0.2 U	0.2 U	0.2 U
Calcium			69	76	86600 J	88300	92200
Calcium			69	76	86600 J	88300	92200
Chromium	100	100	6 U	6 U	2.4 B	3.3 B	3.2 B
Cobalt			8 U	8 U	. 0.4 U	0.61 B	0.4 U
Copper	1000	1300	10 U	10 U	0.6 U	2.6 B	2.4 B
Cyanide	200		0.7 UJ	NA	NA	10.6	11.3
Iron	300		1200 ° (A)	1100 (A)	933 J (A)	923 (A)	953 (A)
Lead	10	15	7 U	7 U	0.7 U	0.7 U	0.7 ⋅ U
Magnesium			60	65	78100 J	78000	81700
Magnesium			60	65	78100 J	78000	81700
Manganese	50		240 (A)	260 × (A)	269 J (A)	274: 🏋 (A)	287. (A)
Mercury	2	2	0.05 U	0.06_U	0.1 U	0.1 U	0.1 U
Nickel	100		5 U	5 U	2.7 B	2.2 B	2.9 B
Potassium			17	19	22900 J	22000 J	23100 J
Potassium			17	19	22900 J	22000 J	23100 J
Selenium	50	50	7 U	14	2.9 U	2.9 UJ	2.8 UJ
Silver			6 U	6 U	0.7 U	0.7 U	0.7 U
Sodium	50000		66	72	7.0900 (A)		74100 1 (A)
Sodium	50	<u></u>	166 (A)	72 (A)	70900 (A)	71100 (A)	74100 (A)
Thallium	10	2	20 U	20 U	2.6 U	2.6 U	2.6 U
Vanadium			10 U	10 U	3.7 B	2.2 B	1.6 B
Zinc	5000		8 U	12	0.7 U	0.7 U	0.7 U

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

302888

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15M	MA-MW-15M
Sample ID	GWQC	MCL	MA-MW-14S-R2-D	MA-MW-15M-R1	MA-MW-15M-R1	MA-MW-15M-R2	MA-MW-15M-R2
Sample Date			09/24/2002	06/19/2002	06/19/2002	09/23/2002	09/23/2002
Sample Interval			7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	59.4 - 69.4 ft
CLP Sample ID			MB0NQ0- Dissolved	MB0KS7	MB0M61	MB0M97- Dissolved	MB0M98
Chemical Name							
Metals (ug/L)							
Aluminum	200		57.7 U	NA	200 U	57.7 U	14800 (A)
Antimony	20	6	1.9 B	NA	14 U	2.9 B	7 BJ (B)
Arsenic	8	10	24.7 J (AB)	NA	8 U	1.5 B	15.8 J (AB)
Barium	2000	2000	27.1 B	NA	100	113 B	175 B
Beryllium	20	4	0.2 U	NA	5 U	0.22 B	12:8, (B)
Cadmium	4	5	0.2 U	NA NA	4 U	0.2 U	0.2 U
Calcium			48800 J	NA NA	47	50400	50800
Calcium			48800 J	NA NA	47	50400	50800
Chromium	100	100	1.3 B	NA	6 U	0.6 U	72.6
Cobalt			0.4 U	NA	28	25.4 B	68
Copper	1000	1300	0.6 U	NA	10 U	0.6 U	144
Cyanide	200		NA NA	3.9 BJ	NA NA	NA NA	6 B
Iron	300		479 Ú (A)	NA	28000 (A)	27000 (A)	250000 (A)
Lead	10	15	0.7 U	NA .	7 U	0.7 U	0.7 U
Magnesium			44200 J	NA NA	17	18200	18300
Magnesium			44200 J	NA	17	18200	18300
Manganese	50		4153 (J) (A)	NA	1900 (A)	1740 (A)	2020 (A)
Mercury	2	2	0.1 U	NA NA	0.06 U	0.1 U	0.11 B
Nickel	100		1.3 B	NA	7.4	8.2 B	85.7
Potassium			12800 J	NA NA	16	17200	16800 J
Potassium			12800 J	NA NA	16	17200	16800 J
Selenium	50	50	2.9 U	NA NA	13	2.9 U	8.6 J
Silver			0.7 U	NA .	6 U	0.7 U	0.7 U
Sodium	50		42800 (A)	NA NA	68 (A)		
Sodium	50000		42800	NA	68	63800 (A)	
Thallium	10	2	2.6 U	NA NA	20 U	2.6 U	12.8 (AB)
Vanadium			1.8 B	NA NA	10 Ü	0.92 B	185
Zinc	5000		0.7 U	NA	13	18.8 B	344

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-15S	MA-MW-15S	MA-MW-15S	MA-MW-15S	MA-MW-16S
Sample ID	GWQC	MCL	MA-MW-15S-R1	MA-MW-15S-R1	MA-MW-15S-R2	MA-MW-15S-R2	MA-MW-16S-R1
Sample Date		}	06/19/2002	06/19/2002	09/25/2002	09/25/2002	06/27/2002
Sample Interval	7	Į	6.8 - 16.8 ft	6.8 - 16.8 ft	6.8 - 16.8 ft	6.8 - 16.8 ft	6.5 - 16.5 ft
CLP Sample ID	7		MB0KR9	MB0M62	MB0M82	MB0M83- Dissolved	MB0KY3
Chemical Name							
Metals (ug/L)			,				
Aluminum	200		2700: (A)	200 U	2580 (A)	57.7 U	570 (A)
Antimony	20	6	14 U	14 U_	3.7 BJ	1.6 U	14 U
Arsenic	8	.10	8 U	1200 (AB)	177.0 J (AB)	857t (AB)	2200 * * * (AB)
Barium	2000	2000	95	510	852	650	250
Beryllium	20	4	5 U	5 U	0.2 U	0.2 U	5 U
Cadmium	4	5	4 U	4 U	2.6 B	0.2 U	4 U
Calcium			40	130	139000	129000	100
Calcium			40	130	139000	129000	100
Chromium	100	100	15	10	55.5	13.4	34
Cobalt			32	8 U .	2.1 B	0.4 U	8 U
Copper	1000	1300	24	10 U	.41	0.6 U	10 U
Cyanide	200		0.7 UJ	NA NA	13.6	. NA	0.7 UJ
lron	300	·	57,000 S (A)	12000; (A)	23200 = 2(A)	9320 (A)	1.8000 - (A)
Lead	10	15	7 U	7 U	192 - (AB)	0.7 U	7 U
Magnesium			15	160	170000	157000	160
Magnesium			15	160	170000	157000	160
Manganese	50		1700 (A)	440 (A)	565 (A)	549 (A)	570 ≥ 52 (A)
Mercury	2	2	0.06 U	0.06 U	0.1 U	0.1 U	0.05 U
Nickel	100		24	5 U	21.1 B	3.4 B	10
Potassium			14	21	27100 J	24500	18
Potassium			14	21	. 27100 J	24500	18
Selenium	50	50	7 U	40	2.9 UJ	2.9 U	7 U
Silver			6 U	6 U	0.7 U	0.7 U	6 U
Sodium	50		58 (A)	74 × (A)		75500 (A)	110 (A)
Sodium	50000		58	74	105000 ⁷ (A)	75500 (A)	110
Thallium	10	2	20 U	20 U	2.6 U	2.6 U	20 U
Vanadium			29	10 U	20 B	5 B	10 U
Zinc	5000		70	8 U_	1020	3.9 B	66

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

302890

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-16S	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M
Sample ID	GWQC	MCL	MA-MW-16S-R1	MA-MW-16S-R2	MA-MW-16S-R2	MA-MW-17M-R1	MA-MW-17M-R1
Sample Date	1		06/27/2002	09/25/2002	09/25/2002	06/14/2002	06/14/2002
Sample Interval			6.5 - 16.5 ft	6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft
CLP Sample ID	1	ļ	MB0M63	MB0M84- Dissolved	MB0M86	MB0KY2	MB0M64
Chemical Name							
Metals (ug/L)							
Aluminum	200		200 U	57.7 U	584 (A)	47.00 (A)	200 U
Antimony	20	. 6	14 U	1.6 U	1.6 UJ	14 U	14 U
Arsenic	8	10	2100 (AB)	2060: (AB)	1980 J (AB)	8 U	8 U
Barium	2000	2000	210	425	528	99	62
Beryllium	20	4	5 U	0.2 U	0.2 U	5 U	5 U
Cadmium	4	. 5	4 U	0.2 U	0.22 B	4 U	4 U
Calcium			100	97100	102000	64	70
Calcium			100	97100	102000	64	70
Chromium	100	100	6	11.8	69.1	19	6 U
Cobalt			. 8 U	0.81 B	2.4 B	14	. 8 U
Copper	1000	1300	10 U	0.6 U	7.5 B	25	10 U
Cyanide	200		NA	NA NA	19.7	12.2 R	NA
Iron	300		20000 (A)	4090 (A)	8740 (A)	45000: (A)	2400 (A)
Lead	10	15	7 U	0.7 U	7.4	7 U	7 U
Magnesium			140	208000	211000	21	23
Magnesium			140	208000	211000	21	23
Manganese	50		560 (A)	346 (A)	370 (A)	720 (A)	
Mercury	2	2	0.05 U	0.1 U	0.1 U	0.5 U	0.05 U
Nickel	100		9.2	8.1 B	12.5 B	20	5 U.
Potassium			17	24400	23500 J	17	20
Potassium			17	24400	23500 J	17	20
Selenium	50	50	37	2.9 U	2.9 UJ	7 U	13
Silver			6 U	0.7 U	0.7 U	6 U	6 U
Sodium	50000		92	98100 (A)		56	65
Sodium	50		92 (A)	98100 (A)	= 100000 = (A)	56 ⁸ (A)	65 (A)
Thallium	10	2	20 U	2.6 U	2.6 U	20 U	20 U
Vanadium			10 U	4.6 B	6.2 B	34	10 Ú
Zinc	5000		52	0.7 U	76.2	62	8 U

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17M	MA-MW-17S	MA-MW-17S	MA-MW-17S
Sample ID	GWQC	MCL	MA-MW-17M-R2	MA-MW-17M-R2	MA-MW-17S-R1	MA-MW-17S-R1	MA-MW-17S-R2
Sample Date			09/18/2002	09/18/2002	06/14/2002	06/14/2002	09/18/2002
Sample Interval			41.82 - 51.82 ft	41.82 - 51.82 ft	8 - 18 ft	8 - 18 ft	8 - 18 ft
CLP Sample ID			MB0M85	MB0M89-Dissolved	MB0KY4	MB0M65	MB0M87
Chemical Name							
Metals (ug/L)							
Aluminum	200		60901 (A)	57.7 U	200 U	200 U	57.7 U
Antimony	20	6	1.6 U	1.7 B	14 U	14 U	1.8 B
Arsenic	8	10	14.6°J (AB)	2.6 B	290 (AB)	₫ 4290 (AB).	541 Jag (AB)
Barium	2000	2000	191 B	65.4 B	110	120	136 B
Beryllium	20	4	3.6 B	0.2 U	5 U	5 U	0.2 U
Cadmium	. 4	5	0.2 U	0.2 U	14 (AB)	14 (AB)	12.2 (AB)
Calcium			70500	71100	88	88	84900
Calcium			70500	71100	88	88	84900
Chromium	100	100	28.7	0.6 U	6 U	6 U	1.3 B
Cobalt			14.9 B	5.6 B	8 U	8 U	1.7 B
Copper	1000	1300	43.3	1.2 B	12	11	8.8 B
Cyanide	200		2.5 B	NA	3.4 BR	NA NA	1.5 U
Iron	300		71000 (A)	2610 (A)	300 (A)	± 470 (A)	- /3030 年 (A)
Lead	10	15	8.9 J	0.7 U	.7 U	7 U	0.7 U
Magnesium			22500	22400	29	30	27400
Magnesium			22500	22400	29	30	27400
Manganese	50		725 AIA)	650) (A)	96 (A)		1/20 ×(A)
Mercury	2	2	0.14 BJ	0.1 U	0.5 U	0.05 U	0.1 UJ
Nickel	100		20.7 B	3.5 B	8.7	8.2	6 B
Potassium			18900 J	18400 J	9.8	10	9010 J
Potassium			18900 J	18400 J	9.8	. 10	9010 J
Selenium	50	50	2.9 UJ	2.9 U	7 U	17	2.9 UJ
Silver ·			0.7 U	0.7 U	6 U	6 U	0.7 U
Sodium	50			#1 [#] 60400 (A)	21	21	24800 (A)
Sodium	50000		58800 L L L L L	60400 (A)	21	21	24800
Thallium	10	2	2.6 U	2.7⊬B(в)	20 U	20 U	2.6 U
Vanadium			60.9	0.4 U	10 U	10 U	2.6 B
Zinc	5000		88.3	10.6 B	2900	2900	2100

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

MCL - Maximum Contaminant Level

302892

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18D	MA-MW-18D
Sample ID	GWQC	MCL	MA-MW-17S-R2	MA-MW-18D-R1	MA-MW-18D-R1	MA-MW-18D-R2	MA-MW-18D-R2
Sample Date			09/18/2002	06/17/2002	06/17/2002	09/18/2002	09/18/2002
Sample Interval			8 - 18 ft	140 - 152 ft	140 - 152 ft	140 - 152 ft	140 - 152 ft
CLP Sample ID			MB0M88-Dissolved	MB0KX9	MB0M66	MB0M90	MB0M95-Dissolved
Chemical Name							
Metals (ug/L)							
Aluminum	200		57.7 U	320 (A)	200 U	3670 # (A)	57.7 U
Antimony	20	6	1.6 U	14 U	14 U	1.6 U	1.6 U
Arsenic	8	10	564 J (AB)	8 U	8 U	3.5 B	1.3 U
Barium	2000	2000	142 B	47	43	93.5 B	48.7 B
Beryllium	20	4	0.2 U	5 U	5 U	0.66 B	0.2 U
Cadmium	4	5	12.7 (AB)	4 U	4 U	0.2 U	0.2 U
Calcium			89700	10	10	14100	10200
Calcium			89700	10	10	14100	10200
Chromium	100	100	2.2 B	6 U	6 U	10.6	0.88 B
Cobalt			2 B	8 U	8 U	11.8 B	7.9 B
Copper	1000	1300	8 B	10 U	10 U	9.3 B	1.7 B
Cyanide	200		NA NA	1.2 BR	NA	1.5 U	NA NA
Iron	300		3330 (A)	430 (A)	250	# 18300 (A)	284
Lead	10	15	0.7 U	7 U	7 U	16.6 J (AB)	0.7 U
Magnesium			28900	3.5	3.5	5120	3580 B
Magnesium			28900	3.5	3.5	5120	3580 B
Manganese	50		132 (A)	360 (A)	350 (A)	.598 : (A)	415 in (A)
Mercury	2	2	0.1 U	0.05 U	0.05 U	0.1 UJ	0.1 U
Nickel	100		6.6 B	5 U	5 U	5.6 B	2.6 B
Potassium			9450 J	3.6	3.7	3150 B	2450 B
Potassium			9450 J	3.6	3.7	3150 B	2450 B
Selenium .	50	50	2.9 U	7 U	7 U	2.9 UJ	2.9 U
Silver			0.7 U	6 U	6 U	0.7 U	0.7 U
Sodium	50		25300 (A)	27	27	26400 (A)	
Sodium	50000		25300	27	27	26400	21600
Thallium	10	2	2.6 U	20 U	20 U	2.6 U	2.6 U
Vanadium			2.5 B	10 U	10 U	18 B	1.2 B
Zinc	5000		2190	8.5	8 U	34.5	3.3 B

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18M	MA-MW-18M	MA-MW-18M	MA-MW-18S
Sample ID	GWQC	MCL	MA-MW-18M-R1	MA-MW-18M-R1	MA-MW-18M-R2	MA-MW-18M-R2	MA-MW-18S-R1
Sample Date			06/17/2002	06/17/2002	09/18/2002	09/18/2002	06/17/2002
Sample Interval			31.77 - 41.77 ft	31.77 - 41.77 ft	31.77 - 41.77 ft	31.77 - 41.77 ft	7.8 - 17.8 ft
CLP Sample ID			MB0KY0	MB0M67	MB0M91-Dissolved	MB0M92	MB0KY1
Chemical Name							
	·						
Metals (ug/L)	· · · · · · · · · · · · · · · · · · ·						
Aluminum	200		200 U	200 U	57.7 U	268 (A)	SA: 350 (A)
Antimony	20	6	14 U	14 U	1.6 U	1.6 U	14 U
Arsenic	8	10			98.9 Ú (AB)	≨ ≨ 94.8 J (AB)	9.2- (A)
Barium	2000	2000	80	130	154 B	187 ·B	/5400 (A8)
Beryllium	20	4	5 U	5 U	0.2 U	0.2 ∪	5 U
Cadmium	4	5	4 U	4 U	0.2 U	0.2 U	4 U
Calcium			49	82	84900	82200	140
Calcium			49	82	84900	82200	140
Chromium	100	100	6 U	6 U	0.6 U	1.4 B	6 U
Cobalt			8 U	9	8.4 B	8.4 B	8 U
Copper	1000	1300	10 U	10 U	1.3 B	4.1 B	10 U
Cyanide	200		5.9 BR	NA	NA NA	1.5 U	18.1 R
Iron	300			27000 (A)	26900 (A)	27 ₃ 100 (A)	28000 (A)
Lead	10	15	7 U	7 U	0.7 U	1.5 B	7 U
Magnesium			17	28	28500	28000	18
Magnesium			17	28	28500	28000	18
Manganese	50		170 (A)	280 (A)	27.8 (A)	(A)	1600 (Ā)
Mercury	2	2	0.05 U	0.05 U	_ 0.1 U	0.1 UJ	0.5 U
Nickel	100	<u> </u>	5 U	5 U	1.8 B	3 B	5 U
Potassium			9.9	17	14700 J	14700 J	14
Potassium			9.9	17	14700 J	14700 J	14
Selenium	50	50	7 U	15	2.9 U	2.9 UJ	7 U
Silver		<u> </u>	6 U	6 U	0.7 U	0.7 U	6 U
Sodium	50000	<u> </u>	26	45	41900	41900	39
Sodium	50		26	45	4.1900 (A)	41900 (A)	39
Thallium	10	2	20 U	20 U	2.6 U	2.6 U	20 U
Vanadium			10 U	10 U	0.4 U	2.7 B	10 U
Zinc	5000		8 U	8 U	7.5 B	18.5 B	160

B - Analyte detected in associated blank

302894

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-18S	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M
Sample ID	GWQC	MCL	MA-MW-18S-R1	MA-MW-18S-R2	MA-MW-18S-R2	MA-MW-19M-R1	MA-MW-19M-R1
Sample Date	1		06/17/2002	09/18/2002	09/18/2002	06/17/2002	06/17/2002
Sample Interval			7.8 - 17.8 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			MB0M68	MB0M93	MB0M94-Dissolved	MB0KX7	MB0M69
Chemical Name							
Metals (ug/L)	-						
Aluminum	200		200 U	719 (A)	57.7 U	1300\$ (A)	200 U
Antimony	20	6	14 U	1.6 U	1.6 U	14 U	14 U
Arsenic	8	10	8 U	12.8 (AB)	10:6 (AB).	8 U	8 U
Barium	2000	2000	5200 (AB)	6310% (AB)	5740 (AB)	82	76
Beryllium	20	4	5 U .	0.2 U	0.2 U	5 U	5 U
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	4 U
Calcium			140	134000	134000	42	45
Calcium			140	134000	134000	42	45
Chromium	100	100	6 U	3.8 B	3.1 B	6 U	6 U
Cobalt			8 U	2.1 B	1 B	16	18
Copper	1000	1300	. 10 U	5.8 B	1.7 B	20	10 U
Cyanide	200		NA NA	9.1 B	NA	1.2 BR	NA
Iron	300		28000 (A)	26800 (A)	25400 (A)	7800 (A)	7500 (A
Lead	-10	15	7 U	13.2.J. (A)	0.7 U	7 U	7 U
Magnesium			17	15800	15700	20	21
Magnesium			17	15800	15700	20	21
Manganese	50		1600 (A)	1350ks (A)	1350 (A)	560: (A)	590 (A
Mercury	2	2	0.05 U	0.1 UJ	0.1 U	0.5 U	0.05 U
Nickel	100		5 U	6.5 B	2.9 B	5 U	5 U
Potassium			14	12000 J	11700 J	9.9	11
Potassium			14	12000 J	11700 J	9.9	11
Selenium	50	50	21	2.9 UJ	2.9 U	7 U	7.6
Silver			6 U	0.7 U	0.7 U	6 U	6 U
Sodium	50000		40	27000	27800	44	47
Sodium	50		40	27000			47
Thallium	10	2	20 U	2.6 U	5:3 B (B)	20 U	20 U
Vanadium			10 U	3.4 B	0.4 U	10 U	10 U
Zinc	5000		88	164	90.2	70	66

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-19R
Sample ID	GWQC	MCL	MA-MW-19M-R2	MA-MW-19M-R2	MA-MW-19R-R1	MA-MW-19R-R1	MA-MW-19R-R2
Sample Date			09/19/2002	09/19/2002	06/17/2002	06/17/2002	09/19/2002
Sample Interval			42 - 52 ft	42 - 52 ft	103 - 113 ft	103 - 113 ft	103 - 113 ft
CLP Sample ID			MB0M96	MB0MA1-Dissolved	MB0KX6	MB0M70	MB0M99
Chemical Name							
Metals (ug/L)							
Aluminum	200		909 (A)	57.7 U	1500 J. (A)	260 alt (A)	45321 (A)
Antimony	20	6	1.6 U	1.6 U	14 U	14 U	2 B
Arsenic	8	10	3.3 B	2.2 B	8 U	8 U	1.6 B
Barium	2000	2000	98.2 B	77.5 B	140	130	141 B
Beryllium	20	4	0.23 B	0.2 U	5_U	5 U	0.46 B
Cadmium	4	5	0.2 U	0.2 U	4 U	4 U	0.79 B
Calcium			45700	44700	170_	180	156000
Calcium			45700	44700	170	180	156000
Chromium	100	100	4.7 B	0.6 U	15	6 U	3.5 B
Cobalt			17.7 B	16.6 B	73	77	58.7 J
Copper	1000	1300	23.1 B	2 B	170	140	226
Cyanide	200		1.5 U	NA	0.7_UR	NA NA	11.6
Iron	300		9540 (A)	7550 (A)	94000 (A)	96000 (A)	80200 (A)
Lead	10	15_	2.6 B	0.7 U	7_U	7 U	3.3
Magnesium			20400	20000	74	78	66800
Magnesium			20400	20000	74	78	66800
Manganese	50		594 ⁴² (A)	589 (A)	5000 h (A)	5200 (A)	4490 (A)
Mercury	2	2	0.1 UJ	0.1 U	0.05	0.05 U	0.1 UJ
Nickel	100		4.4 B	3.1 B	63	60	45.4
Potassium			8900 J	8680 J	34	40	44500 J
Potassium			8900 J	8680 J	34	40	44500 J
Selenium	50	50	2.9 UJ	· 2.9 U	7 U	7 U	2.9 UJ
Silver			0.7 U	0.7 U	6_U	6 U	0.7 U
Sodium	50		40100 (A)	40600 (A)	3500 × (A)	37,00 (A)	
Sodium	50000		40100	40600	3500	3700	3010000 (A)
Thallium	10	2	2.6 U	3.6 B (B)	20_U	20 U	12.5 Hs (AB)
Vanadium			6.6 B	0.4 U	10 U	10 U	4.6 B
Zinc	5000		69.4	52.6	130	110	78.6

B - Analyte detected in associated blank

302896

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-19R	MA-MW-19S	MA-MW-19S	MA-MW-19S	MA-MW-19S
Sample ID	GWQC	MCL	MA-MW-19R-R2	MA-MW-19S-R1	MA-MW-19S-R1	MA-MW-19S-R2	MA-MW-19S-R2
Sample Date			09/19/2002	06/17/2002	06/17/2002	09/19/2002	09/19/2002
Sample Interval	7		103 - 113 ft	5.05 - 15.05 ft	5.05 - 15.05 ft	5.05 - 15.05 ft	5.05 - 15.05 ft
CLP Sample ID	7		MB0MA0-Dissolved	MB0KX8	MB0M71	MB0MA3-Dissolved	MB0MA4
Chemical Name							
Metals (ug/L)							
Aluminum	200		206-14 (A)	430 (A)	200 U	57.7 U	131 B
Antimony	20	6	1.6 B	14 U	14 U	1.6 U	1.6 U
Arsenic	8	10	1.3 U	8 U	8 U	1.3 U	- 1.3 U
Barium	2000	2000	139 B	1000	1000	1140	1230
Beryllium	20	4	0.42 B	· 5 U	5 U	0.2 U	0.2 U
Cadmium	4	. 5	1.1 B	4 U	. 4 U	0.2 U	0.2 U
Calcium			157000	120	130	131000	145000
Calcium			157000	120	130	131000	145000
Chromium	100	100	0.6 U	6 U	6 Ú .	1.4 B	2.4 B
Cobalt			60	8 U	8 U	0.4 U	0.44 B
Copper	1000	1300	201	10_U	10 U	0.99 B	2.7 B
Cyanide	200		NA	9.5 BR	NA	NA	38.2
Iron	300		80500 (A)	5000 (A)	4600 (A)	3590 (A)	3840 i (A)
Lead	10	15	0.7 U	7 U	7 U	0.7 U	6.2
Magnesium			67600	14	14	12900	13900
Magnesium			67600	14	14	12900	13900
Manganese	50		4540 EL (A)	610· (A)	610 >4 1/4(A)	520 (A)	565 (A)
Mercury	2	2	0.1 U	0.05 U	0.05 U	0.1 U	0.1 UJ
Nickel	100		45.4	5 U	5 U	1.3 B	2.3 B
Potassium			45100 J	20	21	16600 J	18300 J
Potassium			45100 J	20	21	16600 J	18300 J
Selenium	50	50	2.9 U	7 U	15	2.9 U	2.9 UJ
Silver			1 B	6 U	6 U	0.7 U	0.7 U
Sodium	50		3060000) (A)		50		47700 (A)
Sodium	50000		3060000 (A)		50	42100	47700
Thallium	10	2	12.9 i (AB)	20 U	20 U	2.6 U	2.6 U
Vanadium			0.83 B	10 U	10 U	0.4 U	1.4 B
Zinc	5000	<u> </u>	68.8	14	20	0.7 U	5.4 B

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01M	MA-MW-01M	MA-MW-01M	MA-MW-01M	MA-MW-01S
Sample ID	GWQC	MCL	MA-MW-1M-R1	MA-MW-1M-R1	MA-MW-1M-R2	MA-MW-1M-R2	MA-MW-1S-R1
Sample Date			06/20/2002	06/20/2002	09/23/2002	09/23/2002	06/20/2002
Sample Interval			50 - 60 ft	50 - 60 ft	50 - 60 ft	50 - 60 ft	4 - 14 ft
CLP Sample ID		<i>'</i>	MB0KS2	MB0KW4	MB0MA2	MB0MA7-Dissolved	MB0KS4
Chemical Name							
Metals (ug/L)							
Aluminum	200		200 U	200 U	72.8 B	57.7 U	240 - in (A)
Antimony	20	6	14 U	14 U	1.6 UJ	1.6 U	19 (8)
Arsenic	8	10	26. (AB)	20i - (AB)	24.5 J = (AB)	20:2 (AB)	36001 F (AB)
Barium	2000	2000	130	92	135 B	92.4 B	690
Beryllium	20	4	5 U	5 U	0.2 U	0.2 U	5 U
Cadmium	4	5	4 U	4 U	3.3 B	0.2 U	4 U
Calcium			92	94	99300	88500	54
Calcium	<u>.</u>		92	94	99300	88500	54
Chromium	100	100	6 U	6 U	1.4 B	0.6 U	8.6
Cobalt			11	10	11.1 B	9.3 B	8 U
Copper	1000	1300	10 U	10 U	3.4 B	0.6 U	10 U
Cyanide	200		0.7 B	NA .	1.6 B	NA	0.7 UJ
Iron	300		16000 (A)	16000 (A)	17800 (A)	基基 15600 法 (A)	2200 see 2 (A)
Lead	10	15	7 U	7 U	0.72 B	0.7 U	7 U
Magnesium			26	26	27000	24600	220
Magnesium			26	26	27000	24600	220
Manganese	50		510 (E. A)	470 (A)	7502 (A)	465 (A)	7.1 (A)
Mercury	2	2	0.06 U	0.06 U	0.1 U	0.1 U	0.06 U
Nickel	100		5 U	5 U	3.8 B	4.6 B	11
Potassium			25	26	25600 J	24500	15
Potassium			25	26	25600 J	24500	15
Selenium	50	50	7 U	14	2.9 BJ	2.9 U	7 U
Silver			6 U	6 U	0.7 U	0.7 U	6 U
Sodium	50		25 - 17.3 (A)	76 (A)			98.J. (A)
Sodium	50000		73	76	#12900 (A)		98
Thallium	10	2	20 U	20 U	2.6 U	2.6 U	20 U
Vanadium			10 U	10 U	0.4 U	0.4 U	10 U
Zinc	5000		31	8 U	18.4 B	8.6 B	1300

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

302898

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01S	MA-MW-01S	MA-MW-01S	MA-MW-20D	MA-MW-20D
Sample ID	GWQC	MCL	MA-MW-1S-R1	MA-MW-1S-R2	MA-MW-1S-R2	MA-MW-20D-R1	MA-MW-20D-R1
Sample Date			06/20/2002	09/23/2002	09/23/2002	06/13/2002	06/13/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	123 - 133 ft	123 - 133 ft
CLP Sample ID			MB0KW5	MB0MA5	MB0MA6- Dissolved	MB0KX3	MB0L19
Chemical Name							
					·		
Metals (ug/L)							
Aluminum	200		200 U	57.7 U	57.7 U	45.6 - 980a - (A)	NA NA
Antimony	20	6	14 U	18.7 BJ (B)	2.9 B	14 U	NA
Arsenic	8	10	4700 (AB)	7130 U * (AB)	3700 - A + (AB)	8 U	NA
Barium	2000	2000	310	689 J	846 J	290	NA
Beryllium	20	4	5 U	0.2 U	0.2 U	6.9 (B)	NA
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	NA ·
Calcium			89	72400	58100	88	NA
Calcium			89	72400	58100	. 88	NA
Chromium	100	100	6 U	6.8 B	5.7 B	6 U	NA NA
Cobalt			8 U	2.2 B	0.4_U	110	NA NA
Copper	1000	1300	10 U	6.6 B	0.6 U	19	NA ·
Cyanide	200		NA NA	2.3 B	NA	NA NA	0.6 U*
Iron	300		4600 (A)	2200 (A)	1320 (A)	1,7,0000 (A)	NA
Lead	10	15	7 U	0.7 U	0.7 U	. 7 U	NA NA
Magnesium			140	221000 J	248000 J	. 39	. NA .
Magnesium			140	221000 J	248000 J	39	NA NA
Manganese	50		270 (A)	79.9 (A)	66.7 (A)	3900 (A)	NA NA
Mercury	2	2	0.06 U	0.1 U	0.1 U	0.5 U	NA
Nickel	100		6.2	8.8 B	5.1 B	94	NA NA
Potassium			18	14600 J	17600 J	14	NA NA
Potassium			18	14600 J	17600 J	14	NA
Selenium	50	50	24	3.3 BJ	2.9 U	7 U	NA
Silver			6 U	0.7 U	0.7 U	6 U	NA
Sodium	50		68 (A)		74300 J 🦂 (A)		NA NA
Sodium	50000		68	61500 J (A)	74300 J (A)	940	NA NA
Thallium .	10	2	20 U	2.6 U	2.6 U	20 U	NA
Vanadium			10 U	9.9 B	3.2 B	10 U	NA NA
Zinc	5000		25	566	9.9 B	290	NA

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20D	MA-MW-20D	MA-MW-20M	MA-MW-20M
Sample ID	GWQC	MCL	MA-MW-20D-R1	MA-MW-20D-R2	MA-MW-20D-R2	MA-MW-20M-R1	MA-MW-20M-R1
Sample Date			06/13/2002	09/20/2002	09/20/2002	06/13/2002	06/13/2002
Sample Interval			123 - 133 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			MB0M72	MB0MA8-Dissolved	MB0MB0	MB0KX4	MB0L20
Chemical Name							
Metals (ug/L)							
Aluminum	200	•	970 (A)	162 B	181 B	1200 (A)	82
Antimony	20	6	14 U	3.4 B	2.9 B	14 U	NA _
Arsenic	8	10	8 U	1.3 U	1.3 U	8 U	NA
Barium	2000	2000	300	285	294	150	NA .
Beryllium	20	4	7.2	2.3 B	1.5 B	5 U	NA
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	NA
Calcium			88	75000	79300	85	. NA
Calcium			88	75000	79300	85	NA
Chromium	100	100	6 U	0.6 U	2.1 B	6 U	NA
Cobalt			110	80.9	75.2 J	16	NA.
Copper	1000	1300	10 U	3.7 B	244	12	NA ·
Cyanide	200		NA NA	NA .	15.2	NA NA	0.6 ∪*
Iron	300		180000 (A)	153000 (A)	1610 <u>00</u> (Å)	23000 (A)	NA
Lead	10	15	7 U	0.7 U	0.7 U	7 U	NA
Magnesium			39	31800	33000	32	NA
Magnesium			39	31800	33000	32	NA
Manganese	50		4000. (A)	3280 (A)	3440(A)	1200(A)	NA
Mercury	2	2	0.05 U	0.1 U	0.1 UJ	0.05_U	NA
Nickel	100		97	59.7 J	51.9 J	8	NA
Potassium			15	20100 J	21900 J	20	NA NA
Potassium			15	20100 J	21900 J	20	NA NA
Selenium	50	50	7.2	3.9 B	2.9 UJ	7 U	NA
Silver		<u></u>	6 U	0.7 U	0.7 U	6 U	NA
Sodium	50			690000 🚧 🖖 🗀 (A)			NA
Sodium	50000			690000 (A)		59	NA
Thallium	10	2	20 U	15 J (AB)		20 U	NA
Vanadium			10 U	0.4 U	2.2 B	10 U	NA
Zinc	5000	<u></u>	280	233	215	170	NA .

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

302900

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20M	MA-MW-20M	MA-MW-20R	MA-MW-20R
Sample ID	GWQC	MCL	MA-MW-20M-R1	MA-MW-20M-R2	MA-MW-20M-R2	MA-MW-20R-R1	MA-MW-20R-R1
Sample Date	1		06/13/2002	09/20/2002	09/20/2002	06/13/2002	06/13/2002
Sample Interval			42 - 52 ft	42 - 52 ft	42 - 52 ft	113 - 123 ft	113 - 123 ft
CLP Sample ID]		MB0M73	MB0MA9	MB0MB3-Dissolved	MB0KX5	MB0L21
Chemical Name							
Metals (ug/L)							
Aluminum	200		1900 * (A)	1110 (A)	57.7 U	620 (A)	· NA
Antimony	20	6	14 U	1.6 U	1.6 U	14 U	NA
Arsenic	8	10	8 U	3.8 B	1.3 U	8 U	NA
Barium	2000	2000	150	165 B	147 B	260	NA .
Beryllium	20	4	5 U	0.37 B	0.2 U	5 U	NA .
Cadmium	4	5	4 U	0.8 B	0.57 B	4 U	NA NA
Calcium			90	89800	89600	76	NA
Calcium			90	89800	89600	76	NA NA
Chromium	100	100	6 U	8.3 B	0.6 U	6 U	. NA
Cobalt			17	16 B	14.5 B	96	NA .
Copper	1000	1300	10 U	24.3 B	4.7 B	63	NA .
Cyanide	200		NA NA	6.6 B	NA	NA NA	0.6 U*
Iron	300		23000 (A)	28000 (A)	22700 (A)	140000 (A)	NA NA
Lead	10	15	7 U	1.6 B	0.7 U	7 U	NA
Magnesium		<u> </u>	34	32500	32500	32	NA
Magnesium			34	32500	32500	32	NA NA
Manganese	50	·	1200 (A)	1140(A)	1110 - (A)	3200 L (A)	NA NA
Mercury	2	2	0. <u>05</u> U	0.11 BJ	0.1 U	0.05 U	NA NA
Nickel .	100		7.8	8.5 B	7.2 B	82	NA
Potassium			21	21300 J	21200 J	14	NA NA
Potassium			21	21300 J	21200 J	14	NA .
Selenium	50	50	20	2.9 UJ	2.9 U	7 U	NA NA
Silver			6 U	0.7 U	0.7 U	6 U	NA NA
Sodium	50		164 (A)			670 (A)	NA NA
Sodium	50000		64	60900 (A)	61300 (A)		NA NA
Thallium	10	2	20 U	2.6 U	3.3 B (6)	20 U	NA NA
Vanadium	1		10 U	21.3 B	0.4 U	10 U	NA NA
Zinc .	5000		150	177	129	270	NA .

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20R	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	MA-MW-20R-R1	MA-MW-20R-R2	MA-MW-20R-R2	MA-MW-20S-R1	MA-MW-20S-R1
Sample Date			06/13/2002	09/20/2002	09/20/2002	06/13/2002	06/13/2002
Sample Interval			113 - 123 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID			MB0M74	MB0MB1-Dissolved	MB0MB2	MB0KX1	MB0L22
Chemical Name							
Metals (ug/L)	·						
Aluminum	200		590 (A)	531 (A)	1080 (A)	4000 (A)	NA .
Antimony	20	6	14 U	2.2 B	2.9 B	14 U	NA
Arsenic	8	10	8 U	1.3 U	1.3 U	8 U	NA
Barium	2000	2000	260	240	239	93	NA NA
Beryllium	20	4	· 5 U	5 B (B)	1.6 B	5 U	NA
Cadmium	4	5	4 U	0.2 U · .	0.21 B	4 U	NA
Calcium	·]		76	71100	76900	. 97	NA
Calcium		:	. 76	71100	7690 <u>0</u>	97	NA _·
Chromium	100	100	6 U	0.6 U	3.2 B	10	NA
Cobalt			98	81.1 J	. 64.2 J	. 8 U	NA
Copper	1000	1300	61	80.8	.90	10 U	NA
Cyanide	200		NA .	NA	1. <u>5 U</u>	NA	1.8 B*
Iron	300		140000 (A)	≥ 133000 J (A)	±106000 J	5400 (A)	NA .
Lead	. 10	15	7 U	0.7 U	3.4	7 U.	NA
Magnesium			33	29200	28300	22	NA
Magnesium			33	29200	28300	22	NA
Manganese	50		3300 (A)	2960 J. (A)	2470 J (A)	511 (A)	NA
Mercury	2	2	0.05 U	0.1 U	0.14 BJ	0.05 U	NA:
Nickel	100		82	64.6 J	51. <u>8</u> J	10	NA
Potassium			14	16800 J	18000 J	9.1	NA
Potassium			14	16800 J	1800 <u>0</u> J	9.1	NA
Selenium	50	50	7.3	3.7 B	4.7 BJ	17	NA .
Silver			6 U	0.7 U	0.7 U	6 U	NA NA
Sodium	50		690. (A)	≤ 632000 J ≤ ≤(A);			NA
Sodium	50000		690		456000 J (A)	48	NA NA
Thallium	10	2	20 U	8.8 B. (B)	7.8 B + (8)	20 U	NA NA
Vanadium			10 U	0.74 B	6. <u>7</u> B	10 U	NA
Zinc	5000		260	179	181	30	NA NA

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20S	MA-MW-20S	MA-MW-20S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	MA-MW-20S-R1	MA-MW-20S-R2	MA-MW-20S-R2	MA-MW-21S-R1	MA-MW-21S-R1
Sample Date			06/13/2002	09/20/2002	09/20/2002	06/12/2002	06/12/2002
Sample Interval			7.9 - 17.9 ft	7.9 - 17.9 ft	7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			MB0M75	MB0MB4-Dissolved	MB0MB6	MB0KX0	MB0L17
Chemical Name							
Metals (ug/L)					,		
Áluminum	200		200 U	57.7 U	33300); ⇒(A):	240 (A)	NA .
Antimony	20	, 6	14 U	1.6 U	1.7 B	14 U .	NA
Arsenic	8	10	8 U	1.3 U	20.9 J (AB)	20 (AB)	NA .
Barium	2000	2000	79	82.5 B	263	150	NA .
Beryllium	20	4	5 U	0.2 U	2.6 B	5 U	NA .
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	NA .
Calcium			100	98400	107000	130	NA NA
Calcium			100	98400	107000	130	NA .
Chromium	100	100	6 U	1.3 B	84	6 U	NA .
Cobalt			8 U	1.3 B	20.4 B	8 U	NA.
Copper	1000	1300	10 U	1.3 B	41.3	10 U	NA.
Cyanide	200		NA	NA NA	3 B	NA NA	0.6 U**
Iron	300		200 U	25.5 B	51900! (A)	7.00 (A)	NA
Lead	10	15	7 U	0.7 U	38.8 J (AB)	7 U	NA .
Magnesium			22	19700	28800	19	NA NA
Magnesium			22	19700	28800	19	NA NA
Manganese	. 50		18	17	364 (A)	390 (A)	NA
Mercury	2	22	0.05 U	0.1 U	0.15 BJ	0.05 U	NA
Nickel	100		5 U	6.3 B	59	5 U	NA NA
Potassium			9.7	9420 J	12000 J	4.8	NA NA
Potassium			9.7	9420 J	12000 J	4.8	NA NA
Selenium	50	50	33	17.3	18.8 J	7 U	NA .
Silver			6 U	0.7 U	0.7 U	6 U	NA
Sodium	. 50			50100 (A)		1277 (A)	NA NA
Sodium	50000		51		53700 (A)		NA
Thailium	10	2	20 U	2.9 B (B)		20 U	NA NA
Vanadium			10 U	1.2 B	67.2	10 U	NA
Zinc	5000		8 U	0.7 U	165	9.5	NA NA

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-21S	MA-MW-21S	MA-MW-21S	MA-MW-22S	MA-MW-22S
Sample ID	GWQC	MCL	MA-MW-21S-R1	MA-MW-21S-R2	MA-MW-21S-R2	MA-MW-22S-R1	MA-MW-22S-R1
Sample Date			06/12/2002	09/17/2002	09/17/2002	06/12/2002	06/12/2002
Sample Interval			10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			MB0M76	MB0L24	MB0L29-Dissolved	MB0KX2	MB0L18
Chemical Name					:		
Metals (ug/L)							
Aluminum	200		200 U	.√ 11400 (A)	57.7 U	36000 (A)	NA .
Antimony	20	6	14 U	2.2 B	1.6 B	14 UJ	NA NA
Arsenic	8	10	17 (AB)	41.6 J (AB)	31.9 J (AB)	= 27 (AB)	. NA
Barium	2000	2000	150	212	148 B	. 480	NA
Beryllium	20	4	5 U	1 B	0.2 U	5 U	NA
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	NA
Calcium			130	131000	131000	81	NA
Calcium			130	131000	131000	81	NA
Chromium	100	100	6 U	43.5	1.8 B	110 (AB)	NA
Cobalt			8 U	5.8 B	0.97 B	28	NA
Copper	1000	1300	10 U	17.3 B	1.8 B	140	NA
Cyanide	200		NA	11.6	NA NA	NA .	0.6 U**
Iron	300		540 (A)	16200 (A)	∡ 1300 (A)		NA
Lead	10	15	7 U	i (A)	0.7 <u>U</u>	(AB)	NA
Magnesium			19	25300	23700	. 27	NA NA
Magnesium		<u> </u>	19	25300	23700	27	NA
Manganese	50		400 (A)	483 (A)	423 (A)	890 (A)	NA
Mercury	2	2	0.05 U	0.1 UJ	0.1 U	0.18	NA
Nickel	100		5 U	16.6 B	2.7 B	61	NA
Potassium			5,1	7180 J	5780 J	11	NA NA
Potassium			5,1	7180 J	5780 J	11	NA
Selenium	50	50	14	3.5 BJ	2.9 U	7 U	NA
Silver			6 U	0.7 U	0.7 U	6 U	NA NA
Sodium	50		S.E 8.1	£68900 (A)		37	NA
Sodium	50000		81	/4.2₽68900 (A)	. 69100 (A)	37	NA
Thallium	10	2	20 U	2.6 U	2.6 U	20 U	NA
Vanadium			10 U	35.8 B	0.97 B	87	NA NA
Zinc	5000		10	80.3	3.9 B	410	NA

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-22S	MA-MW-22S	MA-MW-22S	MA-MW-04S	MA-MW-04S
Sample ID	GWQC	MCL	MA-MW-22S-R1	MA-MW-22S-R2	MA-MW-22S-R2	MA-MW-4S-R1	MA-MW-4S-R1
Sample Date			06/12/2002	09/17/2002	09/17/2002	06/12/2002	06/12/2002
Sample Interval			10 - 21 ft	10 - 21 ft	10 - 21 ft	4 - 14 ft	4 - 14 ft
CLP Sample ID			MB0M77	MB0L27	MB0L28-Dissolved	MB0KS3	MB0KW1
Chemical Name							
					· · · · · · · · · · · · · · · · · · ·		
Metals (ug/L)							
Aluminum	200		200 U	933 (A)	57.7 U	200 U	200 U
Antimony	20	6 .	14 U	1.6 U	1.6 U	14 U .	14 U
Arsenic	8	10	8 U	1.3 U	1.3 U	9:6 _{etter} (A)	8 U
Barium	2000	2000	75	94.9 B	94.7 B	260	250
Beryllium	20	4	5 U	0.2 U	0.2 U	5 U	5 U
Cadmium	4	5	4 U	0.2 U	0.2 U	4 U	4 U
Calcium			84	90800	82500	86	88
Calcium			84	90800	82500	. 86	88
Chromium	100	100	6 U	4 B	1.7 B	6 U	6 U
Cobalt			8 U	2 B	0.7 B	8 U	8 U
Copper	1000	1300	10 U	7.3 B	3.3 B	10 U	10 U
Cyanide	200		NA NA	5.6 B	NA NA	NA	NA NA
Iron	300		200 U		406 (A)	12000. (A)	12000(A
Lead	10	15	7 U	11:2 J (A)	2.4 B	7 U	7 U
Magnesium			20	24000	20400	12	12
Magnesium			20	24000	20400	12	12
Manganese	. 50		230£) 218 E (A)	196 (A)		17,0 (A
Mercury	2	2	0.05 U	0.1 UJ	0.1 U	0.05 U	0.05 U
Nickel	- 100		5 U	4.4 B	2.9 B	5 U	5 U
Potassium			9.7	12600 J	10700 J	8.4	9
Potassium			9.7	12600 J	10700 J	8.4	9
Selenium	50	50	12 J	3 BJ	3.4 B	7 U	13
Silver			6 U	0.7 U	0.7 U	6 U	6 U
Sodium	50		42		47100 (A)		4.9
Sodium	50000		42	52200 (A)	47100	4.5	4.9
Thallium	10	2	20 U	2.6 U	2.6 U	20 U	20 U
Vanadium			10 U	3.8 B	0.93 B	10 U	10 U
Zinc .	5000		8 U	17.1 BJ	20.9 J	15	8 U

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-04S	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	MA-MW-4S-R1	MA-MW-4S-R2	MA-MW-4S-R2	MA-MW-5S-R1	MA-MW-5S-R1
Sample Date	1		06/12/2002	09/17/2002	09/17/2002	06/27/2002	06/27/2002
Sample Interval	1		4 - 14 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID	1		MB0L16	MB0L30-Dissolved	MB0L32	MB0KS8	MB0KW2
Chemical Name					:		
Metals (ug/L)							,
Aluminum	200		NA NA	57.7 U	115 B	210 (A)	200 U
Antimony	20	6	NA NA	1.6 U	1.6 U	14 U	14 U
Arsenic	8	10	NA NA	10.3: (AB)	12.6 (AB)	31200 (AB)	1000 (AB)
Barium .	2000	2000	NA NA	228	235	460	490
Beryllium	20	4	NA	0.2 U	0.2 U	5 U	5 U
Cadmium	4	5	NA	0.2 U	0.2 U	4 U	4 U
Calcium			NA NA	77100	77800	59	67
Calcium			NA NA	77100	77800	59	67
Chromium	100	100	NA	2.8 B	3.2 B	21	18
Cobalt			NA	0.4 U	0.4 U	8 U	8 U
Copper	1000	1300	NA NA	3.3 B	4.5 B	10 U	10 U
Cyanide	200		1.8 B**	NA.	2.5 B	0.7_UJ	NA .
Iron	300		NA NA	7230 (A)	8950 (A)	4800 (A)	1600 (A)
Lead	10	15	NA NA	0.7 U	1.7 B	7_U	7 <u>U</u>
Magnesium			NA NA	12600	12700	240	220
Magnesium			_NA	12600	12700	240	220
Manganese	50		NA NA	133 (A)	151 (A)	32	37
Mercury	2	2	_ NA	0.1 U	0.1 UJ	0.08_	0.05 U
Nickel	100		NA NA	3.1 B	3 B	23	21
Potassium			NA	8230 J	8320 J	34	33
Potassium			NA NA	8230 J	8320 J	34	33
Selenium	50	50	NA NA	2.9 U	2.9_UJ	7 U	37
Silver			NA	0.7 U	0.7 U	6 U	6 U_
Sodium	50000		NA NA	7470	7610	150	140
Sodium	50		NA NA	7470 (A)	7610 (A)	150 ²⁴ (A)	140 (A)
Thallium	10	2	NA NA	2.6 U	2.6 U	20 U	20 U
Vanadium			NA .	1.2 B	1.6 B	10 U	10 U
Zinc	5000		NA	6.6 B	8.6 B	8 U	8 <u>U</u>

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

302906

J - Reported value estimated in quantity

NA - Not analyzed

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-05S	MA-MW-05S	MA-MW-05S	MA-MW-05S	MA-MW-08S
Sample ID	GWQC	MCL	MA-MW-5S-R1-D	MA-MW-5S-R1-D	MA-MW-5S-R2	MA-MW-5S-R2	MA-MW-8S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/12/2002
Sample Interval			6 - 16 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft	4 - 14 ft
CLP Sample ID			MB0KS6	MB0KT8	MB0MB5	MB0MB9- Dissolved	MB0KR4
Chemical Name					-		
Metals (ug/L)							
Aluminum	200		200 (A)	200 U	57.7 U	82.8 B	580 (A)
Antimony	20	6	14 U	14 U	2.5 BJ	4.6 B	14 U
Arsenic	8	10	1200 (AB)	1100 (AB)	(AB)	938 (AB)	8 U
Barium	2000	2000	470	550	212	215	310
Beryllium	20	4	5 U	5 U	0.2 U	0.36 B	5 U
Cadmium	4	5	4 U	4 U	0.2 U	0.2 U	4 U
Calcium			60	71	43300	43200	150
Calcium			60	71	43300	43200	150
Chromium	100	100	21	18	19.7	19.4	8.2
Cobalt			8 U	8 U	1.7 B	1.2 B	8 U
Copper	1000	1300	10 U	10 U	2.2 B	0.6 U	14
Cyanide	200		0.7 UJ	NA	8.1 B	NA NA	NA
Iron	300		5400 A(A)	1900. (A)	532 (A)	287	9300 (A)
Lead	10	15	7 U	7 U	0.7 U	0.7 U	7 U
Magnesium			240	220	266000	270000	20
Magnesium			240	220	266000	270000	20
Manganese	50		33	41	6.7 B	6.7 B	700 (A)
Mercury	2	2	0.05 U	0.05 U	0.1 U	0.1 U	0.05 U
Nickel	100		24	20	27 B	26.6 B	5 U
Potassium			34	33	45100 J	47300	9.4
Potassium			34	33	45100 J	47300	9.4
Selenium	50	. 50	7 U	33	3.7 BJ	2.9 U	7_U
Silver			6 U	6 U	0.7 U	0.7 U	6 U
Sodium	50000		150	160		169000 (A)	19
Sodium	50		150 . (A)	160 (A)	167000 (A)	169000 (A)	19
Thallium	10	2	20 U	20 U	2.6 U	2.6 U	20 U
Vanadium			10 U	10 U	0.5 B	0.73 B	10 U
Zinc	5000		8 U	8 U	0.7· U	. 0.7 U	47

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-08S	MA-MW-08S	MA-MW-08S	MA-MW-08S	MA-MW-09D
Sample ID	GWQC	MCL	MA-MW-8S-R1	MA-MW-8S-R1	MA-MW-8S-R2	MA-MW-8S-R2	MA-MW-9D-R1
Sample Date			06/12/2002	06/12/2002	09/17/2002	09/17/2002	06/19/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	4 - 14 ft	44 - 54 ft
CLP Sample ID			MB0KW0	MB0L15	MB0L31-Dissolved	MB0L35	MB0KR5
Chemical Name							
							·
Metals (ug/L)							
Aluminum	200		200 U	NA	57.7 U	144 B	200 U
Antimony	20	6	14 U	NA	1.6 U	1.6 U	14 U
Arsenic	8	10	8 U	NA	5.8 B	6.1 B	8 U
Barium	2000	2000	340	NA NA	431	409	79
Beryllium	20	4	5 U	NA .	0.2 U	0.2 U	5 U
Cadmium	. 4	_5	4 U	NA _	0.2 U	0.2 U	4 U
Calcium			170	NA _	206000	187000	66
Calcium			170	NA NA	206000	187000	66
Chromium	100	100	6.7	NA NA	8.2 B	7.6 B	6 U
Cobalt			8 U	NA NA	0.61 B	0.4 U	42
Copper	1000	1300	10 U	NA	1.5 B	10.9 B	10 U
Cyanide	200		NA NA	0.6 U**	NA NA	6.6 B	0.7 U .
Iron	300		13000 - A	NA	17400 (A)	17300 (A)	12000 L.J. (A)
Lead	10	15	7 U	NA	0.7 U	3.7	7 U
Magnesium			24	NA NA	26200	25900	33
Magnesium			24	NA	26200	25900	33
Manganese	50		790 . (A)	NA	759 J. (A)	653 J (A)	1500 (A)
Mercury	2	2	0.05 U	NA	0.1 U	0.1 UJ	0.06 U
Nickel	100		5 U	NA	2 B	2.4 B	9.9
Potassium			11	NA NA	10800 J	11500 J	21
Potassium			11	NA	10800 J	11500 J	21
Selenium	50	50	21	NA NA	2.9 U	2.9 UJ	7 U.
Silver			6 U	NA NA	0.7 U	0.7 U	6 U
Sodium	50		20	NA	25300 (A)	29800 (A)	56 (A)
Sodium	50000		20	NA	25300	29800	56
Thallium	10	2	20 U	NA NA	2.6 U	2.6 U	20 U
Vanadium			10 U	NA	4 B	3.2 B	10 U
Zinc	5000		8 ∪	NA	3.3 B	12.5 B	300

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria

Exceedances highlighted

Table G.11 Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09D	MA-MW-09D	MA-MW-09D	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-9D-R1	MA-MW-9D-R2	MA-MW-9D-R2	MA-MW-9S-R1	MA-MW-9S-R1
Sample Date			06/19/2002	09/19/2002	09/19/2002	06/19/2002	06/19/2002
Sample Interval			44 - 54 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID			MB0KW3	MB0MB7	MB0MB8-Dissolved	MB0KR1	MB0KT5
Chemical Name							
Metals (ug/L)							
Aluminum	200		200 U	137 B	57.7 U	670 Ú	200 U
Antimony	20	- 6	14 U	2.5 B	1.6 U	14 U	14 U
Arsenic	8	10	8 U	1.3 U	1.3 U	8 U	8 U
Barium	2000	2000	79	76 B	69.3 B	150	110
Beryllium	20	4	5 U	0.2 U	0.2 U	5 U	5 U
Cadmium	4	5	4 U	2.7 B	0.95 B	4 U	4 U
Calcium			67	67500	64100	76	84
Calcium			67	67500	64100	. 76	84
Chromium	100	100	6 U	1.4 B	0.64 B	6 U	6 U
Cobalt			41	47.6 B	43.6 B	15	10
Copper	1000	1300	10 U	22.3 B	3.3 B	13	10 U
Cyanide	200		NA NA	1.5 U	NA NA	1.6 B	NA
Iron	300		11000	10100 - (A)	10200 (A)	1200 (A)	200 U
Lead	10	15	7 U	7.5 J	0.7 U	7 U	7 U
Magnesium			32	32600	30700	26	27
Magnesium			32	32600	30700	26	27
Manganese	50		1500 (A	1610 (A)	1470 (A)	400= (A)	380 (A)
Mercury	2	2	0.06 U	0.27 J	0.1 U	0.06 U	0.06 U
Nickel	100		9.2	11.5 B	11 B	26	23
Potassium			22	18600 J	18100 J	12	13
Potassium			22	18600 J	18100 J	12	13
Selenium	50	50	14	2.9 UJ	2.9 U	13	· 29
Silver			6 U	0.7 U	0.7 U	6 U	6 U
Sodium	50		. 58 (A	53500 (A)		80 . (A)	81 (A)
Sodium	50000		58		50400 (A)s	80	81
Thallium	10	2	20 U	2.8 B. (B)	4.7 B (B)	20 U	20 U
Vanadium			10 U	0.61 B	0.4 U	10 U	10 U
Zinc	5000		280	335	293	610	630

B - Analyte detected in associated blank

J - Reported value estimated in quantity

NA - Not analyzed

R - Rejected result

Groundwater - Metals Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	MA-MW-9S-R2	MA-MW-9S-R2
Sample Date	7		09/19/2002	09/19/2002
Sample Interval			16 - 26 ft	16 - 26 ft
CLP Sample ID	7		MB0L25-Dissolved	MB0L26
Chemical Name		· · · · · · · · · · · · · · · · · · ·		
Metals (ug/L)				
Aluminum	200		57.7 U	317 (A)
Antimony	20	6.	1.6 U	1.6 U
Arsenic	8	10	1.3 U	3.9 B
Barium	2000	2000	141 B	186 B
Beryllium	20	4	0.2 U	0.2 U
Cadmium	4	5	3.3 B	6.8 (AB)
Calcium			67200	75800
Calcium			67200	75800
Chromium	100	100	1.9 B	3.7 B
Cobalt			7.2 B	12.3 B
Copper	1000	1300	16.6 B	13.1 B
Cyanide	200		NA	NA ·
Iron	300		8.7 U	1120 (A)
Lead	10	15	0.7 U	5.1
Magnesium			41500 J	29300 J
Magnesium			41500 J	29300 J
Manganese	50		715 U (A)	." 509 J (A)
Mercury	2	2	0.1 U	0.1 UJ
Nickel	100		29.5 B	24.1 B
Potassium			11900 J	12100 J
Potassium			11900 J	12100 J
Selenium	50	50	4.3 B	7 J
Silver			0.7 U	0.7 U
Sodium	50			69500_J (A)
Sodium	50000		101,000 J 5 (A)	\$269500 J (A)
Thallium	10	2	2.8 By (B)	
Vanadium			0.4 U	1.1 B
Zinc	5000		567	739

B - Analyte detected in associated blank

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA - Not analyzed

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M	MA-MW-11S
Sample ID	GWQC	MCL	MA-MW-10S-R1	MA-MW-10S-R2	MA-MW-11M-R1	MA-MW-11M-R2	MA-MW-11S-R1
Sample Date			06/19/2002	09/19/2002	06/20/2002	09/23/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft	11 - 21 ft
CLP Sample ID			B0KZ3	B0QB2	B0KZ6	B0QB3	B0KZ5
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 UJ
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UJ
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 UJ
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 UJ
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 UJ
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 UJ

J - Reported value estimated in quantity N -Quality control sample spike recovery for this analyte was outside specified limits R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-12M	MA-MW-12M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	MA-MW-11S-R2	MA-MW-12M-R1	MA-MW-12M-R2	MA-MW-12S-R1	MA-MW-12S-R2
Sample Date			09/23/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			11 - 21 ft	38.1 - 48.1 ft	38.1 - 48.1 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			B0QB7	B0KY5	B0QB6	В0КХ9	B0QB5
Chemical Name	·						
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.013 R	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta		·	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.082 J	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.062	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.039 J	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.022 NJ	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.099 J (A)	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02_U	0.02 U	0.02 U
Endrin ketone		22	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01_U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U .	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

N -Quality control sample spike recovery for this analyte was outside specified limits

R - Rejected result

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	MA-MW-13M-R1	MA-MW-13M-R1-D	MA-MW-13M-R2	MA-MW-13M-R2-D	MA-MW-13S-R1
Sample Date			06/27/2002	06/27/2002	09/25/2002	09/25/2002	06/28/2002
Sample Interval			48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID	·		B0KY1	B0KX7	B0QC0	B0QB0	B0KX8
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 R
BHC, alpha	0.02		0.01 U	· 0.01 U	0.01 U	0.01 U	0.01 R
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0:01 R
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 R
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 R
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.026 NJ
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.028 NJ
DDT-4,4	0.1		· 0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.032 NJ (A)
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 R
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 <u>U</u>	0.055 J
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

N -Quality control sample spike recovery for this analyte was outside specified limits

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	MA-MW-13S-R2	MA-MW-14D-R1	MA-MW-14D-R2	MA-MW-14R-R1	MA-MW-14R-R2
Sample Date			09/25/2002	06/18/2002	09/24/2002	06/18/2002	09/24/2002
Sample Interval			6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			B0QB8	B0KY2	B0QB9	B0KY0	B0QC3
Chemical Name	***						
	,						
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 UJ	0.02 U	0.02 U	0.02 ⊍	0.02 U
Endosulfan I (alpha)	0.4		0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 UJ	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 UJ	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 UJ	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 UJ	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-aracior 1232	•	0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-aracior 1254		0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 UJ	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 UJ	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

N -Quality control sample spike recovery for this analyte was outside specified limits

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M
Sample ID	GWQC	MCL	MA-MW-14S-R1	MA-MW-14S-R2	MA-MW-14S-R2-D	MA-MW-15M-R1	MA-MW-15M-R2
Sample Date			06/18/2002	09/24/2002	09/24/2002	06/19/2002	09/23/2002
Sample Interval			7 - 20 ft	7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft
CLP Sample ID			B0KY4	B0QC1	B0QA9	B0KY8	B0N57
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.15	0.01 Ü	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.091 J	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0:057 J (A)	0.02 U	0.064 NJ 22(A)	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0,02 U	0.02 U	0.02 U
Endrin Aldehyde	=	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U_	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 GWQC - Groundwater Quality Criteria

MCL - Maximum Contaminant Level

R - Rejected result

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-15S	MA-MW-15S	MA-MW-16S	MA-MW-16S	MA-MW-17M
Sample ID	GWQC	MCL	MA-MW-15S-R1	MA-MW-15S-R2	MA-MW-16S-R1	MA-MW-16S-R2	MA-MW-17M-R1
Sample Date			06/19/2002	09/25/2002	06/27/2002	09/25/2002	06/14/2002
Sample Interval			6.8 - 16.8 ft	6.8 - 16.8 ft	6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft
CLP Sample ID			B0KZ0	B0QE1	B0L33	B0QD7	B0L34
Chemical Name							
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
Pesticides and PCBs (ug/L)	······································						
Aldrin	0.04		0.01 U	0.01 U	0.01 R	0.01 UJ	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 R	0.01 UJ	0.01 U
BHC, beta	0.2		0.013 R	0.01 U	0.01 R	0.01 UJ	0.01 U
BHC, delta			0.014 J	0.01 U	0.01 R	0.01 UJ	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.03 NJ	0.01 U	0.01 R	0.01 UJ	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 UJ	0.01 UJ	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 UJ	0.01 UJ	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 UJ	0.01 UJ	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	_0.02 UJ	0.02 UJ	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
Endrin .	2	2	0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 UJ	0.02 UJ	0.02_U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.044 R	0.01 UJ	0.0 <u>1 U</u>
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 UJ	0.01 UJ	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 UJ	0.1 UJ	0.1 U
Pcb-aracior 1016		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 UJ	0.4 UJ	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2_U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 UJ	0.2 UJ	0.2 U
Toxaphene	3	3	1 U	1 U	1 UJ	1 UJ	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits
R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17S	MA-MW-17S	MA-MW-18D	MA-MW-18D
Sample ID	GWQC	MCL	MA-MW-17M-R2	MA-MW-17S-R1	MA-MW-17S-R2	MA-MW-18D-R1	MA-MW-18D-R2
Sample Date			09/18/2002	06/14/2002	09/18/2002	06/17/2002	09/18/2002
Sample Interval			41.82 - 51.82 ft	8 - 18 ft	8 - 18 ft	140 - 152 ft	140 - 152 ft
CLP Sample ID			B0QE0	B0L35	B0QD9	B0L30	B0N52
Chemical Name							
Pesticides and PCBs (ug/L)						·	
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.0 <u>1</u> U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.0 <u>1</u> U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1	·	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 · U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychior	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18M	MA-MW-18S	MA-MW-18S	MA-MW-19M
Sample ID	GWQC	MCL	MA-MW-18M-R1	MA-MW-18M-R2	MA-MW-18S-R1	MA-MW-18S-R2	MA-MW-19M-R1
Sample Date			06/17/2002	09/18/2002	06/17/2002	09/18/2002	06/17/2002
Sample Interval			31.77 - 41.77 ft	31.77 - 41.77 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft
CLP Sample ID			B0L31	B0N54	B0L32	B0N53	B0L28
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04	-	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		22	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0:01 U	0.01 U	0.01 U
DDD-4,4	0.1	L	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.028 R
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan Ii (beta)	0.4		0.02 U	0.02 U ·	0.02 U	0.02. U	0.02 U
Endosulfan Sulfate	. 0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2 .	. 2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2_U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		. 0.5	0.2 U	. 0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-19S	MA-MW-19S
Sample ID	GWQC	MCL	MA-MW-19M-R2	MA-MW-19R-R1	MA-MW-19R-R2	MA-MW-19S-R1	MA-MW-19S-R2
Sample Date			09/19/2002	06/17/2002	09/19/2002	06/17/2002	09/19/2002
Sample Interval			42 - 52 ft	103 - 113 ft	103 - 113 ft	5.05 - 15.05 ft	5.05 - 15.05 ft
CLP Sample ID			B0N55	B0L27	B0N56	B0L29	B0N60
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 Ú
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0:02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	· 0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		22	0.02 Ü	0.02 U	0.02 U	0.02 U	0.02 U
Heptachior	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-aracior 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0,2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01M	MA-MW-01M	MA-MW-01S	MA-MW-01S	MA-MW-20D
Sample ID	GWQC	MCL	MA-MW-1M-R1	MA-MW-1M-R2	MA-MW-1S-R1	MA-MW-1S-R2	MA-MW-20D-R1
Sample Date			06/20/2002	09/23/2002	06/20/2002	09/23/2002	06/13/2002
Sample Interval			50 - 60 ft	50 - 60 ft	4 - 14 ft	4 - 14 ft	123 - 133 ft
CLP Sample ID			B0KZ2	B0N59	B0KZ4	B0N58	B0L25
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	. 0.4		0.01 Ü	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 UJ	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0,5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

N -Quality control sample spike recovery for this analyte was outside specified limits

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ
Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20M	MA-MW-20M	MA-MW-20R	MA-MW-20R
Sample ID	GWQC	MCL	MA-MW-20D-R2	MA-MW-20M-R1	MA-MW-20M-R2	MA-MW-20R-R1	MA-MW-20R-R2
Sample Date			09/20/2002	06/13/2002	09/20/2002	06/13/2002	09/20/2002
Sample Interval			123 - 133 ft	42 - 52 ft	42 - 52 ft	113 - 123 ft	113 - 123 ft
CLP Sample ID			B0N63	B0L24	B0N61	B0L26	B0N62
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 U	0.01 U	_0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U .	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	_0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	_0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0,1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

N -Quality control sample spike recovery for this analyte was outside specified limits

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20S	MA-MW-20S	MA-MW-21S	MA-MW-21S	MA-MW-22S
Sample ID	GWQC	MCL	MA-MW-20S-R1	MA-MW-20S-R2	MA-MW-21S-R1	MA-MW-21S-R2	MA-MW-22S-R1
Sample Date			06/13/2002	09/20/2002	06/12/2002	09/17/2002	06/12/2002
Sample Interval			7.9 - 17.9 ft	7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			B0L22	B0N66	B0L21	B0N68	B0L23
Chemical Name							
Pesticides and PCBs (ug/L)							·
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta		T	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01_U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242 .		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity

N -Quality control sample spike recovery for this analyte was outside specified limits

R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	MA-MW-22S-R2	MA-MW-4S-R1	MA-MW-4S-R2	MA-MW-5S-R1	MA-MW-5S-R1-D
Sample Date			09/17/2002	06/12/2002	09/17/2002	06/27/2002	06/27/2002
Sample Interval			10 - 21 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID			B0N67	B0KZ9	B0N72	B0KZ7	B0KZ8
Chemical Name							
Pesticides and PCBs (ug/L)							
Aldrin	0.04		0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
BHC, alpha	0.02		0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
BHC, beta	0.2		0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
BHC, delta			0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
Chlordane - alpha		. 2	0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Endrin Aldehyde		2	0.02_U	0.02 U	0.02 U	.0.02 R	0.02 R
Endrin ketone	·	2	0.02 U	0.02 U	0.02 U	0.02 R	0.02 R
Heptachlor	0.4	0.4	0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 R	0.01 R
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 R	0.1 R
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 R	0.4 R
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 R	0.2 R
Toxaphene	3	3	1 U	1 U	<u>1</u> U	1 R	1 R

J - Reported value estimated in quantity N -Quality control sample spike recovery for this

analyte was outside specified limits

Table G.12 Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-05S	MA-MW-08S	MA-MW-08S	MA-MW-09D	MA-MW-09D
Sample ID	GWQC	MCL	MA-MW-5S-R2	MA-MW-8S-R1	MA-MW-8S-R2	MA-MW-9D-R1	MA-MW-9D-R2
Sample Date			09/25/2002	06/12/2002	09/17/2002	06/19/2002	09/19/2002
Sample Interval			6 - 16 ft	4 - 14 ft	4 - 14 ft	44 - 54 ft	44 - 54 ft
CLP Sample ID			B0N64	B0KY7	B0N70	B0KY6	B0N65
Chemical Name							
Pesticides and PCBs (ug/L)		<u> </u>					
Aldrin	0.04		0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
BHC, alpha	0.02		0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
BHC, beta	0.2		0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
BHC, delta			0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
BHC, gamma (Lindane)	0.2	0.2	0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - alpha		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
DDD-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDE-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
DDT-4,4	0.1		0.02 U	0.02 U	0.02 U	0.02 U	. 0.02 U
Dieldrin	0.03		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Endosulfan II (beta)	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endosulfan Sulfate	0.4		0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	2	2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin Aldehyde		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin ketone		2	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	0.4	0.4	0.01 R	0.01 U	0.01 U	0.01 U	0.01 U
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Methoxychlor	40	40	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Pcb-araclor 1016		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1221		0.5	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Pcb-araclor 1232		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1242		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1248		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1254		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Pcb-araclor 1260		0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toxaphene	3	3	1 U	1 U	1 U	1 U	1 U

J - Reported value estimated in quantity
N -Quality control sample spike recovery for this
analyte was outside specified limits
R - Rejected result

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

Groundwater - PCB and Pesticide Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09S	MA-MW-09S	
Sample ID	GWQC	MCL	MA-MW-9S-R1	MA-MW-9S-R2	
Sample Date			06/19/2002	09/19/2002	
Sample Interval			16 - 26 ft	16 - 26 ft	
CLP Sample ID	•		B0KX6	B0N69	
Chemical Name					
Pesticides and PCBs (ug/L)					
Aldrin	0.04		0.01 U	0.01 U	
BHC, alpha	0.02		0.01 U	0.01 U	
BHC, beta	0.2		0.01 U	0.01 U	
BHC, delta			0.01 U	0.01 U	
BHC, gamma (Lindane)	0.2	0.2	0.01 U	0.01 U	
Chlordane - alpha	_	2	0.01 U	0.01 U	
Chlordane - gamma (technical mixture)		2	0.01 U	0.01 U	
DDD-4,4	0.1		0.02 U	0.02 U	
DDE-4,4	0.1		0.02 U	0.02 U	
DDT-4,4	0.1		0.02 U	0.02 U	
Dieldrin	0.03		0.02 U	0.02 U	
Endosulfan I (alpha)	0.4		0.01 U	0.01 U	
Endosulfan II (beta)	0.4		0.02 U	0.02 U	
Endosulfan Sulfate	0.4		0.02 U	_ 0.02 U	
Endrin	2	2	0.02 U	0.02 U	
Endrin Aldehyde		2	0.02 U	0.02 U	
Endrin ketone		2	0.02 U	0.02 U	
Heptachlor	0.4	0.4	0.01 U	0.01 U	
Heptachlor Epoxide	0.2	0.2	0.01 U	0.01 U	
Methoxychlor	40	40	0.1 U	0.1 U	
Pcb-araclor 1016		0.5	0.2 U	0.2 U	
Pcb-araclor 1221		0.5	0.4 U	0.4 U	
Pcb-araclor 1232		0.5	0.2 U	0.2 U	
Pcb-araclor 1242		0.5	0.2 U	0.2 U	
Pcb-araclor 1248		0.5	0.2 U	0.2 U	
Pcb-araclor 1254		0.5	0.2 U	0.2 U	
Pcb-araclor 1260		_0.5	0.2 U	0.2 U	
Toxaphene	3	3	1 U	1 U	

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit (A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria** MCL - Maximum Contaminant Level

N -Quality control sample spike recovery for this analyte was outside specified limits

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval			N/A	N/A	N/A	N/A
CLP Sample ID			B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
Metals (ug/L)						
Aluminum	200		NA NA	59 B	NA	57.7 U
Antimony	20	6	NA NA	1.6 Ü	NA NA	1.6 UJ
Arsenic	8	10	NA NA	4.2 U	NA	2.3 BJ
Barium	2000	2000	NA NA	15.7 B	NA	16.6 B
Beryllium	20	4	NA NA	0.24 B	NA	0.2 U
Cadmium	4	5	NA NA	0.3 U	NA	0.2 U
Calcium			NA NA	25000	NA NA	26500
Chromium	100	100	NA NA	0.5 U	NA	0.6 U
Cobalt			NA NA	2.2 B	. NA	2 B
Copper	1000	1300	NA ·	10.1 B	NA	18.8 B
Cyanide	200		NA NA	0.6 U	NA ·	1.5 U
Iron	300		NA NA	16900 (A)	NA	16500 (A)
Lead	10	15	NA NA	1.3 U	NA NA	1.7 B
Magnesium			NA NA	10600	NA	11800
Manganese	50		NA NA	332 (A)	NA	352 (A)
Mercury	2	2	NA NA	0.1 U	NA NA	0.1 U
Nickel	100		NA NA	8.3 B	NA	8.8 B
Potassium			NA	4600 B	NA	4200 B
Selenium	50	50	NA NA	2.2 U	NA	2.9 UJ
Silver			NA NA	0.7 U	NA .	0.7 U
Sodium	50000		NA NA	27600	NA	29000
Thallium	10	2	NA NA	3.3 U	NA	2.6 U
Vanadium			NA NA	1.2 B	NA	1 B
Zinc	5000		NA NA	. 14.1 B	NA NA	22.6
Pesticides and PCBs (ug/L)						
Aldrin	0.04		0.01 U	NA NA	0.01 U	NA NA
BHC, alpha	0.02		0.01 U	NA	0.01 U	NA .
BHC, beta	0.2		0.01 U	NA NA	0.01 U	NA .

B - Analyted detected in associated blank

J - Reported value estimated in quantity

NA -Not analyzed

U - Analyte not detected above reporting limit

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval			N/A	N/A	N/A	N/A
CLP Sample ID			B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
Pesticides and PCBs (ug/L)						
BHC, delta			0.01 U	NA NA	0.01 U	NA NA
BHC, gamma (Lindane)	0.2	0.2	0.01 U	NA NA	0.01 U	NA NA
Chlordane - alpha		2	0.01 U	NA NA	0.01 U	NA NA
Chlordane - gamma (technical mixture)		2	0.01 U	NA NA	0.01 U	NA NA
DDD-4,4	0.1		0.02 U	NA NA	0.02 U	NA NA
DDE-4,4	0.1		0.02 U	NA	0.02 U	NA NA
DDT-4,4	0.1		0.02 U	NA	0.02 U	NA NA
Dieldrin	0.03		0.02 U	NA NA	0.02 U	NA NA
Endosulfan I (alpha)	0.4		0.01 U	NA	0.01 U	NA NA
Endosulfan II (beta)	0.4		0.02 U	NA NA	0.02 U	NA NA
Endosulfan Sulfate	0.4		0.02 U	NA NA	0.02 U	NA NA
Endrin	2	2	0.02 U	NA	0.02 U	NA NA
Endrin Aldehyde		2	0.02 U _	NA NA	0.02 U	NA.
Endrin ketone		2	0.02 U	NA NA	0.02 U	NANA
Heptachlor	0.4	0.4	0.01 U	NA NA	0.01 U	NA NA
Heptachlor Epoxide	0.2	0.2	0.01 U	· NA	0.01 U	NA NA
Methoxychlor	40	40	0.1 U	NA	0.1 U	NA NA
Pcb-araclor 1016	<u></u>	0.5	0.2 U	NA NA	0.2 U	NA NA
Pcb-araclor 1221		0.5	0.4 U	NA NA	0.4 U	NA NA
Pcb-araclor 1232		0.5	0.2 U	NA	0.2 U	NA NA
Pcb-araclor 1242		0.5	0.2 U	NA	0.2 U	NA NA
Pcb-araclor 1248		0.5	0.2 U	. NA	0.2 U	NA NA
Pcb-araclor 1254		0.5	0.2 U	NA	0.2 U	NA
Pcb-araclor 1260		0.5	0.2 U	NA NA	0.2 U	NA NA
Toxaphene	3	3	1 U	NA NA	1 U	NA NA
Semivolatile Organic Compounds (u	ıg/L)					
Acenaphthene	400		5 UJ	NA NA	5 U	NA NA
Acenaphthylene			5 UJ	NA NA	5 U	NA

B - Analyted detected in associated blank

(A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA -Not analyzed

U - Analyte not detected above reporting limit

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval			N/A	N/A	N/A	N/A
CLP Sample ID			B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
Semivolatile Organic Compound	ds (ug/L)					
Acetophenone			5 UJ	NA NA	5 U	NA NA
Anthracene	2000		5 UJ	NA NA	5 U	NA NA
Atrazine	3	3	5 UJ	NA NA	5 UJ	NA NA
Benzaldehyde			5 UJ	NA NA	5 U	NA NA
Benzo(a)anthracene			5 UJ	NA NA	5 U	NA NA
Benzo(a)pyrene		0.2	5 UJ	NA NA	5 U	NA NA
Benzo(b)fluoranthene			5 UJ	NA.	5 U	NA NA
Benzo(g,h,I)perylene			5 UJ	NA NA	5 U	NA .
Benzo(k)fluoranthene			5 UJ	NA NA	5 U	NA
Biphenyl			5 UJ	NA NA	5 U ·	NA NA
Bromophenyl-4 Phenyl Ether			5 UJ	NA	5 U	NA NA
Butylbenzyl phthalate	100		5 UJ	NA NA	5 U	NA NA
Caprolactam			5 UJ	NANA	5 U	NA
Chloroaniline-4			5 UJ	NA NA	-5 U	NA NA
Chloronaphthalene-2			- 5 UJ .	NA NA	5 U	NA
Chlorophenol-2	40		5 UJ	NA NA	5 U	NA NA
Chlorophenyl-4 phenyl ether			5 UJ	NA NA	5 U	NA NA
Chrysene			5 UJ	NA NA	5 U.	NA NA
Cresol-4,6-dinitro-ortho			20 UJ	NA NA	20 UJ	NA NA
Cresol-o			5 UJ	_NA	5 U	NA
Cresol-p			5 UJ	NA NA	5 U	NA NA
Cresol-parachloro-meta			5 UJ	NA NA	5 U	NA
Dibenzo(a,h)anthracene			5 UJ	NA NA	5 U	NA
Dibenzofuran			5 UJ	NA NA	5 U	NA NA
Dichlorobenzidine-3,3	60		5 UJ	- NA	5 UJ	NA
Dichlorophenol-2,4	20		5 UJ	NA NA	5 U	NA
Dimethylphenol-2,4	100		5 UJ	NA_	5 U	NA NA
Dinitrophenol-2,4	40		20 UJ	NA NA	20 U	NA_
Dinitrotoluene-2,4	10		5 UJ	NA.	5 U	NA

B - Analyted detected in associated blank

J - Reported value estimated in quantity

NA -Not analyzed

302928

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval	1		N/A	N/A	N/A	N/A
CLP Sample ID			B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
					<u> </u>	
Semivolatile Organic Compounds	ua/L)	I	 			
Dinitrotoluene-2.6			5 UJ	NA NA	5 U	NA NA
Ether, bis(2-chloroethyl)	10		5 UJ	NA NA	5 U	NA NA
Ether, bis-chloroisopropyl			5 UJ	NA NA	5 U	NA NA
Fluoranthene	300		5 UJ	NA NA	5 U	NA NA
Fluorene	300		5 UJ	NA NA	5 U	NA NA
Hexachlorobenzene	10	1	5 W	NA.	5 U	NA NA
Hexachlorobutadiene	1		5 UJ	NA NA	5 U	NA NA
Hexachlorocyclopentadiene	50	50	. 5 UJ	NA NA	5 U	NA NA
Hexachloroethane	10		5 UJ	NA.	- 5 U	NA NA
Indeno(1,2,3-cd)pyrene			5 UJ	. NA	5 U	NA NA
Isophorone	100		5 UJ	NA NA	5 .U	NA NA
Methane, bis(2-chloroethoxy)			5 UJ	NA NA	5 U	. NA
Methylnaphthalene-2			5 UJ	NA.	, 5 U	NA ·
Naphthalene			5 UJ	NA NA	5 U	NA NA
Nitroaniline-2			20 UJ	NA NA	20 U	NA NA
Nitroaniline-3			20 UJ	NA	20 U	NA NA
Nitroaniline-4			20 UJ	NA NA	20 U	NA.
Nitrobenzene	10		5 UJ	NA NA	5 U	NA NA
Nitrophenol-2			5 UJ	NA	5 U	NA NA
Nitrophenol-4			20 UJ	NA NA	20 U	NA NA
Nitroso-di-n-propyl-amine-N	20		5 UJ	NA	5 U	NA ·
Nitrosodiphenylamine-n	20		5 UJ	NA NA	5 U	NA NA
PCP (Pentachlorophenol)	1	11	5 UJ	NA .	5 U	NA NA
Phenanthrene			5 UJ	NA	5 U	NA NA
Phenol	4000		5 UJ	NA	5 U	NA NA
Phthalate, bis(2-ethylhexyl) (DEHP)	30	6	14 UJ	NA NA	1.1 J	NA NA
Phthalate, di-n-butyl	900		5 UJ	NA	5 U	NA NA
Phthalate, di-n-octyl	100	<u></u>	5 UJ	NA NA	5 U	NA NA
Phthalate, diethyl	5000		5 UJ	NA	5 U	NA NA

B - Analyted detected in associated blank

(A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

NA -Not analyzed

U - Analyte not detected above reporting limit

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval			N/A	N/A	N/A	N/A
CLP Sample ID	٠		B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
Semivolatile Organic Compounds (ug/L)					·
Phthalate, dimethyl			5 UJ	NA NA	5 U	NA_
Pyrene	200		5 UJ	NA	5 U	NA
Tetrachlorobenzene-1,2,4,5			5 UJ	NA	5 U	NA
Trichlorophenol-2,4,5	700		20 UJ	NA_	20 U	NA
Trichlorophenol-2,4,6	20		5 UJ	NA	5 U	NA NA
		<u> </u>				
Volatile Organic Compounds (ug/L)					
Acetone	.700		5 UJ	NA	6.7 U_	NA
Benzene	11	5	0.5 U	NA .	0.5 U	NA
Bromoform	4	80	0.5 UJ	NA	0.5 U	NA
Bromomethane	10		0.5 U	NA	0.5 U	NA NA
Carbon disulfide			0.5 U	NA	0.5 U	NA NA
Carbon tetrachloride	2	5	0.5 U	NA	0.5 U	NA NA
Chlorobenzene	4	100	0.5 U	NA	0.5 U	NA NA
Chlorobromomethane			0.5 U	NA NA	0.5 U	NA NA
Chloroethane		<u> </u>	0.5 U	NA	0.5 U	NA NA
Chloroform	6		0.5 U	NA	0.5 U	NA
Chloromethane	30		0.5 U	NA	0.5 U	NA
Cyclohexane			0.5 U	NA	0.52	NA NA
DBCP (1,2-dibromo-3-chloropropane)		0.2	0.5 U	NA NA	0.5 U	NA
Dibromochloromethane	10	80	0.5 U	NA_	0.5 U	NA NA
Dibromoethane-1,2	0. <u>05</u>	0.05	0.5 U	NA	0.5 U	NA
Dichlorobenzene-1,2	600	600	0.5 U	NA_	0.5 U	NA .
Dichlorobenzene-1,3	600		0.5 U	NA NA	0.5 U	NA.
Dichlorobenzene-1,4	75	75	0.5 U	NA NA	0.5 U	NA NA
Dichlorobromomethane	1	80	0.5 U	NA	0.5 U	NA
Dichlorodifluoromethane			0.5 U	NA_	0.5 U	NA
Dichloroethane-1,1	70		0.5 U	NA .	0.5 U	NA NA
Dichloroethane-1,2	2	5	0.5 U	NA NA	0.5 U	NA NA

B - Analyted detected in associated blank

NA -Not analyzed

302930

(A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit

Groundwater - Compounds Analyzed and Camden City Well 7 Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	CW-07	CW-07	CW-07	CW-07
Sample ID	GWQC	MCL	MA-CW07-070202	MA-CW07-070202	MA-CW07-092402	MA-CW07-092402
Sample Date			07/02/2002	07/02/2002	09/24/2002	09/24/2002
Sample Interval			N/A	N/A	N/A	N/A
CLP Sample ID			B0KZ1	MB0KR7	B0N71	MB0L34
Chemical Name						
Volatile Organic Compounds (ug/L)				·		
Dichloroethene-1,2 trans	100	100	0.5 U	NA NA	0.5 U	NA
Dichloroethylene-1,1	2	. 7	0.5 U	NA NA	0.5 U	NA NA
Dichloroethylene-1,2 cis	10	70	0.11 J	NA NA	0.5 U	NA .
Dichloropropane-1,2	1	5	0.5 U	NA.	0.5 U	NA_
Dichloropropene-1,3 cis			0.5 U	NA NA	0.5 U	NA
Dichloropropene-1,3 trans			0.5 U	NA NA	0.5 U	NA
Ethylbenzene	700	700	0.5 U	NA NA	0.5 U	NA
Freon 113 (1,1,2-trichloro-1,2,2-trifluor			0.5 U	. NA	0.5 U	NA .
Hexanone-2			5 U	NA NA	5 U	NA_
Isopropylbenzene			0.5 U	NA NA	0.5_U	NA .
Methyl acetate			0.5 U	NA	0.5 U	NA
Methyl cyclohexane			0.5 U	NA .	0.5 U	NA
Methyl ethyl ketone (2-butanone)	300		5 U	NA NA	5 U	NA
Methyl isobutyl ketone (4-methyl-2-pen	400		5 U	NA	5 U	NA
Methyl tertiary butyl ether (MTBE)			3.9	NA NA	6.3	NA .
Methylene chloride	2	5	0.1 J	NA NA	0.5 U	NA .
Styrene	100	100	0.5 U	NA NA	0.5 U	NA
Tetrachloroethane-1,1,2,2	2		0.5 U	NA NA	0.5 U	NA
Tetrachloroethylene	1	5	0.5 U	NA NA	0.5 U	NA
Toluene	1000	1000	0.14 J	NA	0.5 U	NA
Trichlorobenzene-1,2,3			0.5 U	NA .	0.5 U	NA
Trichlorobenzene-1,2,4	9	70	0.5 U	. NA	0.5 U	NA
Trichloroethane-1,1,1	30	200	0.5 U	NA NA	0.5 U	NA_
Trichloroethane-1,1,2	3	5	0.5 U	NA	0.5 U	NA NA
Trichloroethylene	1	5	0.5 U	NA NA	0.5 U	NA
Trichlorofluoromethane			0.5 U	NA NA	0.5 U	NA .
Vinyl chloride	5	2	0.5 U	NA	0.5 U	NA
Xylenes, total	40	10000	0.5 U	NA	0.5 U	NA_

B - Analyted detected in associated blank

(A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity NA -Not analyzed

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-12S	MA-MW-13S	MA-MW-13S	MA-MW-13M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA001	AMA001	AMA002	AMA002	AMA003
Sample Date	Ţ	ļ	F20	10/30/2001	10/30/2001	10/30/2001	10/30/2001	11/02/2001
Sample Interval]		[5.4 - 15.4 ft	5.4 - 15.4 ft	6.6 - 16.6 ft	6.6 - 16.6 ft	48.35 - 58.35 ft
CLP Sample ID	1			Q2344-1	R2344-1	Q2344-2	R2344-2	Q2344-3
Chemical Name		ļ						
General Chemistry (lb/ft3)								
Bulk Density of Soils				NA	90.6	NA NA	89:6	NA NA
Carbon, Total Organic				191300 ประ	NA	≏166400 J	NA	650 U
Dry Density				NA	53		46	NA NA
Grain Size, Clay				NA	48.4	NA NA	44.5	NA.
Grain Size, Sand				NA	6:1	NA NA	. ≠9.6	NA NA
Grain Size, Silt	<u> </u>			NA	45.5	NA NA	45.9	NA .
Gravel Grains					0: 1	NA NA	(0)	NA .
Moisture, Percent	ļ				25-170.77 State	NA NA	94.75	NA NA
рН				6.55		8.58	NA	8:14
Porosity					64.4		69.4	NA NA
Specific gravity	ļ	<u> </u>		NA NA	2:39	NA NA	T. 2:41	NA NA
		<u> </u>						
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils	<u></u>				9.016		89:6	NA NA
Dry Density				NA	/53	NA NA	46	NA NA
	L	l <u>. </u>	<u> </u>					
General Chemistry - mg/kg (mg/Kg)	1	,		tions and the second second second		777		
Carbon, Total Organic		<u> </u>		191300 J	NA NA	166400 J	NA	14 650 J
7.	1	L	l					
General Chemistry - mg/l (mg/Kg)	T	1			NIA	400400	h 14	050 (1)
Carbon, Total Organic	 		l	191300 J	NA .	166400 J	NA NA	650 ปี
Constal Chamistan and conito (No. 11)	-14-)	L	<u> </u>					
General Chemistry - no units (No Un	iits)	Τ	1	NA NA	2.39	NA NA	2.41	NA NA
Specific gravity		<u> </u>		17/4	2:03 · · · · · · · · · · · · · · · · · · ·	IVA		IVA
General Chemistry - percent (%)	1	<u> </u>	I					
Grain Size, Clay	T	T	I	NA NA	48.4	NA NA	44.5	NA NA
Grain Size, Clay Grain Size, Sand	 	-			6.1		916 tisas	NA NA
Grain Size, Saltu Grain Size, Silt					45.5		45.9	NA NA
Orain Size, Sitt_			1	<u> </u>	Barrage 40:0 street 3.24	I VA	の対象が表示している。	

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-12S	MA-MW-12S	MA-MW-13S	MA-MW-13S	MA-MW-13M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA001	AMA001	AMA002	AMA002	AMA003
Sample Date			F20	10/30/2001	10/30/2001	10/30/2001	10/30/2001	11/02/2001
Sample Interval				5.4 - 15.4 ft	5.4 - 15.4 ft	6.6 - 16.6 ft	6.6 - 16.6 ft	48.35 - 58.35 ft
CLP Sample ID]		L	Q2344-1	R2344-1	Q2344-2	R2344-2	Q2344-3
Chemical Name								
General Chemistry - percent (%)		1						
Gravel Grains				NA NA	0	NA NA	0	NA NA
Moisture, Percent				NA	70.77	NA	94.75	NA
Porosity				NA .	64:4	NA NA	69:4	NA NA
General Chemistry - pH (pH)		L	<u></u>					
pH				6.55	NA NA	8.58	NA	8.14

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-13M	MA-MW-12M	MA-MW-18M	MA-MW-18M	MA-MW-18M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA003	AMA004-GTM-53	AMA005-GTM-47	AMA005-GTM-47	AMA005-GTM-47-D
Sample Date			F20	11/02/2001	11/05/2001	11/09/2001	11/09/2001	11/09/2001
Sample Interval				48.35 - 58.35 ft	53 - 53.5 ft	47 - 47.5 ft	47 - 47.5 ft	47 - 47.5 ft
CLP Sample ID				R2344-3	R2344-4	S2344-1	T2344-1	WG14173-3
Chemical Name								
General Chemistry (lb/ft3)								
Bulk Density of Soils				133.6	130.2.	NA NA	131.5	2
Carbon, Total Organic				NA .	NA	1.14.459	NA NA	NA NA
Dry Density				119.6		NA	117.7	NA .
Grain Size, Clay				4.9		NA NA	3.2	NA NA
Grain Size, Sand				77.6		NA NA	82.5	NA
Grain Size, Silt					7.1	NA NA	3.8	NA NA
Gravel Grains				11.7		NA NA	10:5	NA NA
Moisture, Percent			<u> </u>	11.71	= 3 → 10.52	NA	11.75	NA NA
рН		ļ		NA	NA NA	9.08	NA NA	9 12 5
Porosity						27.7	NA .	NA
Specific gravity				2.72 .0	27 F	NA NA	2.61	NA NA
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils				133.6		NA NA	131:5	NA
Dry Density				119.6	117.8	NA NA	11777	NA NA
		<u> </u>	<u> </u>					
General Chemistry - mg/kg (mg/Kg)								
Carbon, Total Organic				NA	NA NA	459	NA NA	NA
General Chemistry - mg/l (mg/Kg)		,						
Carbon, Total Organic				NA	NA NA	459	NA ·	NA .
				·				
General Chemistry - no units (No Un	its)				· ·			
Specific gravity				2:72	2.7	NA	2.61	NA NA
			L					
General Chemistry - percent (%)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				property and the second	
Grain Size, Clay				4.9		NA NA	3.2	NA NA
Grain Size, Sand				77.6		NA	82.5	NA
Grain Size, Silt	<u></u>			5.8	7.1	NA NA	3.82	NA NA

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Remedial Investigation Report - May 2004

				_	•			
Station ID	(A)	·(B)	(C)	MA-MW-13M	MA-MW-12M	MA-MW-18M	MA-MW-18M	MA-MW-18M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA003	AMA004-GTM-53	AMA005-GTM-47	AMA005-GTM-47	AMA005-GTM-47-D
Sample Date			F20	11/02/2001	11/05/2001	11/09/2001	11/09/2001	11/09/2001
Sample Interval	1			48.35 - 58.35 ft	53 - 53.5 ft	47 - 47.5 ft	47 - 47.5 ft	47 - 47.5 ft
CLP Sample ID				R2344-3	R2344-4	S2344-1	T2344-1	WG14173-3
Chemical Name								
General Chemistry - percent (%)								
Gravel Grains					7.3	NA NA	10.5	NA NA
Moisture, Percent				11.71	10.52	NA	11.75	NA
Porosity				29.5	通过30.1	27.7	. NA	NA .
						·	,	
General Chemistry - pH (pH)						*		
pH				NA .	NA	9.08	NA .	9.12

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-19M	MA-MW-19M	MA-MW-20M	MA-MW-20M	MA-MW-20M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA006-GTM-34.5	AMA006-GTM-34.5	AMA007-GTS-16	AMA007-GTS-16	AMA008-GTM-47
Sample Date			F20	11/12/2001	11/12/2001	11/13/2001	11/13/2001	11/13/2001
Sample Interval				34.5 - 35 ft	34.5 - 35 ft	16 - 16.5 ft	16 - 16.5 ft	47 - 47.5 ft
CLP Sample ID				S2344-2	T2344-2	S2344-3	T2344-3	S2344-4
Chemical Name				,				
						·		
General Chemistry (lb/ft3)								
Bulk Density of Soils				NA NA	± 131.7	NA	123.5	NA
Carbon, Total Organic				185 J	NA_	839		443 J
Dry Density				NA NA	111.2	NA NA	+_ 99M	NA NA
Grain Size, Clay				NA NA	1.6	NA	25.4	NA NA
Grain Size, Sand				NA	94.4	. NA	12.2	NA NA
Grain Size, Silt				NA NA	4	NA NA	62.2	NA NA
Gravel Grains				NA NA	0 + 0	NA .	0:2	NA NA
Moisture, Percent				NA	18:39	NA NA	24.67	NA NA
pH		<u> </u>		7.86	NA NA	7.24		7.61
Porosity		<u> </u>		32			40.8	NA NA
Specific gravity				NA	2.62	NA	2.68	NA .
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils					131.7	NA NA	123:5	NA
Dry Density				NA NA	111.2	NA NA	99.1	NA NA
General Chemistry - mg/kg (mg/Kg)								
Carbon, Total Organic				185 J	NA NA	839	NA .	443 J
General Chemistry - mg/l (mg/Kg)								
Carbon, Total Organic				185 J	NA	839	NA NA	443°J
		<u> </u>						
General Chemistry - no units (No Un	its)	,						
Specific gravity				NA .	2!62	NA_	2.68	NA NA
		L						
General Chemistry - percent (%)								
Grain Size, Clay					1.6		25.4	NA.
Grain Size, Sand					. 94:4		12.2: 🚨 🛶	NA NA
Grain Size, Silt				NA NA	4	NA NA	62:2	NA NA

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-19M	MA-MW-19M	MA-MW-20M	MA-MW-20M	MA-MW-20M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA006-GTM-34.5	AMA006-GTM-34.5	AMA007-GTS-16	AMA007-GTS-16	AMA008-GTM-47
Sample Date			F20	11/12/2001	11/12/2001	11/13/2001	11/13/2001	11/13/2001
Sample Interval				34.5 - 35 ft	34.5 - 35 ft	16 - 16.5 ft	16 - 16.5 ft	47 - 47.5 ft
CLP Sample ID				S2344-2	T2344-2	S2344-3	T2344-3	S2344-4
Chemical Name								
General Chemistry - percent (%)								
Gravel Grains				NA NA	2 0	NA	0.2	NA
Moisture, Percent				NA NA	18.39	NA	24:67	NA
Porosity				2 et = 11329 en 11 en	NA NA	NA	40!8	NA
General Chemistry - pH (pH)		l						
Hq				7.86	NA NA	7.24	NA	7.61

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20M	MA-MW-20M	MA-MW-20M	MA-MW-20D	MA-MW-20D
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA008-GTM-47	AMA009-GTS-16	AMA009-GTS-16	AMA010-GTS-125	AMA010-GTS-125
Sample Date			F20	11/13/2001	11/13/2001	11/13/2001	11/19/2001	11/19/2001
Sample Interval				47 - 47.5 ft	16 - 16.5 ft	16 - 16.5 ft	125 - 125.5 ft	125 - 125.5 ft
CLP Sample ID				T2344-4	S2344-5	T2344-5	U2344-1	V2344-1
Chemical Name								
General Chemistry (lb/ft3)								
Bulk Density of Soils		•		129:6	NA	127.8	×	4115
Carbon, Total Organic				NA NA	871	NA .	581 J	NA .
Dry Density				115.6	. NA	101.6	NA	⊒90.2
Grain Size, Clay				7.9	NA NA	28.2	NA NA	38:8
Grain Size, Sand				53.7	NA NA	12.5	NA NA	25.4
Grain Size, Silt				16.9	NA NA	59	NA NA	35.4
Gravel Grains				21.5	NA NA	0.3	NA NA	0.4
Moisture, Percent				12.16	NA NA	25:84	NA NA	27.47
рН				NA NA	7.26		4.52	NA NA
Porosity				30.1	NA NA	40.6	NA NA	45.9
Specific gravity				32.65%	NA NA	2.74	NA .	2:67
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils				129.6	NA NA	127.8	NA NA	115
Dry Density				115.6	NA NA	1.01.6	NA NA	.90:2
			l					
General Chemistry - mg/kg (mg/Kg)	,						no con l'accesso de 202 Propos Nobellanos de l'accesso	
Carbon, Total Organic				NA NA	. 871	NA NA	581 U.	NA NA
	<u> </u>							
General Chemistry - mg/l (mg/Kg)								.,,,
Carbon, Total Organic				NA NA	871.	NA NA	581, J	NA NA
Consul Chamieter and with the	.:4->	<u> </u>						
General Chemistry - no units (No Un	iits)			0.65	NIA.		NA NA	製造機能 1970年7月 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1980年 1
Specific gravity			ļ	2.65	NA NA	2.74:	IVA	2.67
General Chemistry - percent (%)	L	L	L		,			
Grain Size, Clay				7.9	NA NA	28.2	NA .	38.8
Grain Size, Clay Grain Size, Sand				53.7	NA NA	12.5	NA NA	25.4
				16.95 (1)	NA NA	59 4 3	NA NA	25.4 35.4 (1)
Grain Size, Silt	L			Make Carlot 10: 925 Aug 11 Carlot 10: 10: 10: 10: 10: 10: 10: 10: 10: 10:	I NA	1975年 東京大学 東京大学 東京大学 1975年	INA	では、これを表現している。

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20M	MA-MW-20M	MA-MW-20M	MA-MW-20D	MA-MW-20D
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA008-GTM-47	AMA009-GT\$-16	AMA009-GTS-16	AMA010-GTS-125	AMA010-GTS-125
Sample Date			F20	11/13/2001	11/13/2001	11/13/2001	11/19/2001	11/19/2001
Sample Interval]		<u> </u>	47 - 47.5 ft	16 - 16.5 ft	16 - 16.5 ft	125 - 125.5 ft	125 - 125.5 ft
CLP Sample ID				T2344-4	S2344-5	T2344-5	U2344-1	V2344-1
Chemical Name								
General Chemistry - percent (%)	<u> </u>	<u> </u>	<u>i</u>					
Gravel Grains				21.5	NA	0.3	NA NA	0.4
Moisture, Percent				212:16 LL LL	NA	25.84	NA NA	27.47
Porosity				30.1	NA NA	40.6	NA NA	45.9
	<u> </u>							
General Chemistry - pH (pH)								
рН				NA ·	7.26	NA	4.52	NA .

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-18D	MA-MW-18D	MA-MW-18D	MA-MW-14D	MA-MW-14D
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA011-GTD-113	AMA011-GTD-113	AMA011-GTD-113-D	AMA014-GTD-180	AMA014-GTD-180
Sample Date			F20	11/28/2001	11/28/2001	11/28/2001	01/08/2002	01/08/2002
Sample Interval				113 - 113.5 ft	113 - 113.5 ft	113 - 113.5 ft	180 - 180.5 ft	180 - 180.5 ft
CLP Sample ID				V2344-2	W2344-1	WG14597-3	A2344-1	Z2344-1
Chemical Name					·			
General Chemistry (lb/ft3)								
Bulk Density of Soils				123.1	NA NA	NA NA	124.55	NA .
Carbon, Total Organic				NA NA	1076	NA NA	NA NA	1105 J
Dry Density				99.6	NA NA	. NA	116:2	ŅA
Grain Size, Clay				67.5	NA_	NA NA	5.7	NA
Grain Size, Sand				4.2	NA_	NA NA	41	NA NA
Grain Size, Silt				27.8	NA NA	NA NA	9.	NA .
Gravel Grains				10.5	NA NA	NA NA	44.3	NA ·
Moisture, Percent		l		1,23.58	NA NA	NA NA	7.09	NA NA
рН				NA	4.94	5:02	NA NA	7.46
Porosity				45.9	NA NA	NA NA	30. 74	NA NA
Specific gravity				2.73	NA NA	NA	2:66	NA NA
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils				123.1	NA NA	NA NA	124.5	NA NA
Dry Density				99.6	NA NA	NA NA	116.2	NA .
		<u> </u>						
General Chemistry - mg/kg (mg/Kg)								
Carbon, Total Organic				NA NA	1076	NA	NA	
						· · · · · · · · · · · · · · · · · · ·		
General Chemistry - mg/l (mg/Kg)		· · · · · · · · · · · · · · · · · · ·					·	
Carbon, Total Organic				NA	1076	NA NA	NA	1105 J. The
		<u> </u>						
General Chemistry - no units (No Ur	its)							
Specific gravity				2.73	NA NA	NA NA	2.66	NA NA
	<u> </u>							
General Chemistry - percent (%)		······································						
Grain Size, Clay				67.5	, NA	NA NA	5:7 40:00	NA
Grain Size, Sand	- 1-11			4.2	NA NA	NA NA	418 7 41	NA .
Grain Size, Silt		<u> </u>		27.8	NA NA	NA NA	9:23)	NA NA

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-18D	MA-MW-18D	MA-MW-18D	MA-MW-14D	MA-MW-14D
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA011-GTD-113	AMA011-GTD-113	AMA011-GTD-113-D	AMA014-GTD-180	AMA014-GTD-180
Sample Date			F20	11/28/2001	11/28/2001	11/28/2001	01/08/2002	01/08/2002
Sample Interval				113 - 113.5 ft	113 - 113.5 ft	113 - 113.5 ft	180 - 180.5 ft	180 - 180.5 ft
CLP Sample ID	1			V2344-2	W2344-1	WG14597-3	A2344-1	Z2344-1
Chemical Name								
General Chemistry - percent (%)								
Gravel Grains				i	NA	NA .	44.3	. NA
Moisture, Percent				23:58	NA NA	NA NA	7.09	NA NA
Porosity				45.9	. NA	NA NA	30 %-	NA NA
General Chemistry - pH (pH)	<u></u>	<u> </u>	1					
pH·				. NA	4.94	5.02	NA	7.46

NA - Not analyzed (A, B, C) - Exceeds criteria

Detects highlighted

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-14D	MA-MW-14M	MA-MW-14M	MA-MW-14M	MA-MW-14M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA014-GTD-180-D	AMA015-GTD-110	AMA015-GTD-110	AMA016-GTD-110	AMA016-GTD-110
Sample Date			F20	01/08/2002	01/09/2002	01/09/2002	01/09/2002	01/09/2002
Sample Interval				180 - 180.5 ft	110 - 110.5 ft	110 - 110.5 ft	110 - 110.5 ft	110 - 110.5 ft
CLP Sample ID				WG15233-3	A2344-2	Z2344-2	A2344-3	Z2344-3
Chemical Name								
General Chemistry (lb/ft3)								
Bulk Density of Soils				NA NA	134.7	NA NA	137.3	NA_
Carbon, Total Organic				NA NA	NA	1124 J	NA .	998 J
Dry Density				NA NA	111.9	NA NA	117.2	NA_
Grain Size, Clay				NA NA	23.9	NA NA	38.3	NA
Grain Size, Sand				NA NA	60.1	NA NA	36:2	NA_
Grain Size, Silt				NA NA	16	NA NA	25.5	NA
Gravel Grains				NA NA	0 0 1	NA NA	0	NA_
Moisture, Percent				NA	20.35	NA NA	17.16	NA
рН				7.6	NA	6.91	24	7.34
Porosity				NA	32.3	NA NA	29.7:	_NA_
Specific gravity				NA NA	2.65	NA NA	2.67	NA
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils				NA NA	134.7	NA NA	137.3	NA NA
Dry Density				NA NA	111.9	NA .	117.2	NA
General Chemistry - mg/kg (mg/Kg)								
Carbon, Total Organic				NA	NA	≥ 1124 J	NA	998 U
·								
General Chemistry - mg/l (mg/Kg)								
Carbon, Total Organic				NA NA	NA	1124 J	NA NA	998 J
General Chemistry - no units (No Un	its)							
Specific gravity				NA NA	2.65	NA NA	2.67	NA
General Chemistry - percent (%)								
Grain Size, Clay				NA NA	23.9	NA NA	38.3	NA_
Grain Size, Sand				NA NA	60.1	NA NA	36.2	NA_
Grain Size, Silt				NA NA	16	NA	25.5	NA .

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

3029

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-MW-14D	MA-MW-14M	MA-MW-14M	MA-MW-14M	MA-MW-14M
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA014-GTD-180-D	AMA015-GTD-110	AMA015-GTD-110	AMA016-GTD-110	AMA016-GTD-110
Sample Date			F20	01/08/2002	01/09/2002	01/09/2002	01/09/2002	01/09/2002
Sample Interval]			180 - 180.5 ft	110 - 110.5 ft	110 - 110.5 ft	110 - 110.5 ft	110 - 110.5 ft
CLP Sample ID			L	WG15233-3	A2344-2	Z2344-2	A2344-3	Z2344-3
Chemical Name								
General Chemistry - percent (%)								
Gravel Grains				NA NA	0	NA NA	0	NA .
Moisture, Percent				NA NA	20.35	NA .	17/16	NA .
Porosity				NA .	32.3	NA NA	29.7	NA NA
General Chemistry - pH (pH)	<u>l</u> '	L						
pH]			7.6	NA	6.91	NA	7.34

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-14S	MA-MW-14S	MA-MW-21S	MA-MW-21S	MA-MW-22\$
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA017-GTS-12	AMA017-GTS-12	AMA018-GTS-14	AMA018-GTS-14	AMA019-GTS-14
Sample Date		·	F20	01/10/2002	01/10/2002	01/10/2002	01/10/2002	01/11/2002
Sample Interval				12 - 12.5 ft	12 - 12.5 ft	14 - 14.5 ft	14 - 14.5 ft	14 - 14.5 ft
CLP Sample ID				A2344-4	Z2344-4	A2344-5	Z2344-5	A2344-6
Chemical Name								
General Chemistry (lb/ft3)								
Bulk Density of Soils				132.8	NA NA	135.9	NA NA	138.9
Carbon, Total Organic					60660	NA NA	.2960 J	. NA
Dry Density		·		1117.7	NA NA	123.4	NA NA	131
Grain Size, Clay				4.7	NA	3.2	NA NA	2.7
Grain Size, Sand				81.7	NA NA	86.5	NA NA	82.5x 45 Labor
Grain Size, Silt				13:6	NA NA	5.1	NA NA	8 2
Gravel Grains				0	NA	5.2	NA	6:8
Moisture, Percent				12.79	NA NA	10:1	NA NA	6
pH				NA NA	7.56	NA NA	7.85	NA NA
Porosity				30.4	NA	26.7	NA NA	34:5
Specific gravity				2.71	NA	2.7	NA NA	2.7.
General Chemistry - lb/ft3 (lb/ft3)								
Bulk Density of Soils				132.8	, NA	135!9	NA.	138.9
Dry Density				1977 in 19	NA NA	123.4	NA NA	191
General Chemistry - mg/kg (mg/Kg)		<u> </u>	L <u></u>					
Carbon, Total Organic				NA	60660	NA		NA NA
General Chemistry - mg/l (mg/Kg)								
Carbon, Total Organic				NA .	60660	NA NA	% 42960 J™	NA NA
	**->							
General Chemistry - no units (No Un	its)			### 01.74************************************	N 1A	100:20:30:00:00:00:00:00:00:00:00:00:00:00:00	N/A	TO THE SUBSTITUTE OF THE PARTY
Specific gravity				2.71 A 2.51	NA .	27	NA NA	2.7
General Chemistry - percent (%)								
Grain Size, Clay				4.7	NA	3.2	NA NA	v2.7
Grain Size, Sand				81.7** ***	NA	m 86%5	NA NA	82.5
Grain Size, Silt				13:6	NA	5.1m 15.7% 43	NA.	81

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria 05/20/2004

				•	•			
Station ID	(A)	(B)	(C)	MA-MW-14S	MA-MW-14S	MA-MW-21S	MA-MW-21S	MA-MW-22S
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA017-GTS-12	AMA017-GTS-12	AMA018-GTS-14	AMA018-GTS-14	AMA019-GTS-14
Sample Date			F20	01/10/2002	01/10/2002	01/10/2002	01/10/2002	01/11/2002
Sample Interval				12 - 12.5 ft	12 - 12.5 ft	14 - 14.5 ft	14 - 14.5 ft	14 - 14.5 ft
CLP Sample ID	1			A2344-4	Z2344-4	A2344-5	Z2344-5	A2344-6
Chemical Name								
General Chemistry - percent (%)								
Gravel Grains				0.7	NA	5.2	NA	6.8
Moisture, Percent				12.79	NA NA	10:1	NA NA	6 4 4 4 4
Porosity				30.4	NA	26.7	NA	34:5
General Chemistry - pH (pH)								
pH				NA .	7:56	NA	7: in ≤ in 7:85 in a f	NA NA

Soil - Geochemical Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-22S	MA-MW-12M	MA-MW-19R	MA-MW-20R	MA-MW-20R
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA019-GTS-14	MA-MW-12M-GTM-53	MA-MW-19R-GTD-103	MA-MW-20R-GTD-113	//A-MW-20R-GTD-113-
Sample Date			F20	01/11/2002	11/05/2001	06/17/2002	06/13/2002	06/13/2002
Sample Interval				14 - 14.5 ft	53 - 53.5 ft	103 - 103.5 ft	113 - 113.5 ft	113 - 113.5 ft
CLP Sample ID				Z2344-6	Q2344-4	B2344-3	B2344-1	B2344-2
Chemical Name								
General Chemistry (lb/ft3)								
Bulk Density of Soils				NA	NA NA	NA NA	NA .	NA NA
Carbon, Total Organic				821 J	1 269 J	498	289 J	728 ปี
Dry Density				NA NA	NA .	NA NA	NA NA	NA .
Grain Size, Clay		<u> </u>	<u> </u>	NA NA	NA	NA NA	NA NA	NA
Grain Size, Sand				NA .	ŅA	NA NA	NA NA	NA NA
Grain Size, Silt				NA NA	NA NA	NA NA	NA NA	NA .
Gravel Grains				NA	NA NA	NA NA	NA NA	NA
Moisture, Percent				NA	NA	NA	NA NA	NA NA
рН				8.14	7.42	7.7	7.39	NA NA
Porosity				NA	NA	NA NA	NA NA	NA NA
Specific gravity				NA NA	NA	NA NA	NA NA	NA .
General Chemistry - Ib/ft3 (Ib/ft3)								
Bulk Density of Soils				NA NA	NA NA	NA NA	NA NA	NA .
Dry Density				NA NA	NA NA	NA NA	NA NA	NA
General Chemistry - mg/kg (mg/Kg)								
Carbon, Total Organic				821 J	269 J	498	289 J	728 J
General Chemistry - mg/l (mg/Kg)								
Carbon, Total Organic				☀ 821 J	, 269 J	498	289 J	728 J
General Chemistry - no units (No Un	its)							
Specific gravity				NA NA	NA NA	NA NA	NA	NA NA
General Chemistry - percent (%)								
Grain Size, Clay				NA NA	NA NA	NA NA	NA NA	NA NA
Grain Size, Sand				NA NA	NA	NA NA	NA NA	NA
Grain Size, Silt				NA NA	NA NA	NA NA	NA NA	NA NA

J - Reported value estimated in quantity NA - Not analyzed (A, B, C) - Exceeds criteria Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria 05/20/2004

Station ID	(A)	(B)	(C)	MA-MW-22S	MA-MW-12M	MA-MW-19R	MA-MW-20R	MA-MW-20R
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	AMA019-GTS-14	MA-MW-12M-GTM-53	MA-MW-19R-GTD-103	MA-MW-20R-GTD-113/	A-MW-20R-GTD-113-
Sample Date	7		F20	01/11/2002	11/05/2001	06/17/2002	06/13/2002	06/13/2002
Sample Interval]			14 - 14.5 ft	53 - 53.5 ft	103 - 103.5 ft	113 - 113.5 ft	113 - 113.5 ft
CLP Sample ID				Z2344-6	Q2344-4	B2344-3	B2344-1	B2344-2
Chemical Name	•							
8								
General Chemistry - percent (%)								
Gravel Grains				NA .	NA	NA NA	NA NA	NA
Moisture, Percent				NA .	NA NA	NA NA	NA	NA
Porosity				NA	NA NA	NA .	NA NA	NA
General Chemistry - pH (pH)			L					
pH				8.14	7.42	7.7	7.39	NA

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	(C)	MA-MW-20R
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	/A-MW-20R-GTD-113-
Sample Date			F20	06/13/2002
Sample Interval				113 - 113.5 ft
CLP Sample ID				WG18004-3
Chemical Name	,			
General Chemistry (lb/ft3)				
Bulk Density of Soils		L		NA NA
Carbon, Total Organic				NA
Dry Density				NA
Grain Size, Clay				NA NA
Grain Size, Sand		l		NA
Grain Size, Silt				NA NA
Gravel Grains	<u> </u>		<u> </u>	NA .
Moisture, Percent				NA NA
pH				
Porosity				NA NA
Specific gravity				NA NA
General Chemistry - Ib/ft3 (Ib/ft3)		l	<u> </u>	
Bulk Density of Soils				NA NA
Dry Density				NA NA
General Chemistry - mg/kg (mg/Kg)	l	<u> </u>		
Carbon, Total Organic				NA NA
General Chemistry - mg/l (mg/Kg)	l	<u> </u>	<u> </u>	
Carbon, Total Organic		(<u> </u>	NA NA
General Chemistry - no units (No Ur	nits)			
Specific gravity				NA NA
	<u> </u>			
General Chemistry - percent (%)	,			
Grain Size, Clay				NA NA
Grain Size, Sand				NA NA
Grain Size, Silt	L	<u> </u>	L	NA NA

J - Reported value estimated in quantity
NA - Not analyzed
(A, B, C) - Exceeds criteria
Detects highlighted

IGWSCC - Impact to Groundwater Soil Cleanup Criteria NRDCSCC - Nonresidentital Direct Contact Soil Cleanup Criteria EPASSLDAF20 - EPA Region 9 Soil Cleanup Criteria

Station ID	(A)	(B)	(C)	MA-MW-20R
Sample ID	IGWSCC	NRDCSCC	EPASSLDA	//A-MW-20R-GTD-113-
Sample Date			F20	06/13/2002
Sample Interval		į		113 - 113.5 ft
CLP Sample ID				WG18004-3
Chemical Name				
General Chemistry - percent (%)				
Gravel Grains				NA
Moisture, Percent				NA NA
Porosity				NA
General Chemistry - pH (pH)				
pH				7:35

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M
Sample ID	GWQC	MCL	BMA001	BMA001	BMA001-D	BMA002	BMA002
Sample Date			06/19/2002	06/19/2002	06/19/2002	06/20/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft
CLP Sample ID			E2344-4	F13630-1	WG18278-3	E2344-10	F13644-1
Chemical Name						1	
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			446	NA	NA	400	NA .
Carbon Dioxide			NA NA	453	NA NA	NA NA	471
Carbon, Total Organic			13.15	NA	NA	7.759	NA NA
Chloride	250		53.9	NA	NA .	71.7	NA NA
Ethane			ŇA	NA NA	NA	NA NA	NA NA
Ethene			NA NA	NA	NA	NA NA	NA
Hardness (As CaCO3)	250		530 (A)	NA_	NA	338 (A)	NA NA
Iron, Ferrous			NA NA	0.1 U	NA	NA NA	0.1 U
Methane			NA NA	. NA	NA	NA NA	NA
Nitrogen, Ammonia as N			4.03	NA	NA	8.93	NA
Nitrogen, Kjeldahl			4.529	NA NA	NA	9.776	NA NA
Nitrogen, Nitrate as N	10		0.05 U	NA	NA	0.05 U	NA
Nitrogen, Nitrite	1		0.05 U	NA NA	NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA NA	2 U	NA NA	NA	2 U
Oxygen Demand, Chemical			NA NA	37	NA	NA NA	20 U
Phosphorus-32			0.518 U	NA NA	NA	0.1 U	NA NA
Solids, Total Dissolved (Residue, Filter			748	NA NA	703	526	NA
Solids, Total Suspended		<u> </u>	34	NA NA	13	23	NA
Sulfate	250	<u> </u>	153	NA NA	NA	36.8	NA
Sulfide			0.76 U	NA NA	NA	0.5 U	NA NA
General Chemistry - mg/kg (MG/L)						ļ	
Carbon, Total Organic		 	13.15	NA	NA NA	7.759	NA
General Chemistry - mg/l (MG/L)		1					
Alkalinity, Total as CaCO3			446	NA	NA	400	NA NA
Carbon Dioxide			NA NA	453	NA NA	NA NA	471
Carbon, Total Organic			13.15	NA	NA NA	7.759	NA NA
Chloride	250		53.9	NA	NA .	71.7	NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	· (A)	(B)	MA-MW-10S	MA-MW-10S	MA-MW-10S	MA-MW-11M	MA-MW-11M
Sample ID	GWQC	MCL	BMA001	BMA001	BMA001-D	BMA002	BMA002
Sample Date			06/19/2002	06/19/2002	06/19/2002	06/20/2002	06/20/2002
Sample Interval			8 - 18 ft	8 - 18 ft	8 - 18 ft	46 - 56 ft	46 - 56 ft
CLP Sample ID			E2344-4	F13630-1	WG18278-3	E2344-10	F13644-1
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		530 (A)	NA	NA NA	4 - 338 - 4(A)	NA
Iron, Ferrous			NA NA	0.1 U	NA NA	NA NA	0.1 U
Nitrogen, Ammonia as N			4.03	NA	NA NA	8.93	NA
Nitrogen, Kjeldahl			4.529	NA	NA NA	9.776	NA NA
Nitrogen, Nitrate as N	10		0.05 U	NA	NA	0.05 U	NA NA
Nitrogen, Nitrite	1		0.05 U	NA	NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA NA	2 U	NA	NA NA	2 U
Oxygen Demand, Chemical			NA NA	37	NA NA	NA NA	20 U
Phosphorus-32			0.518 U	NA_	NA NA	0.1 U	NA_
Solids, Total Dissolved (Residue, Filter			748	NA	703	526	NA NA
Solids, Total Suspended			34	NA	13	23	NA NA
Sulfate	250		153	NA	NA NA	36.8	NA .
Sulfide			0.76 U	NA	NA NA	0.5 U	NA NA
General Chemistry - ug/l (ug/L)							
Ethane			NA .	NA	NA NA	NA	NA
Ethene			NA NA	NA	NA.	· NA	NA NA
Methane			NA NA	NA	NA NA	NA NA	NA NA
Volatile Organic Compounds (mg/l)							
Ethane			0.5 J	NA	NA .	5	NA
Ethane			0.5 J	NA	NA NA	5	. NA
Ethene			2 U	NA	NA	2 U	NA
Ethene			2 U	NA	NA	2 U	NA NA
Methane			50 B	NA	NA NA	20	NA NA

R- Rejected result

J - Reported value estimated in quantity NA -Not analyzed

U - Analyte not detected above reporting limit

302952

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-11S	MA-MW-01M	MA-MW-01M	MA-MW-01S
Sample ID	GWQC	MCL	BMA003	BMA003	BMA004	BMA004	BMA005
Sample Date			06/20/2002	06/20/2002	06/20/2002	06/20/2002	06/20/2002
Sample Interval			11 - 21 ft	11 - 21 ft	50 - 60 ft	50 - 60 ft	4 - 14 ft
CLP Sample ID			E2344-11	F13644-2	E2344-12	F13644-3	E2344-13
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			204	. NA	270	NA .	1070
Carbon Dioxide			NA NA	302	NA NA	244	NA NA
Carbon, Total Organic			5 U	NA	5 U	NA	18.25
Chloride	250		12.7	NA	121	NA	158
Ethane			NA NA	NA	NA	NA	NA ·
Ethene			NA NA	NA	NA	NA .	NA NA
Hardness (As CaCO3)	250		280 (A)	NA	340 (A)	NA	1010 (A)
Iron, Ferrous			NA NA	0.1 U	NA	1.9 U	NA NA
Methane			NA	NA	NA	NA NA	NA NA
Nitrogen, Ammonia as N			0.1 U	NA	1.09	NA NA	47
Nitrogen, Kjeldahl			0.272	NA NA	1.147	· NA	49.78
Nitrogen, Nitrate as N	10		5	NA	0.05 U	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	ŇA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	2 U	NA NA	· 2 U	NA NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	20 U	NA NA
Phosphorus-32			0.1 U	NA NA	0.109 U	NA	2.115
Solids, Total Dissolved (Residue, Filter			394	NA NA	582	NA NA	909
Solids, Total Suspended			89	NA NA	30	NA NA	70
Sulfate	250		66.2	NA ·	98.9	NA ·	36.8
Sulfide			0.5 U	NA NA	0.5 U	NA NA	3.28
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			5 U	NA	5 U	NA .	18.25
General Chemistry - mg/l (MG/L)		<u> </u>					
Alkalinity, Total as CaCO3			204	NA	270	NA	1070
Carbon Dioxide			NA NA	302	NA	244	NA NA
Carbon, Total Organic			5 U	NA	5 U	NA	18.25
Chloride	250		12.7	NA	121	NA	158

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result.

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-11S	MA-MW-01M	MA-MW-01M	MA-MW-01S
Sample ID	GWQC	MCL	BMA003	BMA003	BMA004	BMA004	BMA005
Sample Date			06/20/2002	06/20/2002	06/20/2002	06/20/2002	06/20/2002
Sample Interval			11 - 21 ft	11 - 21 ft	50 - 60 ft	50 - 60 ft	4 - 14 ft
CLP Sample ID			E2344-11	F13644-2	E2344-12	F13644-3	E2344-13
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		280 (A)	NA	340 (A)	NA NA	1010 (A)
Iron, Ferrous			NA NA	0.1 U	NA NA	1.9 U	NA NA
Nitrogen, Ammonia as N			0.1 U	NA NA	1.09	NA	47
Nitrogen, Kjeldahl	· · · · · · · · · · · · · · · · · · ·		0.272	NA	1.147	NA	49.78
Nitrogen, Nitrate as N	10		5	NA NA	0.05 U	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	2 U	NA	2 U	NA NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	20 U	NA NA
Phosphorus-32			0.1 U	NA	0.109 U	NA '	2.115
Solids, Total Dissolved (Residue, Filter			394	NA NA	582	NA	909
Solids, Total Suspended			89	NA NA	_30	NA	70
Sulfate	250		66.2	NA	98.9	NA	36.8
Sulfide			0.5 U	NA	0.5 U	NA	3.28
General Chemistry - ug/l (ug/L)		I					
Ethane			NA	NA	NA NA	NA	NA .
Ethene			NA NA	NA NA	NA NA	NA	NA NA
Methane			NA NA	NA	NA NA	NA NA	NA NA
Volatile Organic Compounds (mg/l)							
Ethane			2 U	NA	1 J	NA .	3 U
Ethane			2 U	NA NA	1 J	NA NA	3 U
Ethene			0.06 J	NA NA	3 U	NA	150 U
Ethene			0.06 J	NA	3 U	NA	150 U
Methane			0.1 U	NA	24	NA	600

NA -Not analyzed

R- Rejected result

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-01S	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	BMA005	BMA008	BMA008	BMA009	BMA009
Sample Date			06/20/2002	06/12/2002	06/12/2002	06/27/2002	06/27/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID		İ	F13644-4	C2344-1	F13535-1	E2344-16	F13728-3
Chemical Name							
General Chemistry (MG/L)					,		
Alkalinity, Total as CaCO3			NA	270	NA	1310	NA
Carbon Dioxide			824	NA	224	NA	964
Carbon, Total Organic			NA NA	14.02	NA	38.46	NA NA
Chloride	250		NA NA	3.5	NA	78.6	NA
Ethane			NA NA	2 U	NA	NA NA	NA
Ethene			NA	2 U	NA	. NA	NA
Hardness (As CaCO3)	250		. NA	288 (A)	NA	72# 1020 (A)	NA NA
Iron, Ferrous			0.1 U	NA	3.1	NA NA	0.78 J
Methane			NA NA	2 U	NA	NA .	NA .
Nitrogen, Ammonia as N			NA	1.71	NA	25.1	NA NA
Nitrogen, Kjeldahl			NA.	2.298	NA	29.21	NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA	0.05 U	NA NA
Nitrogen, Nitrite	1		NA NA	0.05 U	NA	0.05 U	NA
Oxygen Demand, Biologic Five Day			9.2	NA NA	2· U	NA NA	18.3 J
Oxygen Demand, Chemical			63.8	NA NA	42.6	NA NA	125
Phosphorus-32			NA NA	0.36	NA	1.361	NA
Solids, Total Dissolved (Residue, Filter			NA NA	332	NA NA	1290	NA
Solids, Total Suspended			NA	24	NA NA	8.3	NA
Sulfate	250		NA NA	12.3	NA	5 U	NA .
Sulfide			NA NA	0.5 U	ŅA	2.84	NA
General Chemistry - mg/kg (MG/L)	· · · · · · · · · · · · · · · · · · ·						
Carbon, Total Organic			NA NA	14.02	NA NA	38.46	NA NA
General Chemistry - mg/l (MG/L)	· · · · · · · · · · · · · · · · · · ·	L		 			
Alkalinity, Total as CaCO3			NA NA	270	NA	1310	NA
Carbon Dioxide			824	NA NA	224	NA NA	964
Carbon, Total Organic			NA NA	14.02	NA	38.46	NA NA
Chloride	250		NA NA	3.5	NA	78.6	NA NA

J - Reported value estimated in quantity

NA -Not analyzed

302954

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	· (B)	MA-MW-01S	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	BMA005	BMA008	BMA008	BMA009	BMA009
Sample Date		,	06/20/2002	06/12/2002	06/12/2002	06/27/2002	06/27/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID			F13644-4	C2344-1	F13535-1	E2344-16	F13728-3
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA .	288 (A)	NA NA	1020 (A)	NA
Iron, Ferrous			0,1 U	NA	3.1	NA	0.78 J
Nitrogen, Ammonia as N			NA.	1.71	NA NA	25.1	NA
Nitrogen, Kjeldahl			NA .	2.298	NA NA	29.21	NA NA
Nitrogen, Nitrate as N	10		NA	0.05 U	NA .	0.05 U	NA NA
Nitrogen, Nitrite	1		NA.	0.05 U	NA NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			9.2	NA NA	2 U	NA	18.3 J
Oxygen Demand, Chemical			63.8	NA NA	42.6	NA NA	_125
Phosphorus-32			NA	0.36	NA NA	1.361	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	332	NANA	1290	NA
Solids, Total Suspended			NA NA	24	NA	8.3	NA NA
Sulfate	250		NA NA	12.3	NA	5 U	NA NA
Sulfide			NA	0.5 U	NA NA	2.84	NA NA
		<u> </u>					
General Chemistry - ug/l (ug/L)							· · · · · · · · · · · · · · · · · · ·
Ethane			. NA	2 U	NA	NA NA	NA NA
Ethene			NA NA	2 U	NA NA	NA NA	NA NA
Methane			NA NA	2 U	NA NA	NA NA	NA NA
<u></u>							
Volatile Organic Compounds (mg/l)	· · · · · · · · · · · · · · · · · · ·	,				<u> </u>	
Ethane			NA NA	NA NA	NA	8 UJ	NA NA
Ethane			NA NA	NA NA	NA	8 N1	NA
Ethene			NA NA	NA NA	NA NA	150 UJ	NA NA
Ethene		<u></u>	NA	NA NA	NA	150 UJ	NA NA
Methane			NA NA	NA NA	NANA	350 J	NA NA

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-08S	MA-MW-08S	MA-MW-09D	MA-MW-09D	MA-MW-09S
Sample ID	GWQC	MCL	BMA011	BMA011	BMA012	BMA012	BMA013
Sample Date			06/12/2002	06/12/2002	06/19/2002	06/19/2002	06/19/2002
Sample Interval			4 - 14 ft	4 - 14 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft
CLP Sample ID			C2344-2	F13535-2	E2344-5	F13630-2	E2344-6
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			498	NA	280	NA	340
Carbon Dioxide			NA NA	893	NA	285	NA NA
Carbon, Total Organic			17.22	NA	8.739	NA NA	7.209
Chloride	250		7.26	NA NA	79	NA	47.6
Ethane			15 U	NA	NA NA	NA	NA NA
Ethene			15 U	NA	NA NA	NA	NA NA
Hardness (As CaCO3)	250		474 HA (A)	. NA	326 (A)	NA	310: (A)
Iron, Ferrous			NA NA	3.8	NA NA	1,6	NA_
Methane			170	NA	NÁ	NA NA	NA
Nitrogen, Ammonia as N			5.97	NA	4.92	NA	3.69
Nitrogen, Kjeldahl			7.962	NA	4.951	· NA	3.941
Nitrogen, Nitrate as N	10		0.05 U	NA NA	0.32	NA NA	0.115
Nitrogen, Nitrite	1	•	0.05 U	NA NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	19.7	NA NA	2 U	NA .
Oxygen Demand, Chemical			NA NA	61.2	NA NA	20 U	NA NA
Phosphorus-32			0.627	NA	0.1 U	NA NA	0.1 U
Solids, Total Dissolved (Residue, Filter	·		510	NA	484	NA	564
Solids, Total Suspended			45	NA .	16	NA	20.6
Sulfate	250		5 U	NA NA	65	NA	95.9
Sulfide	· · · · · · · · · · · · · · · · · · ·		1.56	NA	0.5 U	NA NA	0.5 U
						<u> </u>	
General Chemistry - mg/kg (MG/L)	···		<u> </u>		ļ		ļ
Carbon, Total Organic			17.22	NA_	8.739	NA NA	7.209
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			498	NA NA	280	NA NA	340
Carbon Dioxide			NA NA	893	NA NA	285	NA NA
Carbon, Total Organic			17.22	NA	8.739	NA NA	7.209
Chloride	250		7.26	NA	79	NA	47.6

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Camden, NJ

Station ID	(A)	(B)	MA-MW-08S	MA-MW-08S	MA-MW-09D	MA-MW-09D	MA-MW-09S
Sample ID	GWQC	MCL	BMA011	BMA011	BMA012	BMA012	BMA013
Sample Date			06/12/2002	06/12/2002	06/19/2002	06/19/2002	06/19/2002
Sample Interval			4 - 14 ft	4 - 14 ft	44 - 54 ft	44 - 54 ft	16 - 26 ft
CLP Sample ID			C2344-2	F13535-2	E2344-5	F13630-2	E2344-6
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		474 (A)	NA NA	326 (A)	NA	310 (A)
Iron, Ferrous			NA NA	3.8	NA	1.6	NA
Nitrogen, Ammonia as N			5.97	NA	4.92	NA	3.69
Nitrogen, Kjeldahl			7.962	NA NA	4.951	NA NA	3.941
Nitrogen, Nitrate as N	10		0.05 U	NA NA	0.32	NA NA	0.115
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	19.7	NA ·	2 U	NA NA
Oxygen Demand, Chemical			NA NA	61.2	· NA	20 U	NA NA
Phosphorus-32			0.627	NA	0.1 U	NA	0.1 U
Solids, Total Dissolved (Residue, Filter			510	NA	484	NA	564
Solids, Total Suspended			45	NA NA	16	NA NA	20.6
Sulfate	250		5 U	NA NA	65	NA NA	95.9
Sulfide			1.56	NA NA	0.5 U	NA NA	0.5 U
		<u> </u>					
General Chemistry - ug/l (ug/L)		<u> </u>					
Ethane			15 U	NA NA	NA NA	· NA	NA .
Ethene			15 U	NA NA	NA NA	NA NA	NA NA
Methane			170	NA	NA	NA	NA
Volatile Organic Compounds (mg/l)							
Ethane			NA I	NA NA	0.04 U	NA NA	3 .
Ethane	· · · · · · · · · · · · · · · · · · ·		NA NA	NA NA	0.04 U	NA NA	3
Ethene			NA NA	NA	2 U	NA NA	0.08 J
Ethene			NA NA	. NA	2 U	NA NA	0.08 J
Methane			NA NA	NA	0.4 U	NA NA	18 J

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

302958

Groundwater - Natural Attenuation Parameter Results

Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09S	CW-07	CW-07	MA-MW-12M	MA-MW-12M
Sample ID	GWQC	MCL	BMA013	BMA014	BMA014	BMA015	BMA015
Sample Date	•		06/19/2002	07/02/2002	07/02/2002	06/18/2002	06/18/2002
Sample Interval			16 - 26 ft	N/A	N/A	38.1 - 48.1 ft	38.1 - 48.1 ft
CLP Sample ID			F13630-3	F13755-1	G2344-1	E2344-1	F13612-4
Chemical Name							
							· · · · · · · · · · · · · · · · · · ·
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	. NA	68	270	NA
Carbon Dioxide			375	159	NA NA	NA NA	340
Carbon, Total Organic			NA NA	NA	5 U	5.771	NA
Chloride	250		NA NA	NA NA	40.9	99.2	NA
Ethane			NA NA	NA NA	NA NA	NA NA	NA
Ethene			NA NA	NA	NA NA	NA NA	. NA
Hardness (As CaCO3)	250		NA	NA NA	122	(A)	NA NA
Iron, Ferrous			0.1 U	2.5 J	NA NA	NA NA	2.6
Methane			NA .	. NA	NA NA	NA NA	NA
Nitrogen, Ammonia as N			NA	NA NA	3.5	2.38	NA
Nitrogen, Kjeldahl			NA	NA	3.782	2.542	NA
Nitrogen, Nitrate as N	10		NA NA	NA	0.16	0.06	NA .
Nitrogen, Nitrite	1		NA	NA NA	0.05 U	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			2 U	19.6 J	NA NA	NA NA	15.6
Oxygen Demand, Chemical			21.1	20 U	NA NA	NA NA	20 U
Phosphorus-32			NA	NA NA	0.1 U	0.9	NA
Solids, Total Dissolved (Residue, Filter			NA	NA NA	204 J	14	NA NA
Solids, Total Suspended			NA NA	NA NA	20.2	314	NA NA
Sulfate	250		NA	NA NA	45.1	78.2	NA NA
Sulfide			NA NA	NA .	0.52	0.5 U	NA
General Chemistry - mg/kg (MG/L)		1					
Carbon, Total Organic			NA .	NA NA	5 U	5.771	NA NA
General Chemistry - mg/l (MG/L)		<u> </u>					
Alkalinity, Total as CaCO3			NA NA	NA NA	68	270	NA NA
Carbon Dioxide			375	159	NA NA	NA NA	340
Carbon, Total Organic			NA NA	NA NA	5 U	5.771	NA NA
Chloride	250		NA NA	NA NA	40.9	99.2	NA NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-09S	CW-07	CW-07	MA-MW-12M	MA-MW-12M
Sample ID	GWQC	MCL	BMA013	- BMA014	BMA014	BMA015	BMA015
Sample Date			06/19/2002	07/02/2002	07/02/2002	06/18/2002	06/18/2002
Sample Interval			16 - 26 ft	N/A	N/A	38.1 - 48.1 ft	38.1 - 48.1 ft
CLP Sample ID			F13630-3	F13755-1	G2344-1	E2344-1	F13612-4
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	NA NA	122	354 (A)	NA
Iron, Ferrous			0.1 U	2.5 J	NA NA	NA NA	2.6
Nitrogen, Ammonia as N			NA NA	NA NA	3.5	2.38	NA
Nitrogen, Kjeldahl			NA .	NA NA	3.782	2.542	NA
Nitrogen, Nitrate as N	10		NA NA	NA NA	0.16	0.06	NA
Nitrogen, Nitrite	1		NA .	NA NA	0.05 U	0.05 U	NA
Oxygen Demand, Biologic Five Day			2 U	19.6 J	NA NA	NA	15.6
Oxygen Demand, Chemical			21.1	20 U	NA NA	NA	20 U
Phosphorus-32			NA	NA NA	0.1 U	0.9	NA
Solids, Total Dissolved (Residue, Filter			NA	NA .	204 J	14	NA NA
Solids, Total Suspended			NA	NA	20.2	314	NA NA
Sulfate	250		NA	NA	45.1	78.2	NA .
Sulfide			NA NA	NA	0.52	0.5 U	NA NA
<u> </u>		<u></u>					
General Chemistry - ug/l (ug/L)		.,					
Ethane			NA NA	NA NA	NA NA	NA NA	NA ·
Ethene		·	. NA	NA NA	NA	NA NA	NA NA
Methane			NA NA	NA NA	NA NA	NA NA	NA NA
	***	<u> </u>					
Volatile Organic Compounds (mg/l)							
Ethane			NA NA	NA NA	1.5 U	0.4 J	NA
Ethane		ļ	NA NA	NA NA	1.5 U	0.4 J	NA NA
Ethene			NA	NA NA	1.5 U	0.3 J	NA NA
Ethene	· · · · · · · · · · · · · · · · · · ·		NA NA	NA NA	1.5 U	0.3 J	NA
Methane	THE	<u> </u>	NA NA	NA NA	0.2 U	8 J	NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-12S	MA-MW-12S	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	BMA016	BMA016	BMA017	BMA017	BMA018
Sample Date		Į	06/18/2002	06/18/2002	06/27/2002	06/27/2002	06/28/2002
Sample Interval			5.4 - 15.4 ft	5.4 - 15.4 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			E2344-2	F13612-5	E2344-14	F13728-1	E2344-15
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			414	NA NA	274 J	. NA	1150
Carbon Dioxide			NA NA	513	., NA	258	NA NA
Carbon, Total Organic			24.36	NA	5 U	. NA	1427
Chloride	250		64.8	NA NA	131	NA NA	125
Ethane			NA NA	NA NA	NA NA	NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Hardness (As CaCO3)	250		536 (A)	NA NA	328 (A)	NA	1220 (A)
Iron, Ferrous			NA NA	2.4	NA NA	3.7 J	NA NA
Methane			, NA	NA	NA NA	NA NA	NA .
Nitrogen, Ammonia as N			7.01	NA NA	0.448	NA NA	64.2
Nitrogen, Kjeldahl			3.936	. NA	0.4634	NA NA	134
Nitrogen, Nitrate as N	10		0.07	NA NA	0.05 U	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA -	4.42:U 4. (A)
Oxygen Demand, Biologic Five Day			NA NA	4.6	NA NA	2 UJ	NA NA
Oxygen Demand, Chemical			. NA	79.2	NA	20 U	NA NA
Phosphorus-32			1.295	NA NA	0.1 U	NA NA	0.468 U
Solids, Total Dissolved (Residue, Filter			827	· NA	571	NA NA	2490
Solids, Total Suspended			100	NA	53.3	NA	114
Sulfate	250		232	NA	88.4	NA NA	24.6
Sulfide			0.96 U	NA NA	0.52 U	NA NA	17.6
General Chemistry - mg/kg (MG/L)		1				·····	
Carbon, Total Organic		1	24.36	NA NA	5 U	NA NA	1427
			20				
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			414	NA NA	274 J	NA .	1150
Carbon Dioxide			NA NA	513	NA NA	258	NA
Carbon, Total Organic			24.36	NA NA	5 U	NA	1427
Chloride	250		64.8	NA	131	NA NA	. 125

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	. (A)	(B)	MA-MW-12S	MA-MW-12S	MA-MW-13M	MA-MW-13M	MA-MW-13S
Sample ID	GWQC	MCL	BMA016	BMA016	BMA017	BMA017	BMA018
Sample Date			06/18/2002	06/18/2002	06/27/2002	06/27/2002	06/28/2002
Sample Interval			5.4 - 15.4 ft	5.4 - 15.4 ft	48.35 - 58.35 ft	48.35 - 58.35 ft	6.6 - 16.6 ft
CLP Sample ID			E2344-2	F13612-5	E2344-14	F13728-1	E2344-15
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		536 (A)	NA	328 (A)	NA	1220) (A)
Iron, Ferrous			NA NA	2.4	NA NA	3.7 J	NA NA
Nitrogen, Ammonia as N			7.01	NA	0.448	NA NA	64.2
Nitrogen, Kjeldahl			3.936	NA NA	0.4634	NA_	134
Nitrogen, Nitrate as N	10		0.07	NA NA	0.05 U	NA.	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05. U	NA NA	4.42° J (A)
Oxygen Demand, Biologic Five Day			NA NA	4.6	NA	2 ŲJ	NA NA
Oxygen Demand, Chemical			NA NA	79.2	NA NA	20 U	NA NA
Phosphorus-32			1.295	NA	0.1 U	NA	0.468 U
Solids, Total Dissolved (Residue, Filter			827	NA NA	571	NA NA	2490
Solids, Total Suspended			100	NA	53.3	NA NA	114
Sulfate	250		232	NA NA	88.4	NA	24.6
Sulfide			0.96 U	NA NA	0.52 U	NA	17.6
General Chemistry - ug/l (ug/L)			- 10				
Ethane			NA .	NA	NA NA	NA NA	NA
Ethene			NA NA	NA NA	NA NA	NA .	NA NA
Methane			NA NA	NA NA	NA.	NA	NA NA
Volatile Organic Compounds (UG/L))	I					
Ethane			5 J	NA	0.8 J	NA NA	75 U
Ethane	-		5 J	NA	0.8 J	NA	75 U
Ethene			6 J	NA	0.04 J	NA NA	75 U
Ethene			6 J	NA	0.04 J	NA NA	75 U
Methane			31 J	NA	13	NA NA	160

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Station ID	(A)	(B)	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	BMA018	BMA019	BMA019	BMA020	BMA020
Sample Date		·	06/28/2002	06/18/2002	06/18/2002	06/18/2002	06/18/2002
Sample Interval			6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			F13728-2	E2344-3	F13612-6	C2344-17	F13612-1
Chemical Name						,	
				·			
General Chemistry (MG/L)		<u> </u>					·
Alkalinity, Total as CaCO3			NA .	14	NA .	124	NA
Carbon Dioxide			1050	NA NA	52.8	NA NA	172
Carbon, Total Organic			NA NA	5 U	NA NA	5 U_	NA
Chloride	250		NA NA	20	NA .	116	NA
Ethane			NA NA	NA NA	NA NA	1 J	NA
Ethene			NA NA	NA NA	NA NA	0.08 J	NA
Hardness (As CaCO3)	250		NA NA	30	_NA	80	NA
Iron, Ferrous			7.4 J	_NA	1.4	NA	2.5
Methane			NA NA	NA NA	NA.	5	NA
Nitrogen, Ammonia as N			NA NA	1.16	NA NA	3.93	NA .
Nitrogen, Kjeldahl			NA NA	1.061	NA .	4.124	NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA NA	0.05 U	NA NA
Nitrogen, Nitrite	11	<u> </u>	NA .	0.05 U	NA_	0.05 U	NA
Oxygen Demand, Biologic Five Day			· 72 R	NA NA	2 U	NA	2 U
Oxygen Demand, Chemical			2260	NA NA	20 U	NA NA	20 U
Phosphorus-32			NA NA	0.1 U	NA NA	0.1_U	NA
Solids, Total Dissolved (Residue, Filter		·	NA NA	110	. NA	385	NA
Solids, Total Suspended			NA .	46	NA NA	34	NA NA
Sulfate	250		NA NA	17.3	NA NA	10.3	NA
Sulfide			NA NA	0.5 U	_NA	0.5_U	NA
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic	·	<u> </u>	NA NA	5 U	NA NA	5 U	NA NA
Carbon, Total Organic			100	3 0	140	3 0	147
General Chemistry - mg/l (MG/L)		·					
Alkalinity, Total as CaCO3			NA NA	14	NA NA	124	NA
Carbon Dioxide			1050	NA	52.8	NA_	172
Carbon, Total Organic			NA NA	5 U	NA NA	5 U	NA NA
Chloride	250	<u></u>	NA NA	20	. NA	116	NA_

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-13S	MA-MW-14D	MA-MW-14D	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	BMA018	BMA019	BMA019	BMA020	BMA020
Sample Date			06/28/2002	06/18/2002	06/18/2002	06/18/2002	06/18/2002
Sample Interval			6.6 - 16.6 ft	170 - 188 ft	170 - 188 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			F13728-2	E2344-3	F13612-6	C2344-17	F13612-1
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA NA	30	NA NA	80	NA_
Iron, Ferrous			7.4 J	NA	1.4	NA	2.5
Nitrogen, Ammonia as N			NA	1.16	NA NA	3.93	NA NA
Nitrogen, Kjeldahl			NA NA	1.061	. NA	4.124	NA NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA NA	0.05 U	NA NA
Nitrogen, Nitrite	1		NA .	0.05 U	NA NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			72 R	NA	2 U	NA NA	2 U
Oxygen Demand, Chemical			2260	NA NA	20 U	NA NA	20 U
Phosphorus-32			NA	0.1 U	NA NA	0.1 U	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	110	NA NA	385	NA NA
Solids, Total Suspended			NA.	46	NA NA	34	NA NA
Sulfate	250		NA	17.3	NA NA	10.3	NA NA
Sulfide			NA NA	0.5 U	NA NA	0.5 U	NA NA
General Chemistry - ug/l (ug/L)							
Ethane			NA	NA NA	NA NA	1 J	NA NA
Ethene			NA NA	NA NA	NA NA	0.08 J	NA NA
Methane			NA NA	· NA	NA NA	5	NA NA
	·						
Volatile Organic Compounds (mg/l)							
Ethane			NA NA	0.04 UJ	NA	NA NA	NA
Ethane			NA NA	0.04 UJ	NA NA	NA NA	NA
Ethene			NA NA	0.04 J	NA NA	NA NA	NA
Ethene			NA NA	0.04 J	NA NA	NA NA	NA
Methane		<u> </u>	NA NA	2 J	NANA	NA NA	NA NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

302964

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15S
Sample ID	GWQC	MCL	BMA021	BMA021	BMA022	BMA022	BMA023
Sample Date			06/18/2002	06/18/2002	06/19/2002	06/19/2002	06/19/2002
Sample Interval			7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.8 - 16.8 ft
CLP Sample ID			C2344-18	F13612-2	E2344-8	F13630-5	E2344-9
Chemical Name							
	,	· · · · · · · · · · · · · · · · · · ·					
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			392	NA	174	. NA	1050
Carbon Dioxide			NA NA	445	NA NA	262	NA
Carbon, Total Organic			13.52	NA	5.131	NA NA	30.82
Chloride	250		55.6	NA NA	98.6	NA	27.2
Ethane			0.4 J	NA	NA	NA	NA NA
Ethene			0.06 J	NA	NA NA	NA	NA
Hardness (As CaCO3)	250		450 (A)	NA	320 (A)	NA NA	920 (A)
Iron, Ferrous			NA NA	0.21	. NA .	1.9	NA NA
Methane			2 U	NA NA	NA NA	NA	. NA
Nitrogen, Ammonia as N			2.43	NA NA	3.51	. NA	3.32
Nitrogen, Kjeldahl			3.018	NA	3.482	NA	5.147
Nitrogen, Nitrate as N	10		0.055	NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	· NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	2 U	NA	2_U	NA
Oxygen Demand, Chemical			NA	42.2	NA .	20_U	NA
Phosphorus-32			0.465	NA	1.562	NA	0.76
Solids, Total Dissolved (Residue, Filter			648	NA	406	NA NA	1080
Solids, Total Suspended			16.9 J	NA NA	16.7	NA NA	46
Sulfate	250		124	NA NA	45.6	NA	8.6
Sulfide			1.36	NA	0.5 U	NA NA	1.12
Canaral Chamletey, malks (MC/I)							
General Chemistry - mg/kg (MG/L)		<u></u>	13.52	NΙΛ	5 121	NA NA	30.82
Carbon, Total Organic			13.52	NA	5.131	IVA	30.02
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			392	NA NA	174	NA NA	1050
Carbon Dioxide			NA NA	445	NA NA	262	NA
Carbon, Total Organic			13.52	NA NA	5.131	NA	30.82
Chloride	250		55.6	NA	98.6	NA	27.2

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Table G.15 Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-14S	MA-MW-14S	MA-MW-15M	MA-MW-15M	MA-MW-15S
Sample ID	GWQC	MCL	BMA021	BMA021	BMA022	BMA022	BMA023
Sample Date			06/18/2002	06/18/2002	06/19/2002	06/19/2002	06/19/2002
Sample Interval			7 - 20 ft	7 - 20 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.8 - 16.8 ft
CLP Sample ID	4		C2344-18	F13612-2	E2344-8	F13630-5	E2344-9
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		450 ÷ (A)	NA	320 (A)	NA .	920 (A)
Iron, Ferrous			NA.	0.21	NA NA	1.9	NA
Nitrogen, Ammonia as N			2.43	NA	3.51	NA NA	3.32
Nitrogen, Kjeldahl			3.018	NA	3.482	NA NA	5.147
Nitrogen, Nitrate as N	10		0.055	NA	0.05 U	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	2 U	, NA	2 U	NA_
Oxygen Demand, Chemical	1.0		NA NA	42.2	NA NA	20 U	NA_
Phosphorus-32			0.465	NA	1.562	NA NA	0.76
Solids, Total Dissolved (Residue, Filter			648	NA	406	NA	1080
Solids, Total Suspended			16.9 J	NA	16.7	NA .	46
Sulfate	250		124	NA	45.6	NA	8.6
Sulfide			1.36	NA	0.5 U	NA	1.12
General Chemistry - ug/l (ug/L)							
Éthane			0.4 J	NA	NA NA	NA NA	NA_
Ethene			0.06 J	NA	NA	NA NA	NA NA
Methane			2 U	NA	NA	NA	NA
Volatile Organic Compounds (UG/L	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>				
Ethane	· · · · · · · · · · · · · · · · · · ·	T	NA NA	. NA	2	NA NA	0.8 U
Ethane			NA NA	NA	2	NA NA	0.8 U
Ethene			NA NA	NA	0.2 J	NA	15 U
Ethene			NA NA	NA	0.2 J	NA NA	15 U
Methane			NA NA	NA NA	25	NA NA	110

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-15S	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M
Sample ID	GWQC	MCL	BMA023	BMA024	BMA024	BMA025	BMA025
Sample Date			06/19/2002	06/27/2002	06/27/2002	06/14/2002	06/14/2002
Sample Interval			6.8 - 16.8 ft	6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft
CLP Sample ID			F13630-6	E2344-17	F13728-4	C2344-9	F13586-1
Chemical Name			<u> </u>		······································		
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	890	NA	228	NA
Carbon Dioxide			969	NA NA	926	NA _	222
Carbon, Total Organic			NA	26.16	NA .	5 U	NA .
Chloride	250		NA NA	43.9	NA .	93.8	NA
Ethane			NA NA	NA.	NA NA	0.8 J	NA
Ethene			NA NA	NA	NA	2 U	NA .
Hardness (As CaCO3)	250		NA NA	796 · · · (A)	NA NA	294 (A)	NA
Iron, Ferrous			0.1 U_	NA	1.1 J	NA NA	0.1 UJ
Methane			NA NA	NA	NA	8	NA _
Nitrogen, Ammonia as N			NA	20	NA	0.876	NA NA
Nitrogen, Kjeldahl			NA	22.3	NA .	1.061	NA .
Nitrogen, Nitrate as N	10		NA NA	0.05 U	. NA	0.07	NA NA
Nitrogen, Nitrite	1		NA NA	0.05 U	NA	0.05 U	NA .
Oxygen Demand, Biologic Five Day			7.1	NA_	19.2 J	. NA	5 UJ
Oxygen Demand, Chemical			85.1	NA	82.5	NA	20 U
Phosphorus-32			NA_	1.222	NANA	1.808	NA NA
Solids, Total Dissolved (Residue, Filter			NA	1040	NA NA	492	NA ·
Solids, Total Suspended			NA NA	68	NA	743	NA
Sulfate	250		NA NA	118	NA	80.2	NA
Sulfide			NA .	2.52	NA NA	. 0.5 U	NA
General Chemistry - mg/kg (MG/L)	· · · · · · · · · · · · · · · · · · ·	L					
Carbon, Total Organic			NA	26.16	NA NA	5 U	NA NA
General Chemistry, mail (MC/I)		<u> </u>					
General Chemistry - mg/l (MG/L)		<u> </u>	NA NA	890	A1A	228	NA
Alkalinity, Total as CaCO3				 	NA NA		
Carbon Dioxide		<u> </u>	969	NA NA	926	NA .	222
Carbon, Total Organic	250		NA NA	26.16	NA NA	5 U	NA NA
Chloride	250	L	NA	43.9	NA	93.8	NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-15S	MA-MW-16S	MA-MW-16S	MA-MW-17M	MA-MW-17M
Sample ID	GWQC	MCL	BMA023	BMA024	BMA024	BMA025	BMA025
Sample Date			06/19/2002	06/27/2002	06/27/2002	06/14/2002	06/14/2002
Sample Interval			6.8 - 16.8 ft	6.5 - 16.5 ft	6.5 - 16.5 ft	41.82 - 51.82 ft	41.82 - 51.82 ft
CLP Sample ID			F13630-6	E2344-17	F13728-4	C2344-9	F13586-1
Chemical Name							
		·					
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	796 (A)	NA	294 (A)	NA NA
Iron, Ferrous			0.1 U	NA NA	1.1 J	NA NA	0.1 UJ
Nitrogen, Ammonia as N			NA	20	NA	0.876	NA
Nitrogen, Kjeldahl			NA	22.3	NA	1.061	NA
Nitrogen, Nitrate as N	10		NA	0.05 U	NA	0.07	NA
Nitrogen, Nitrite	11_		NA .	0.05 U	N A	0.05 U	NA
Oxygen Demand, Biologic Five Day			7.1	NA NA	19.2 J	NA NA	5 UJ
Oxygen Demand, Chemical			85.1	NA NA	82.5	NA NA	20 U
Phosphorus-32			NA NA	1.222	NA	1.808	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	1040	NA NA	492	NA
Solids, Total Suspended			NA NA	68	NA .	743	NA
Sulfate	250		NA NA	118	NA NA	80.2	NA .
Sulfide			NA NA	2.52	NA NA	0.5 U	NA
·		<u> </u>					
General Chemistry - ug/l (ug/L)							
Ethane			NA	NA NA	NA NA	0.8 J	NA
Ethene			NA	NA .	NA	2 U	NA NA
Methane			NA NA	NA NA	NA	8	NA NA
Volatile Organic Compounds (mg/l)	<u> </u>						
Ethane			NA	10 UJ	NA NA	NA	NA NA
Ethane			NA NA	10 UJ	NA	NA NA	NA NA
Ethene			NA NA	150 UJ	NA NA	NA NA	NA
Ethene			NA NA	150 UJ	NA NA	NA NA	NA .
Methane		<u> </u>	. NA	520 J	NA NA	NA	NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17S	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18M
Sample ID	GWQC	MCL	BMA026	BMA026	BMA027	BMA027	BMA028
Sample Date			06/14/2002	06/14/2002	06/17/2002	06/17/2002	06/17/2002
Sample Interval			8 - 18 ft	8 - 18 ft	140 - 152 ft	140 - 152 ft	31.77 - 41.77 ft
CLP Sample ID			C2344-10	F13586-2	C2344-11	F13591-1	C2344-12
Chemical Name	·						
	· · · · ·			:			
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			256	NA NA	50	NA NA	280
Carbon Dioxide			NA NA	277	NA NA	51.8	NA
Carbon, Total Organic			5 U	NA NA	5 U	NA NA	5 U
Chloride	250		29.4	NA	18.5	NA NA	56.2
Ethane			2 U	NA	0.06 J	NA	0.4 J
Ethene			2 U	NA	2 U	NA NA	0.2 J
Hardness (As CaCO3)	250		332 (A)	NA NA	80	NA NA	#4#3645 (A)
Iron, Ferrous			NA NA	0.1 UJ	NA	0.17	NA
Methane			2 U	NA	3	NA NA	26
Nitrogen, Ammonia as N	·		0.18	NA	1.41	NA NA	1.79
Nitrogen, Kjeldahl			0.4405	NA	1.329	NA NA	1.983
Nitrogen, Nitrate as N	10		4.8	NA NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	2 UJ	NA NA	2 U	NA NA
Oxygen Demand, Chemical			NA NA	20 U	NA	20 U	NA
Phosphorus-32			0.1 U	NA	0.1 U	NA NA	0.138
Solids, Total Dissolved (Residue, Filter			445	NA NA	140	NA NA	469
Solids, Total Suspended			1.4	NA NA	138	NA NA	40
Sulfate	250		72.8	NA NA	24.3	NA NA	61.2
Sulfide			0.5 U	NA NA	0.52	NA NA	0.5 U
		<u> </u>					
General Chemistry - mg/kg (MG/L)		·					
Carbon, Total Organic			5 U	NA	5 U	NA NA	5 U
		<u> </u>					
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			256	NA NA	50	NA NA	280
Carbon Dioxide			NA NA	277	NA NA	51.8	NA NA
Carbon, Total Organic			5 U	NA	5 U	NA NA	5 U
Chloride	250		29.4	NA NA	18.5	NA NA	56.2

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-17S	MA-MW-17S	MA-MW-18D	MA-MW-18D	MA-MW-18M
Sample ID	GWQC	MCL	BMA026	BMA026	BMA027	BMA027	BMA028
Sample Date			06/14/2002	06/14/2002	06/17/2002	06/17/2002	06/17/2002
Sample Interval			8 - 18 ft	8 - 18 ft	140 - 152 ft	140 - 152 ft	31.77 - 41.77 ft
CLP Sample ID			C2344-10	F13586-2	C2344-11	F13591-1	C2344-12
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		*****************************(A).	NA	80	NA NA	364 (A)
Iron, Ferrous			NA	0.1 UJ	NA NA	0.17	NA
Nitrogen, Ammonia as N			0.18	NA NA	1.41	NA	1.79
Nitrogen, Kjeldahl			0.4405	NA	1.329	NA ·	1.983
Nitrogen, Nitrate as N	10		4.8	NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	11		0.05 U	NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA	2 UJ	NA	2 U	NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	20 U	NA NA
Phosphorus-32			0.1 U	NA	0.1 U	NA NA	0.138
Solids, Total Dissolved (Residue, Filter			445	.NA	140	NA NA	469
Solids, Total Suspended			1.4	NA NA	138	NA NA	. 40
Sulfate	250		72.8	. NA	24.3	NA NA	61.2
Sulfide			0.5 U	NA NA	0.52	NA NA	0.5 U
<u> </u>		<u> </u>		·		<u> </u>	
General Chemistry - ug/l (ug/L)		·					
Ethane		<u> </u>	2 U	NA NA	0.06 J	NA NA	0.4 J
Ethene		<u> </u>	2 U	NA NA	2 U	NA NA	0.2 J
Methane		 	2 U	NA	3	NA NA	26
Volatile Organic Compounds (UG/L)		1				·	
Ethane			NA NA	NA	NA NA	NA NA	NA NA
Ethane			NA NA	NA	NA NA	NA NA	NA NA
Ethene			NA NA	NA	NA .	NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Methane			NA:	NA NA	NA NA	NA NA	NA NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

⁽A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M
Sample ID	GWQC	MCL	BMA028	BMA029	BMA029	BMA030	BMA030
Sample Date			06/17/2002	06/17/2002	06/17/2002	06/17/2002	06/17/2002
Sample Interval			31.77 - 41.77 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			F13591-2	C2344-13	F13591-3	C2344-14	F13591-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA.	460	NA NA	180	NA ·
Carbon Dioxide			350	NA NA	472	NA NA	192
Carbon, Total Organic			NA.	5 U	NA	5 U	NA NA
Chloride	250		NA NA	65.5	NA	2 U	NA .
Ethane			NA NA	- 13 J	NA	0.3 J	NA NA
Ethene			NA NA	75 U	NA	0.2 J	NA
Hardness (As CaCO3)	250		· NA	450 (A)	NA .	230	. NA
Iron, Ferrous			3.2	NA	0.98	NA NA	2.4
Methane			NA NA	480	NA NA	33	NA
Nitrogen, Ammonia as N			NA NA	3.82	NA	0.419	NA NA
Nitrogen, Kjeldahl			NA NA	4.327	NA NA	0.4825	NA NA
Nitrogen, Nitrate as N	10		NA	0.05 U	NA	0.05 U	NA NA
Nitrogen, Nitrite	11		NA	0.05 U	NA	0.05 U	NA.
Oxygen Demand, Biologic Five Day			2 U	NA NA	2 U	NA NA	2 U
Oxygen Demand, Chemical			20_U	NA NA	44.9	NA NA	20 U
Phosphorus-32			NA	0.505	NA	0.1 U	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	573	NA	335	NA .
Solids, Total Suspended			NA NA	81	NA NA	62	NA NA
Sulfate	250		NA .	5 U	NA	5 U	NA NA
Sulfide			NA NA	0.6	NA	0.5 U	NA .
						<u> </u>	
General Chemistry - mg/kg (MG/L)			 	 			ļ
Carbon, Total Organic			NA NA	5 U	NA	5 U	NA NA
General Chemistry - mg/l (MG/L)				 			
Alkalinity, Total as CaCO3			NA	460	NA	180	NA .
Carbon Dioxide			350	NA	472	NA NA	192
Carbon, Total Organic			NA NA	5 U	NA	5 U	NA NA
Chloride	250		NA NA	65.5	NA NA	- 2 U	NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Table G.15 Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18S	MA-MW-18S	MA-MW-19M	MA-MW-19M
Sample ID	GWQC	MCL	BMA028	BMA029	BMA029	BMA030	BMA030
Sample Date			06/17/2002	06/17/2002	06/17/2002	06/17/2002	06/17/2002
Sample Interval			31.77 - 41.77 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			F13591-2	C2344-13	F13591-3	C2344-14	F13591-4
Chemical Name							
		<u> </u>					
General Chemistry - mg/l (MG/L)		1		200 act remains and have a week to the area follows to the respective by the fill			
Hardness (As CaCO3)	250		NA .	450 (A)	NA NA	230	NA NA
Iron, Ferrous			3.2	NA NA	0.98	NA NA	2.4
Nitrogen, Ammonia as N		<u> </u>	NA NA	3.82	NA NA	0.419	NA NA
Nitrogen, Kjeldahl			NA NA	4.327	NA	0.4825	NA NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA	0.05 U	NA NA
Nitrogen, Nitrite	1		NA	0.05 U	NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			2 U	NA NA	2 U	NA	2 U
Oxygen Demand, Chemical			20 U	NA NA	44.9	NA	20 U
Phosphorus-32			NA	0.505	NA	0.1 U	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	573	NA	335	NA NA
Solids, Total Suspended			NA	81	NA	62	NA NA
Sulfate	250		NA	5 U	NA	5 U	NA NA
Sulfide			NA NA	0.6	NA .	0.5 U	NA NA
General Chemistry - ug/l (ug/L)							
Ethane		T:	NA NA	13 J	NA NA	0.3 J	NA.
Ethene			NA NA	75 U	NA NA	0.2 J	NA NA
Methane			NA NA	480	NA NA	33	NA NA
Volatile Organic Compounds (mg/i)							
Ethane		1	NA NA	NA NA	NA	NA NA	NA NA
Ethane	· · · · · · · · · · · · · · · · · · ·		NA NA	NA NA	NA NA	NA NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA .
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Methane			NA ·	NA I	NA NA	NA NA	NA NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19S	MA-MW-19S	MA-MW-20D	MA-MW-20D	MA-MW-20M
Sample ID	GWQC	MCL	BMA031	BMA031	BMA032	BMA032	BMA033
Sample Date			06/17/2002	06/17/2002	06/13/2002	06/13/2002	06/13/2002
Sample Interval			5.05 - 15.05 ft	5.05 - 15.05 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft
CLP Sample ID			C2344-15	F13591-5	C2344-5	F13568-1	C2344-7
Chemical Name						···	
							·
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			400	NA NA	10 U	NA	374
Carbon Dioxide			NA	382	. NA	48.7	NA_
Carbon, Total Organic			5 U	NA	5 U	NA	6.843
Chloride	250		86.6	. NA	2230° (A)	NA	84.6
Ethane			75 U	NA	2 U	NA NA	1 J
Ethene			75 U	NA	2 U	NA	2 U
Hardness (As CaCO3)	250		362 (A)	NA	616 (A)	NA	380 (A)
Iron, Ferrous			NA NA	0.24	NA NA	15.3	NA
Methane			620	NA NA	2 U	NA NA	22
Nitrogen, Ammonia as N			11.7	NA	6.4	NA NA	6.38
Nitrogen, Kjeldahl			12.41	NA NA	6.591	NA NA	8.723
Nitrogen, Nitrate as N	10		0.05 U	NA NA	0.05 U	NA	0.055
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	7.5	NA NA	8	NA NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	42.6	NA
Phosphorus-32			0.616	NA	0.1 U	NA .	0.1 U
Solids, Total Dissolved (Residue, Filter			566	NA	3520	NA	600
Solids, Total Suspended			25	NA	39	NA	103
Sulfate	250		52.4	NA	67.1	NA	53.3
Sulfide		·	0.78	NA	0.76	NA NA	0.5 U
							<u> </u>
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			5 U	NA NA	5 U	NA	6.843
General Chemistry - mg/l (MG/L)	· · · · · · · · · · · · · · · · · · ·		100		40.11		074
Alkalinity, Total as CaCO3			400	NA NA	10 U	NA NA	374
Carbon Dioxide			NA .	382	NA .	48.7	NA NA
Carbon, Total Organic			5 U	NA	5 U	NA NA	6.843
Chloride	250	<u> </u>	86.6	NA	2230 ZZZ(A)	NA	84.6

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19S	MA-MW-19S	MA-MW-20D	MA-MW-20D	MA-MW-20M
Sample ID	GWQC	MCL	BMA031	BMA031	BMA032	BMA032	BMA033
Sample Date	•		06/17/2002	06/17/2002	06/13/2002	06/13/2002	06/13/2002
Sample Interval			5.05 - 15.05 ft	5.05 - 15.05 ft	123 - 133 ft	123 - 133 ft	42 - 52 ft
CLP Sample ID			C2344-15	F13591-5	C2344-5	F13568-1	C2344-7
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		3624 mi_ (A)	NA	616 (A)	NA	380 (A)
Iron, Ferrous			NA NA	0.24	NA NA	15.3	NA
Nitrogen, Ammonia as N			11.7	NA NA	6.4	NA NA	6.38
Nitrogen, Kjeldahl			12.41	NA	6.591	NA	8.723
Nitrogen, Nitrate as N	10		0.05 U	NA	0.05 U	NA	0.055
Nitrogen, Nitrite	. 1		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA .	7.5	NA NA	8	NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	42.6	NA
Phosphorus-32			0.616	NA NA	0.1 U	NA	0.1 U
Solids, Total Dissolved (Residue, Filter			566	NA NA	3520	NA	600
Solids, Total Suspended			25	NA NA	39	NA	103
Sulfate	250		52.4	NA NA	67.1	NA	53.3
Sulfide	··-		0.78	NA	0.76	NA NA	0.5 U
General Chemistry - ug/l (ug/L)		· · ·					
Ethane			75 U	NA NA	2 U	NA	1 J
Ethene			75 U	NA NA	2 U	NA	2 U
Methane			620	NA NA	2 U	NA	22
	·	<u> </u>					
Volatile Organic Compounds (mg/l)							
Ethane			NA NA	NA NA	NA I	NA	NA NA
Ethane			NA NA	NA NA	NA	NA NA	NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA
Ethene			NA NA	NA NA	NA NA	NA	NA NA
Methane	<u></u>		NA NA	NA NA	NA NA	NA NA	NA .

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	BMA033	BMA034	BMA034	BMA035	BMA035
Sample Date			06/13/2002	06/13/2002	06/13/2002	06/13/2002	06/13/2002
Sample Interval			42 - 52 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID			F13568-3	C2344-6	F13568-2	C2344-8	F13568-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA	10 U	NA ·	226	NA
Carbon Dioxide			436	NA	135	NA NA	251
Carbon, Total Organic			NA NA	5 U	NA .	5 U	NA
Chloride	250		NA		NA	101	NA
Ethane			NA .	0.8 J	NA NA	. 2 U	NA NA
Ethene			NA	0.1 J	NA	2 U	NA
Hardness (As CaCO3)	250		. NA	460 (A)	NA	340 (A)	NA NA
Iron, Ferrous			1.8	NA	15.8	NA	NA NA
Methane			NA	17	NA	2 U	NA NA
Nitrogen, Ammonia as N			NA	5.48	NA	0.1 U	- NA
Nitrogen, Kjeldahl			NA NA	5.956	NA	0.953	NA NA
Nitrogen, Nitrate as N	10		NA	0.05 U	NA	7.03	NA
Nitrogen, Nitrite	1		NA	0.05 U	NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			4.8 U	NA NA	7.3 <u>U</u>	NA NA	2 U
Oxygen Demand, Chemical		<u> </u>	23.9	NA .	42.6	NA NA	20 U
Phosphorus-32			NA NA	0.1 U	NA	0.946	NA -
Solids, Total Dissolved (Residue, Filter			NA	2810	NA	503	, NA
Solids, Total Suspended			NA	51	NA	592	NA NA
Sulfate	250		NA	63.4	NA	57.9	NA NA
Sulfide			NA .	0.6	NA	0.5 U	NA .
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	5 U	NA NA	5 U	NA .
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3		·	NA	10 U	NA	226	NA NA
Carbon Dioxide			436	NA NA	135	NA NA	251
Carbon, Total Organic			NA NA	5 U	NA NA	5 U	NA NA
Chloride	250		NA_	1610 (A)	NA	101	NA NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Camden, NJ

Station ID	(A)	(B)	MA-MW-20M	MA-MW-20R	MA-MW-20R	MA-MW-20S	MA-MW-20S
Sample ID	GWQC	MCL	BMA033	BMA034	BMA034	BMA035	BMA035
Sample Date			06/13/2002	06/13/2002	06/13/2002	06/13/2002	06/13/2002
Sample Interval			42 - 52 ft	113 - 123 ft	113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft
CLP Sample ID			F13568-3	C2344-6	F13568-2	C2344-8	F13568-4
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	460 (A)	NA .	340 - (A)	NA
Iron, Ferrous			1.8	NA	15.8	NA NA	NA
Nitrogen, Ammonia as N			NA .	5.48	NA NA	0.1 U	NA .
Nitrogen, Kjeldahl			NA NA	5.956	NA .	0.953	NA
Nitrogen, Nitrate as N	10		NA .	0.05 U	NA	7.03	NA
Nitrogen, Nitrite	1		NA.	0.05 U	NA	0.05 U	NA .
Oxygen Demand, Biologic Five Day			4.8 U	NA	7.3 U	NA NA	2 U
Oxygen Demand, Chemical			23.9	NA	42.6	NA NA	20 U
Phosphorus-32			NA .	0.1 U	NA	0.946	NA
Solids, Total Dissolved (Residue, Filter			NA NA	2810	· NA	503	NA
Solids, Total Suspended			NA NA	51	.NA	592	NA NA
Sulfate	250		NA NA	63.4	NA .	57.9	NA NA
Sulfide			NA NA	0.6	NA NA	0.5 U	NA NA
Consequence of the second seco		I					
General Chemistry - ug/l (ug/L) Ethane		i	NA NA	0.8 J	NA NA	2 U	NA
Ethene		 	NA NA	0.8 J	NA NA	2 U	NA NA
Methane			NA NA	17	NA NA	2 U	NA NA
Wethane			I IVA	17	IVA	2.0	· IVA
Volatile Organic Compounds (mg/l)		· · · · · · · · · · · · · · · · · · ·			***************************************		
Ethane			NA NA	NA NA	NA .	NA NA	NA
Ethane			NA	NA .	NA	NA NA	NA
Ethene			NA	NA	NA	NA NA	NA
Ethene			NA	NA NA	NA	NA NA	NA
Methane			NA NA	NA	NA	NA NA	NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20S	MA-MW-21S	MA-MW-21S	MA-MW-21S	MA-MW-22S
Sample ID	GWQC	MCL	BMA035	BMA036	BMA036	BMA036-D	BMA037
Sample Date]	06/13/2002	06/12/2002	06/12/2002	06/12/2002	06/12/2002
Sample Interval			7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			F13586-4	C2344-3	F13535-3	WG18087-3	C2344-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	434	NA NA	NA .	198
Carbon Dioxide			· NA	. NA	448	NA NA	NA NA
Carbon, Total Organic			NA .	11.24	NA	NA NA	5.225
Chloride	250		NA	91.5	NA	NA .	99.4
Ethane			NA NA	2. U	NA NA	NA NA	2 U
Ethene			NA NA	2 U	NA .	NA NA	2 U
Hardness (As CaCO3)	250		NA NA	414 (A)	NA	NA NA	310 at 1. (A)
Iron, Ferrous			0.1 U	NA	0.2	NA NA	NA NA
Methane			NA NA	2 U	NA	NA	. 1
Nitrogen, Ammonia as N			NA	0.644	NA	NA	0. <u>1 U</u>
Nitrogen, Kjeldahl			NA .	0.9358	NA NA	NA	1.191
Nitrogen, Nitrate as N	10		NA .	0.05 U	.NA	NA .	3.17
Nitrogen, Nitrite	1		NA	0.05 U	NA	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	NA	2 U	NA NA	NA NA
Oxygen Demand, Chemical			NA NA	NA	20 U	NA NA	NA
Phosphorus-32			NA	0.282	NA NA	NA NA	1.136
Solids, Total Dissolved (Residue, Filter			NA	648	NA NA	661	510
Solids, Total Suspended			NA NA	130	NA	145	1610
Sulfate	250		NA NA	29.1	NA	NA NA	65.2
Sulfide			NA NA	0.6	NA	NA NA	0.5 U
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	11.24	NA	. NA	5.225
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			NA NA	434	NA .	NA NA	198
Carbon Dioxide			NA NA	NA NA	448	NA NA	NA NA
Carbon, Total Organic			NA NA	11.24	NA.	NA NA	5.225
Chloride	250		NA NA	91.5	NA	NA	99.4

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20S	MA-MW-21S	MA-MW-21S	MA-MW-21S	MA-MW-22S
Sample ID	GWQC	MCL	BMA035	BMA036	BMA036	BMA036-D	BMA037
Sample Date			06/13/2002	06/12/2002	06/12/2002	06/12/2002	06/12/2002
Sample Interval			7.9 - 17.9 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			F13586-4	C2344-3	F13535-3	WG18087-3	C2344-4
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA NA	414 (A)	NA NA	NA NA	310 Table (A)
Iron, Ferrous			0.1 U	NA NA	0.2	NA	NA
Nitrogen, Ammonia as N			NA .	0.644	NA .	NA NA	0.1 U
Nitrogen, Kjeldahl			NA	0.9358	NA	NA	1,191
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA	NA	3.17
Nitrogen, Nitrite	11		NA NA	0.05 U	NA	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	NA	2 U	NA	NA NA
Oxygen Demand, Chemical			NA NA	NA NA	20 U	NA NA	NA
Phosphorus-32			NA NA	0.282	NA	NA NA	1.136
Solids, Total Dissolved (Residue, Filter			NA NA	648	NA .	661	510
Solids, Total Suspended			NA	130	NA	145	1610
Sulfate	250		NA	29.1	NA	NA	65.2
Sulfide			NA NA	0.6	NA	NA NA	0.5 U
General Chemistry - ug/l (ug/L)							
Ethane			NA NA	2 U.	NA NA	· · NA	2 U
Ethene	· · · · · · · · · · · · · · · · · · ·		NA NA	2 U	NA NA	NA NA	2 U
Methane			NA	2 U	NA NA	NA NA	1
Volatile Organic Compounds (mg/l)							
Ethane			NA NA	NA	NA	NA NA	NA NA
Ethane			NA NA	NA NA	NA .	NA	NA NA
Ethene			NA	NA .	NA	NA NA	NA NA
Ethene			NA NA	NA	NA NA	NA _	NA NA
Methane			NA NA	NA	NA	NA	NA NA

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-19R	MA-MW-19R	MA-MW-14S	MA-MW-09S
Sample ID	GWQC	MCL	BMA037	BMA038	BMA038	BMA039	BMA040
Sample Date			06/12/2002	06/17/2002	06/17/2002	06/18/2002	06/19/2002
Sample Interval			10 - 21 ft	103 - 113 ft	103 - 113 ft	7 - 20 ft	16 - 26 ft
CLP Sample ID			F13535-4	C2344-16	F13591-6	C2344-19	
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	12	NA	400	NA NA
Carbon Dioxide			267	NA NA	133	NA NA	NA
Carbon, Total Organic			NA .	5 U .	NA	13.47	NA
Chloride	250		NA NA	7060 (A)	NA .	59.4	NA
Ethane			NA	0.1 J	. NA	0.4 J	NA
Ethene			NA .	2 U	NA	2 U	NA
Hardness (As CaCO3)	250		NA NA	(A)	NA	450 (A)	, NA
Iron, Ferrous			0.1 U	NA	44.9	NA	NA .
Methane			. NA	9	NA	2 U	NA .
Nitrogen, Ammonia as N			NA	7.5	NA	2.47	NA_
Nitrogen, Kjeldahl			NA	7.876	NA	3.189	NA.
Nitrogen, Nitrate as N	10_		NA .	0.05 U	NA	0.05 U	NA
Nitrogen, Nitrite	11		NA	0.05 U	NA_	0.05 U	NA
Oxygen Demand, Biologic Five Day			6	NA	5 U	NA NA	NA .
Oxygen Demand, Chemical			21.3	NA_	137	NA NA	NA.
Phosphorus-32			NA_	0.1 U	NA	0.453	NA
Solids, Total Dissolved (Residue, Filter			NA NA	10600	NA NA	672	NA.
Solids, Total Suspended			NA	112	NA NA	10.6 J	NA
Sulfate	250		NA	282 (A)	NA	131	NA NA
Sulfide	· · · · · · · · · · · · · · · · · · ·		NA NA	0.68	NA NA	1.28	NA NA
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	5 U	NA NA	13.47	NA NA
General Chemistry - mg/l (MG/L)		,			·		· · · · · · · · · · · · · · · · · · ·
Alkalinity, Total as CaCO3			NA	12	NA NA	400	NA .
Carbon Dioxide			267	NA NA	133	NA NA	NA NA
Carbon, Total Organic			NANA	5 U	<u>NA</u>	13.47	NA NA
Chloride	250	<u> </u>	NA NA	(A) € 7,060 (A)	NA	59.4	NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-19R	MA-MW-19R	MA-MW-14S	MA-MW-09S
Sample ID	GWQC	MCL	BMA037	BMA038	BMA038	BMA039	BMA040
Sample Date	•		06/12/2002	06/17/2002	06/17/2002	06/18/2002	06/19/2002
Sample Interval			10 - 21 ft	103 - 113 ft	103 - 113 ft	7 - 20 ft	16 - 26 ft
CLP Sample ID			F13535-4	C2344-16	F13591-6	C2344-19	
Chemical Name							***************************************
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	∯800(A)	NA	. 450 (A)	NA
Iron, Ferrous			0.1 U	NA NA	44.9	NA NA	NA
Nitrogen, Ammonia as N			NA NA	7.5	NA NA	2.47	NA
Nitrogen, Kjeldahl			NA NA	7.876	NA	3.189	NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA NA	0.05 U	NA
Nitrogen, Nitrite	1		NA	0.05 U	NA	0.05 U	NA
Oxygen Demand, Biologic Five Day			6	NA NA	5 U	NA.	NA
Oxygen Demand, Chemical			21.3	NA .	137	NA NA	NA
Phosphorus-32	·		NA NA	0.1 U	NA	0.453	NA
Solids, Total Dissolved (Residue, Filter			NA NA	10600	NA	672	NA
Solids, Total Suspended			NA	112	NA	10.6 J	NA NA
Sulfate	250		NA	282 (A)	NA	131	NA
Sulfide			NA.	0.68	NA NA	1.28	NA NA
General Chemistry - ug/l (ug/L)							
Ethane		T T	NA NA	0.1 J	NA NA	0.4 J	NA
Ethene			NA NA	2 U	NA NA	2 U	NA NA
Methane			NA NA	9	NA .	2 U	NA NA
Volatile Organic Compounds (mg/l)							
Ethane		1	NA NA	NA I	NA NA	NA I	NA NA
Ethane			NA NA	NA NA	NA NA	NA NA	NA NA
			NA NA	NA NA	NA NA	NA NA	NA NA
Ethene		· · · · · · · · · · · · · · · · · · ·	NA NA	NA NA		NA NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Methane		<u> </u>	I IVA	17/4	. NA	I IVA I	IVA

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09S	MA-MW-01S	MA-MW-01S	MA-MW-01M	MA-MW-01M
Sample ID	GWQC	MCL	BMA040	CMA001	CMA001	CMA002	CMA002
Sample Date			06/19/2002	09/23/2002	09/23/2002	09/23/2002	09/23/2002
Sample Interval			16 - 26 ft	4 - 14 ft	4 - 14 ft	50 - 60 ft	50 - 60 ft
CLP Sample ID			E2344-7	F14721-3	K2344-5	F14721-2	K2344-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			354	NA	1520	NA NA	254
Carbon Dioxide			NA	1130	NA NA	268	NA NA
Carbon, Total Organic			7	NA	12.78	NA	6.191
Chloride	250		50.1	NA	105	NA	139
Ethane			NA	NA	NA .	NA	NA
Ethene			NA NA	NA	NA NA	NA	NA .
Hardness (As CaCO3)	250		312 (A)	NA .	964 J(A)	NA	342 (A)
Iron, Ferrous			NA NA	0.1 U	NA .	3	NA
Methane			NA	NA	NA	NA	NA
Nitrogen, Ammonia as N			3.68	NA	37.4 J	NA	1.13 J
Nitrogen, Kjeldahl			3.894	NA	NA NA	NA .	1.324 J
Nitrogen, Nitrate as N	10		0.14	NA NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	· NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	15	NA	3 Ų	NA NA
Oxygen Demand, Chemical			NA NA	47	NA NA	20 U	NA NA
Phosphorus-32			0.1 U	NA NA	NA	NA NA	0.148 UJ
Solids, Total Dissolved (Residue, Filter			550	NA NA	4.6	NA NA	20.3
Solids, Total Suspended			21.1	NA NA	NA NA	NA NA	NA .
Sulfate	250		94.1	NA_	15.1	NA NA	111
Sulfide			0.5 U	NA NA	2.4	NA NA	0.5 U
General Chemistry - mg/kg (MG/L)		L					
Carbon, Total Organic			7	NA	12.78	NA .	6.191
Oarbon, Total Organic			,	101	12.70	11/4	0.101
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3	····	·	354	NA	1520	NA NA	254
Carbon Dioxide			NA	1130	NA .	268	NA ·
Carbon, Total Organic			7	NA	12.78	NA NA	6.191
Chloride	250		50.1	NA .	105	NA	139

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

302980

(A, B) - Exceeds criteria Exceedances highlighted

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-09S	MA-MW-01S	MA-MW-01S	MA-MW-01M	MA-MW-01M
Sample ID	GWQC	MCL	BMA040	CMA001	CMA001	CMA002	CMA002
Sample Date			06/19/2002	09/23/2002	09/23/2002	09/23/2002	09/23/2002
Sample Interval			16 - 26 ft	4 - 14 ft	4 - 14 ft	50 - 60 ft	50 - 60 ft
CLP Sample ID			E2344-7	F14721-3	K2344-5	F14721-2	K2344-4
Chemical Name	-						
						•	
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		312 (A)	NA .	964 J (A)	NA NA	342 (A)
Iron, Ferrous			NA NA	0.1 U	NA NA	3	NA .
Nitrogen, Ammonia as N			3.68	NA .	37.4 J	NA.	1.13 J
Nitrogen, Kjeldahl			3.894	. NA	NA NA	NA	1.324 J
Nitrogen, Nitrate as N	10		0.14	NA NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	15	NA .	3 U	NA .
Oxygen Demand, Chemical			NA NA	47	NA .	20 U	NA
Phosphorus-32			0.1 U	NA	NA NA	NA	0.148 UJ
Solids, Total Dissolved (Residue, Filter			550	NA	4.6	NA NA	20.3
Solids, Total Suspended			21.1	NA NA	. NA	NA	NA .
Sulfate	250		94.1	NA ·	15.1	NA NA	.111
Sulfide			0.5 U	NA NA	2.4	NA NA	0.5 U
General Chemistry - ug/l (ug/L)		,					
Ethane	<u> </u>		NA NA	NA:	NA NA	NA NA	NA
Ethene			NA NA	NA	NA NA	NANA	NA NA
Methane			NA NA	NA	NA NA	NANA	NA
Volatile Organic Compounds (mg/l)	 	L		<u> </u>			
Ethane			4	NA NA	2 J	NA	0.9 J
Ethane			4	NA NA	2 J	. NA	0.9 J
Ethene			0.04 J	NA NA	75 U	NA	1.5 U
Ethene			0.04 J	NA	75 U	NA	1.5 U
Methane			26 J	NA	280	NA	13

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

302982

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	CMA003	CMA003	CMA004	CMA004	CMA004
Sample Date			09/17/2002	09/17/2002	09/25/2002	09/25/2002	09/25/2002
Sample Interval			4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID			F14639-1	12344-1		F14762-1	K2344-14
Chemical Name		<u> </u>					
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	260	NA	NA .	1490
Carbon Dioxide	·		273	NA NA	NA	1340	NA NA
Carbon, Total Organic		_	NA NA	16.55	NA.	NA.	231
Chloride	250		NA NA	3.2	NA	NA	74.6
Ethane			NA	NA NA	NA NA	NA	NA .
Ethene			NA	NA NA	NA	NA	NA NA
Hardness (As CaCO3)	250		NA NA	260 (A)	NA	NA NA	1020 (A)
Iron, Ferrous			0.66 J	NA NA	NA	0.1 U	NA NA
Methane			NA NA	NA NA	NA	NA .	NA NA
Nitrogen, Ammonia as N			NA NA	4.14 J	NA ·	NA NA	53.2
Nitrogen, Kjeldahl			NA	5.488 J	NA NA	NA .	59.21
Nitrogen, Nitrate as N	10		NA	0.095 J	NA	. NA	0.05 U
Nitrogen, Nitrite	1		NA NA	0.05 U	NA	NA.	0.05 U
Oxygen Demand, Biologic Five Day			18.8 J	. NA	NA	15	NA NA
Oxygen Demand, Chemical			43.2	NA NA	NA	124	NA NA
Phosphorus-32			· NA	0.7 UJ	NA	NA.	· NA
Solids, Total Dissolved (Residue, Filter			NA	9.4	NA	NA NA	1 U
Solids, Total Suspended			NA	NA NA	NA	NA.	NA
Sulfate	250		NA NA	9.34 J	NA	NA NA	5 U
Sulfide			NA NA	0.96 U	NA .	NA NA	2.84
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	16.55	NA NA	NA NA	231
General Chemistry - mg/l (MG/L)		<u> </u>			·	1	
Alkalinity, Total as CaCO3			NA	260	NA	NA NA	1490
Carbon Dioxide			273	NA NA	NA	1340	NA NA
Carbon, Total Organic			NA NA	16.55	NA NA	NA NA	231
Chloride	250		NA NA	3.2	NA NA	NA.	74.6

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Station ID	(A)	(B)	MA-MW-04S	MA-MW-04S	MA-MW-05S	MA-MW-05S	MA-MW-05S
Sample ID	GWQC	MCL	CMA003	CMA003	CMA004	CMA004	CMA004
Sample Date		·	09/17/2002	09/17/2002	09/25/2002	09/25/2002	09/25/2002
Sample Interval			4 - 14 ft	4 - 14 ft	6 - 16 ft	6 - 16 ft	6 - 16 ft
CLP Sample ID			F14639-1	12344-1		F14762-1	K2344-14
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	260 (A)	NA	NA NA	. 1020 (A)
Iron, Ferrous			0.66 J	NA	NA NA	0.1 U	NA NA
Nitrogen, Ammonia as N	7		NA	- 4.14 J	. NA	NA NA	53.2
Nitrogen, Kjeldahl			NA	5.488 J	NA NA	NA	59.21
Nitrogen, Nitrate as N	10		NA	0.095 J	NA NA	NA NA	0.05 U
Nitrogen, Nitrite	11		NA	0.05 U	NA	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			18.8 J	NA NA	NA NA	15	NA NA
Oxygen Demand, Chemical			43.2	NA .	NA NA	124	NA NA
Phosphorus-32			NA NA	0.7 UJ	NA NA	NA	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	9.4	NA NA	NA NA	1 U
Solids, Total Suspended			NA	NA NA	NA	NA.	NA NA
Sulfate	250		NA NA	9.34 J	NA	NA NA	5 U
Sulfide			NA	0.96 U	NA	NA NA	2.84
				*,			
General Chemistry - ug/l (ug/L)							
Ethane			NA .	NA NA	NA NA	NA NA	NA NA
Ethene			NA NA	NA NA	NA	NA NA	NA NA
Methane			NA NA	NA NA	NA NA	NA NA	NA NA
		<u> </u>				ļ. <u></u>	
Volatile Organic Compounds (mg/l)							
Ethane			NA NA	15 U	NA	NA	150 U
Ethane			NA	15 U	NA NA	NA NA	150 U
Ethene			NA NA	15 U	NA NA	NA	150 U
Ethene			, NA	15 U	NA	NA	150 U
Methane		<u> </u>	NA	150 J	NA	NA	890

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results

Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-08S	MA-MW-08S	MA-MW-08S	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	CMA005	CMA005	CMA005-D	CMA006	CMA006
Sample Date	,		09/17/2002	09/17/2002	09/17/2002	09/19/2002	09/19/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID			F14639-6	12344-6	WG20270-3	F14692-1	12344-12
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	658	NA	NA NA	340
Carbon Dioxide			674	NA NA	NA	479	NA NA
Carbon, Total Organic			NA	24.65	NA NA	NA	6.794
Chloride	250		NA	8.87	NA	NA.	55.1
Ethane			. NA	NA NA	NA	NA	NA
Ethene			NA	NA NA	. NA	NA	NA NA
Hardness (As CaCO3)	250		NA NA	± 2.566	NA :	NA	320 (A)
Iron, Ferrous			1.2	, NA	NA .	NA	NA NA
Methane			NA NA	. NA	NA	NA	NA
Nitrogen, Ammonia as N			NA	11.7 J	NA .	NA	5.2 J
Nitrogen, Kjeldahl			NA NA	13.37 J	NA ·	NA	6.089 J
Nitrogen, Nitrate as N	10		NA .	0.05 UJ	NA	NA	0.2
Nitrogen, Nitrite	1		NA	0.05 U	NA .	NA	0.05 U
Oxygen Demand, Biologic Five Day			5.6 J	NA NA	NA .	8.7 J	NA
Oxygen Demand, Chemical			70.2	NA	NA	38.9	NA
Phosphorus-32			NA NA	0.762 UJ	NA	NA NA	0.1 UJ
Solids, Total Dissolved (Residue, Filter			NA NA	40	40	NA NA	56
Solids, Total Suspended			NA	NA NA	NA	NA_	NA NA
Sulfate	250		NA NA	5 U	NA	NA NA	71
Sulfide			NA NA	1.28 UJ	NA	NANA	0.5 U
						·	
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	24.65	NA	NA NA	6.794
		<u> </u>					
General Chemistry - mg/l (MG/L)		· · · · · · · · · · · · · · · · · · ·		ļ <u></u>			
Alkalinity, Total as CaCO3			NA	658	NA	NA NA	340
Carbon Dioxide			674	NA NA	NA NA	479	NA NA
Carbon, Total Organic			NA NA	24,65	NA	NA NA	6.794
Chloride	250		NA NA	8.87	NA NA	NA NA	55.1

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

302984

(A, B) - Exceeds criteria Exceedances highlighted

Station ID	(A)	(B)	MA-MW-08S	MA-MW-08S	MA-MW-08S	MA-MW-09S	MA-MW-09S
Sample ID	GWQC	MCL	CMA005	CMA005	CMA005-D	CMA006	CMA006
Sample Date			09/17/2002	09/17/2002	09/17/2002	09/19/2002	09/19/2002
Sample Interval			4 - 14 ft	4 - 14 ft	4 - 14 ft	16 - 26 ft	16 - 26 ft
CLP Sample ID			F14639-6	12344-6	WG20270-3	F14692-1	12344-12
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA .	566 (A)	NA NA	NA	320(A)
Iron, Ferrous			1.2	NA NA	NA	NA NA	NA NA
Nitrogen, Ammonia as N			NA NA	11.7 J	NA NA	NA NA	5.2 J
Nitrogen, Kjeldahl			NA NA	13.37 J	NA	NA NA	6.089 J
Nitrogen, Nitrate as N	10		NA	0.05 UJ	. NA	NA	0.2
Nitrogen, Nitrite	1		NA	0.05 U	NA .	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			5.6 J	NA NA	NA	8.7 J	NA NA
Oxygen Demand, Chemical			70.2	NA NA	NA NA	38.9	NA NA
Phosphorus-32			NA	0.762 UJ	NA	NA NA	0.1 UJ
Solids, Total Dissolved (Residue, Filter			NA NA	40	40	NA NA	56
Solids, Total Suspended			NA NA	NA NA	NA	NA NA	NA
Sulfate	250		NA	5 U	NA NA	NA NA	71
Sulfide	· · · · · · · · · · · · · · · · · · ·		NA NA	1.28 UJ	NA NA	NA NA	0.5 U
		<u> </u>					
General Chemistry - ug/l (ug/L)							
Ethane			NA NA	NA NA	NA NA	NA NA	NA NA
Ethene		<u> </u>	NA NA	NA NA	NA	NA	NA NA
Methane			NA NA	NA NA	NA	NA NA	NA NA
Volatile Organic Compounds (mg/l)					·		
Ethane			NA:	150 U	NA	NA NA	3
Ethane	***	<u> </u>	NA NA	150 U	NA NA	NA NA	3
Ethene			NA NA	150 U	NA	NA NA	1.5 U
Ethene			NA NA	150 U	NA NA	NA NA	1.5 U
Methane		<u> </u>	NA NA	780	NA NA	NA NA	26

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ

Station ID	(A)	(B)	MA-MW-09D	MA-MW-09D	MA-MW-10S	MA-MW-10S	MA-MW-11S
Sample ID	GWQC	MCL	CMA007	CMA007	CMA008	CMA008	CMA009
Sample Date			09/19/2002	09/19/2002	09/19/2002	09/19/2002	09/23/2002
Sample Interval			44 - 54 ft	44 - 54 ft	8 - 18 ft	8 - 18 ft	11 - 21 ft
CLP Sample ID			F14692-2	12344-13	F14692-5	12344-16	F14721-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	290	NA.	486	NA
Carbon Dioxide			352	NA NA	441	NA NA	235
Carbon, Total Organic			NA NA	5 U	, NA	13.79	NA:
Chloride	250		NA NA	85.2	NA .	67.8	NA .
Ethane			NA .	NA NA	NA NA	NA NA	NA _
Ethene			NA	NA NA	NA	NA NA	NA
Hardness (As CaCO3)	250		NA NA	290 (A)	NA NA	490 (A)	NA NA
Iron, Ferrous			1.7	NA NA	NA	NA NA	0.1 U
Methane			NA	NA NA	NA	NA NA	NA
Nitrogen, Ammonia as N			NA	5.46 J	NA NA	4.49 J	NA .
Nitrogen, Kjeldahl			NA	6.181 J	NA	5.751 J	NA
Nitrogen, Nitrate as N	10		NA .	0.095	NA	0.05 U	NA
Nitrogen, Nitrite	1		NA	0.05 U	NA NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA NA	NA NA	55 J	NA NA	3 U
Oxygen Demand, Chemical			NA NA	NA NA	33.4	NA NA	20 U
Phosphorus-32			NA	0.1 UJ	NA	0.721 UJ	NA
Solids, Total Dissolved (Residue, Filter			NA	23.3	NA	29.5	NA NA
Solids, Total Suspended			NA	NA	NA NA	NA NA	NA
Sulfate	<u>2</u> 50		NA	73	NA NA	82.4	NA NA
Sulfide			NA NA	0.5 U	NA NA	0.5 U	NA NA
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			NA NA	5 U	NA NA	13.79	NA
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			NA NA	290	NA NA	486	NA
Carbon Dioxide			352	NA NA	441	NA NA	235
Carbon, Total Organic			NA NA	5 U	NA	13.79	NA NA
Chloride	250		NA NA	85.2	NA ·	67.8	NA NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Station ID	(A)	(B)	MA-MW-09D	MA-MW-09D	MA-MW-10S	MA-MW-10S	MA-MW-11S
Sample ID	GWQC	MCL	CMA007	CMA007	CMA008	CMA008	CMA009
Sample Date			09/19/2002	09/19/2002	09/19/2002	09/19/2002	09/23/2002
Sample Interval			44 - 54 ft	44 - 54 ft	8 - 18 ft	8 - 18 ft	11 - 21 ft
CLP Sample ID			F14692-2	12344-13	F14692-5	12344-16	F14721-4
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	290 - (A)	NA	490 (A)	NA
Iron, Ferrous			1.7	NA NA	NA .	NA .	0.1 U
Nitrogen, Ammonia as N			NA	5.46 J	NA	4.49 J	NA NA
Nitrogen, Kjeldahl			NA	6.181 J	NA .	5.751 J	NA
Nitrogen, Nitrate as N	10		NA	0.095	NA	0.05 U	NA
Nitrogen, Nitrite	1		NA	0.05 U	NA	0.05 U	NA
Oxygen Demand, Biologic Five Day			NA	NA	55 J	NA NA	3 U
Oxygen Demand, Chemical			NA	NA NA	33.4	NA NA	20 U
Phosphorus-32			NA NA	0.1 UJ	NA	0.721 UJ	NA
Solids, Total Dissolved (Residue, Filter			NA	23.3	NA	29.5	NA .
Solids, Total Suspended			NA	NA	NA	NA NA	, NA
Sulfate	250		NA NA	73	NA	82.4	NA
Sulfide	· · · · · · · · · · · · · · · · · · ·		NA NA	0.5 U	NA .	0.5 U	NA
General Chemistry - ug/l (ug/L)							
Ethane			NA NA	NA NA	NA NA	NA NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA
Methane			NA NA	NA NA	NA NA	NA NA	NA NA
Volatile Organic Compounds (mg/l)	 	<u> </u>					
Ethane			NA	3 U	NA	15 U	NA NA
Ethane			NA NA	3 U	NA.	15 U	NA NA
Ethene			NA NA	3 U	. NA	15 U	NA .
Ethene	• • • • • • • • • • • • • • • • • • • •		NA NA	3 U	NA	15 U	NA
Methane			NA NA	37	NA	120	NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-11S	MA-MW-11M	MA-MW-11M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	CMA009	CMA010	CMA010	CMA011	CMA011
Sample Date			09/23/2002	09/23/2002	09/23/2002	09/24/2002	09/24/2002
Sample Interval			11 - 21 ft	46 - 56 ft	46 - 56 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			K2344-6	F14721-5	K2344-7	F14738-1	K2344-8
Chemical Name	·		1				
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			182	NA NA	420	NA NA	446
Carbon Dioxide			· NA	438	NA NA	558	NA NA
Carbon, Total Organic			5 U	NA NA	7.498	NA NA	25.27
Chloride	250		14.7	NA NA	78	NA .	63.9
Ethane			NA NA	NA NA	NA NA	NA	NA NA
Ethene			NA ·	NA	NA NA	NA	NA NA
Hardness (As CaCO3)	250		252 ÷ (A)	NA NA	344 (A)	NA	444! (A)
Iron, Ferrous			NA NA	0.1 U	NA .	0.1 U	NA NA
Methane			NA .	NA	NA NA	NA	NA
Nitrogen, Ammonia as N			0.1 UJ	. NA	10.5 J	NA .	6.65 J
Nitrogen, Kjeldahl			0.4843 UJ	NA	12.42 J	NA.	8.622 J
Nitrogen, Nitrate as N	10		4.88	NA	0.63	NA .	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA ·	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	3 U	NA NA	3 U	NA .
Oxygen Demand, Chemical			NA NA	20 U	NA NA	69	NA .
Phosphorus-32	<u> </u>		0.123 UJ_	NA	0.106 UJ_	NA NA	1.24 J
Solids, Total Dissolved (Residue, Filter			72.3	NA	8.8	NA NA	5.4
Solids, Total Suspended			NA	NA	NA NA	NA	NA NA
Sulfate	250		78.7	NA .	43.2	NA .	166
Sulfide			0.5 U	NA	0.5 U	NA NA	0.6 U
General Chemistry - mg/kg (MG/L)				····			
Carbon, Total Organic			5 U	NA	7.498	NA	25.27
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			182	NA	420	NA	446
Carbon Dioxide			NA .	438	NA NA	558	NA
Carbon, Total Organic			5 U	NA	7.498	NA	25.27
Chloride	250		14.7	NA .	78	NA.	63.9

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Table G.15 **Groundwater - Natural Attenuation Parameter Results** Martin Aaron Superfund Site Camden, NJ

Station ID	(A)	(B)	MA-MW-11S	MA-MW-11M	MA-MW-11M	MA-MW-12S	MA-MW-12S
Sample ID	GWQC	MCL	CMA009	CMA010	CMA010	CMA011	CMA011
Sample Date			09/23/2002	09/23/2002	09/23/2002	09/24/2002	09/24/2002
Sample Interval			11 - 21 ft	46 - 56 ft	46 - 56 ft	5.4 - 15.4 ft	5.4 - 15.4 ft
CLP Sample ID			K2344-6	F14721-5	K2344-7	F14738-1	K2344-8
Chemical Name							
General Chemistry - mg/l (MG/L)	<u> </u>						
Hardness (As CaCO3)	250		(252 f. (A)	NA .	344 (A)	NA .	444 (A)
Iron, Ferrous			NA NA	0.1 U	NA	0.1 U	NA .
Nitrogen, Ammonia as N			0.1 UJ	NA NA	10.5 J	NA	6.65 J
Nitrogen, Kjeldahl			0.4843 UJ	NA NA	12.42 J	NA .	8.622 J
Nitrogen, Nitrate as N	10		4.88	NA NA	0.63	NA NA	0.05 U
Nitrogen, Nitrite	11		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			· NA	3 U	NA NA	3 U	NA NA
Oxygen Demand, Chemical			NA NA	20 U	NA NA	69	NA NA
Phosphorus-32			0.123 UJ	NA NA	0.106 UJ	NA	1.24 J
Solids, Total Dissolved (Residue, Filter			72.3	NA NA	8.8	NA NA	5.4
Solids, Total Suspended			NA NA	NA NA	NA NA	NA .	NA NA
Sulfate	250.		78.7	NA	43.2	NA NA	166
Sulfide			0.5 U	NA NA	0.5 U	NA	0.6 U
		1					
General Chemistry - ug/l (ug/L)		,					
Ethane			NA NA	NA NA	NA NA	NA NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Methane			NA NA	NA	NA NA	NA	NA NA
Volatile Organic Compounds (mg/l)	· · · · · · · · · · · · · · · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
Ethane			1.5 U	NA	4	NA	5 J
Ethane			1.5 U	NA	4	NA.	5 J
Ethene			1.5 U	NA	1.5 U	NA NA	7.5 U
Ethene			1.5 U	NA NA	1.5 U	NA NA	7.5 U
Methane			1.5 U	NA	16	NA .	36

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

30299

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-12M	MA-MW-12M	MA-MW-13S	MA-MW-13S	MA-MW-13M
Sample ID	GWQC	MCL	CMA012	CMA012	CMA013	CMA013	CMA014
Sample Date			09/24/2002	09/24/2002	09/25/2002	09/25/2002	09/25/2002
Sample Interval		ł	38.1 - 48.1 ft	38.1 - 48.1 ft	6.6 - 16.6 ft	6.6 - 16.6 ft	48.35 - 58.35 ft
CLP Sample ID			F14738-2	K2344-9	F14762-2	K2344-15	F14762-3
Chemical Name	·				· · · · · · · · · · · · · · · · · · ·		
General Chemistry (MG/L)						·	
Alkalinity, Total as CaCO3			NA	296	NA	1300	NA
Carbon Dioxide			316	NA NA	1720	NA NA	324
Carbon, Total Organic			NA NA	5 U	. NA	1925	NA
Chloride	250		NA NA	108	NA	168	NA NA
Ethane			NA NA	NA NA	NA NA	NA	NA .
Ethene			NA NA	NA NA	NA	. NA	NA NA
Hardness (As CaCO3)	250		NA NA	348 (A)	NA	1570 😂 💢 (A)	NA
Iron, Ferrous			22	NA NA	2	NA NA	2
Methane			NA	NA NA	NA NA	NA NA	NA
Nitrogen, Ammonia as N			NA NA	2.62 J	NA	208	NA
Nitrogen, Kjeldahl			NA NA	3.071 J	NA	372	NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA	0.135	NA .
Nitrogen, Nitrite	1		NA NA	0.05 U	NA NA	0.08	NA
Oxygen Demand, Biologic Five Day			3 U	NA NA	50	NA NA	3 U
Oxygen Demand, Chemical			21	NA NA	5130	NA NA	20 U
Phosphorus-32			NA	2.34 J	NA	1	NA .
Solids, Total Dissolved (Residue, Filter			NA NA	345	NA NA	NA NA	NA
Solids, Total Suspended			NA	NA NA	NA	NA .	NA .
Sulfate	250		NA NA	94.5	NA NA	54.2	NA
Sulfide			NA NA	0.5 U	NA NA	49.6	NA NA
General Chemistry - mg/kg (MG/L)	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	1					· · · · · · · · · · · · · · · · · · ·
Carbon, Total Organic		T	NA NA	5 U	NA NA	1925	NA NA
Carbon, Total Organic			143	1	147	1020	IV
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			NA NA	296	NA	1300	NA NA
Carbon Dioxide			316	NA.	1720	NA NA	324
Carbon, Total Organic			NA NA	5 U	NA	1925	NA NA
Chloride	250		NA NA	108	NA	168	NA NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-12M	MA-MW-12M	MA-MW-13S	MA-MW-13S	MA-MW-13M
Sample ID	GWQC	MCL	CMA012	CMA012	CMA013	CMA013	CMA014
Sample Date			09/24/2002	09/24/2002	09/25/2002	09/25/2002	09/25/2002
Sample Interval			38.1 - 48.1 ft	38.1 - 48.1 ft	6.6 - 16.6 ft	6.6 - 16.6 ft	48.35 - 58.35 ft
CLP Sample ID			F14738-2	K2344-9	F14762-2	K2344-15	F14762-3
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA .	(A) 2 (A)	NA	1570 (A)	NA
Iron, Ferrous			2	NA NA	2	NA NA	2
Nitrogen, Ammonia as N			NA	2.62 J	NA	208	NA
Nitrogen, Kjeldahi			NA NA	3.071 J	NA	372	NA
Nitrogen, Nitrate as N	10		NA.	0.05 U	NA	0.135	NA NA
Nitrogen, Nitrite	1		NA NA	0.05 U	NA	0.08	NA NA
Oxygen Demand, Biologic Five Day			3 U	NA NA	50	NA NA	3 U
Oxygen Demand, Chemical			21	NA NA	5130	NA NA	20 U
Phosphorus-32			NA NA	2.34 J	NA	1	. NA
Solids, Total Dissolved (Residue, Filter			NA NA	345	NA	NA NA	NA NA
Solids, Total Suspended			NA.	NA NA	NA .	NA NA	NA NA
Sulfate	250		NA NA	94.5	NA .	54.2	NA NA
Sulfide			NA NA	0.5 U	NA NA	49.6	NA NA
General Chemistry - ug/l (ug/L)	· · · · · · · · · · · · · · · · · · ·						
Ethane			NA NA	NA NA	NA NA	NA NA	NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA
Methane			NA NA	NA NA	NA NA	NA NA	NA
Volatile Organic Compounds (mg/l)			-	<u>' </u>			
			NA NA	0.8 J	NA NA		NA NA
Ethane			NA NA	0.8 J		2	
Ethane			NA NA	1.5 U	NA NA		NA
Ethene			NA NA	1.5 U	NA NA	0.9 J	NA NA
Ethene						0.9 J	
Methane			NA NA	24	NA NA	950	NA

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

302992

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

					T		T
Station ID	(A)	(B)	MA-MW-13M	MA-MW-14S	MA-MW-14S	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	CMA014	CMA015	CMA015	CMA016	CMA016
Sample Date			09/25/2002	09/24/2002	09/24/2002	09/24/2002	09/24/2002
Sample Interval			48.35 - 58.35 ft	7 - 20 ft	7 - 20 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			K2344-16	F14738-3	K2344-10	F14738-4	K2344-11
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3		T	284	NA .	170	NA NA	. 146
Carbon Dioxide			NA NA	577	NA .	190	NA NA
Carbon, Total Organic			5 U	NA	15.65	NA NA	5 U
Chloride	250		97.3	NA	43.8	NA NA	145
Ethane			. NA	NA	NA .	NA NA	NA NA
Ethene			NA	NA	NA NA	NA	NA NA
Hardness (As CaCO3)	250		484 (A)	NA	480 (A)	NA NA	160
Iron, Ferrous			NA NA	0.1 U	NA NA	3	NA NA
Methane			NA.	NA	NA NA	NA_	NA NA
Nitrogen, Ammonia as N			0.496	NA NA	3.46 J	NA NA	4.5 J
Nitrogen, Kjeldahl			0.8565	. NA	4.188 J	NA	4.554 J
Nitrogen, Nitrate as N	10		0.05 U	ŅA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	_11		0.05 U	NA	0,05 U	NA_	0.05 <u>U</u>
Oxygen Demand, Biologic Five Day			NA	3 U	NA NA	3 U	NA.
Oxygen Demand, Chemical			NA NA	37	NA NA	20 U	NA NA
Phosphorus-32			1.16	NA	0.669 UJ	NA NA	0,1 UJ
Solids, Total Dissolved (Residue, Filter			20.3	NA	5	NA NA	39
Solids, Total Suspended			NA	NA	NA	NA NA	NA NA
Sulfate	250		88.1	NA	81.9	NA NA	13.9
Sulfide			0.5 U	NA	0.66 U	NA NA	0.5 U
General Chemistry - mg/kg (MG/L)	· · · · · · · · · · · · · · · · · · ·	<u> </u>					
Carbon, Total Organic			5 U	NA NA	15.65	NA	5 U
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			284	NA .	170	NA NA	146
Carbon Dioxide			NA NA	577	NA NA	190	NA NA
Carbon, Total Organic			5 U	NA	15.65	NA	5 U
Chloride	250		97.3	NA NA	43.8	NA NA	145

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-13M	MA-MW-14S	MA-MW-14S	MA-MW-14R	MA-MW-14R
Sample ID	GWQC	MCL	CMA014	CMA015	CMA015	CMA016	CMA016
Sample Date	-		09/25/2002	09/24/2002	09/24/2002	09/24/2002	09/24/2002
Sample Interval			48.35 - 58.35 ft	7 - 20 ft	7 - 20 ft	109.5 - 119.5 ft	109.5 - 119.5 ft
CLP Sample ID			K2344-16	F14738-3	K2344-10	F14738-4	K2344-11
Chemical Name							- ·- ·-
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		484 × 5 × (A)	NA	480 - A (A)	NA NA	160
Iron, Ferrous			NA	0.1 U	NA	3	NA
Nitrogen, Ammonia as N			0.496	NA NA	3.46 J	NA	4.5 J
Nitrogen, Kjeldahl			0.8565	NA .	4.188 J	NA NA	4.554 J
Nitrogen, Nitrate as N	10		0.05 U	NA	0.05 U	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA .	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA	3 U	NA	3 U	NA
Oxygen Demand, Chemical			NA	37	NA NA	20 U	NA
Phosphorus-32			1.16	NA .	0.669 UJ	NA NA	0.1 UJ
Solids, Total Dissolved (Residue, Filter			20.3	NA .	5	NA NA	39
Solids, Total Suspended			NA	NA .	NA NA	NA	NA NA
Sulfate	250		88.1	NA NA	81.9	NA NA	13.9
Sulfide			0.5 U	NA NA	0.66 U	NA	0.5 U
General Chemistry - ug/l (ug/L)		Т			NA NA	NA NA	
Ethane	·		NA NA	NA NA	- 		NA NA
Ethene	 	· · · · · · · · · · · · · · · · · · ·	NA NA	NA NA	NA NA	NA NA	NA NA
Methane			NA NA	NA	NA NA	NA NA	NA NA
Volatile Organic Compounds (UG/L							
Ethane			0.6 J	NA	3 J	NA	4
Ethane			0.6 J	NA	3 J	NA	4
Ethene.			1.5 U	NA NA	7.5 U	NA NA	1.5 U
Ethene			1.5 U	NA NA	7.5 U	NA NA	1.5 U
Methane		•	18	NA	20	NA	15

(A, B) - Exceeds criteria Exceedances highlighted

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-14R	MA-MW-14D	MA-MW-14D	MA-MW-15S	MA-MW-15S
Sample ID	GWQC	MCL	CMA016-D	CMA017	CMA017	CMA018	CMA018
Sample Date			09/24/2002	09/24/2002	09/24/2002	09/25/2002	09/25/2002
Sample Interval			109.5 - 119.5 ft	170 - 188 ft	170 - 188 ft	6.8 - 16.8 ft	6.8 - 16.8 ft
CLP Sample ID			WG20351-3	F14738-5	K2344-12	F14762-4	K2344-17
Chemical Name		*					
			· · · · · · · · · · · · · · · · · · ·				
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			. NA	NA	16	NA	1050
Carbon Dioxide			NA NA	60	NA NA	1070	NA
Carbon, Total Organic			NA NA	NA NA	5 U	NA .	36.63
Chloride	250	· ·	NA NA	NA NA	22.3	. NA	15.7
Ethane			NA NA	NA NA	NA NA	NA NA	NA ·
Ethene			NA NA	NA	NA NA	NA NA	NA
Hardness (As CaCO3)	250		. NA	NA NA	320 (A)	NA	1120 (A)
Iron, Ferrous			NA NA	0.1 U	NA NA	0.1_U	NA
Methane			NA NA	NA	NA	NA	NA
Nitrogen, Ammonia as N			NA ·	NA	1.22 J	NA	4.33
Nitrogen, Kjeldahl			NA	NA	1.398 J	NA:	6.321
Nitrogen, Nitrate as N	10		NA NA	NA NA	0.05 U	NA	0.05 U
Nitrogen, Nitrite	1		NA NA	. NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	<u>3</u> U	NA	4	NA:
Oxygen Demand, Chemical			NA NA	20 U	NA NA	78	NA
Phosphorus-32			NA NA	. <u>NA</u>	0.186 UJ	NA	0.852
Solids, Total Dissolved (Residue, Filter			46.5	NA	99	NA ·	25.5
Solids, Total Suspended			NA	NA NA	NA	NA	NA
Sulfate	250		NA	NA .	18.5	NA	5.34
Sulfide			NA NA	NA NA	0.5 U	NA NA	0.88 U
General Chemistry - mg/kg (MG/L)		<u> </u>					
Carbon, Total Organic			NA .	NA NA	5 U	NA	36.63
General Chemistry - mg/l (MG/L)		L					
Alkalinity, Total as CaCO3			NA NA	NA NA	16	NA NA	1050
Carbon Dioxide			NA NA	60	NA NA	1070	NA NA
Carbon, Total Organic			NA NA	NA NA	5 U	NA	36.63
Chloride	250		NA NA	NA NA	22.3	NA NA	15.7

J - Reported value estimated in quantity

NA -Not analyzed

302994

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Camden, NJ

Station ID	(A)	(B)	MA-MW-14R	MA-MW-14D	MA-MW-14D	MA-MW-15S	MA-MW-15S
Sample ID	GWQC	MCL	CMA016-D	CMA017	CMA017	CMA018	CMA018
Sample Date			09/24/2002	09/24/2002	09/24/2002	09/25/2002	09/25/2002
Sample Interval			109.5 - 119.5 ft	170 - 188 ft	170 - 188 ft	6.8 - 16.8 ft	6.8 - 16.8 ft
CLP Sample ID			WG20351-3	F14738-5	K2344-12	F14762-4	K2344-17
Chemical Name							
General Chemistry - mg/l (MG/L)							<u> </u>
Hardness (As CaCO3)	250		NA NA	NA NA	320 J. (A)	NA.	1120 (A)
	250		NA NA	0.1 U	NA NA		NA
Iron, Ferrous Nitrogen, Ammonia as N			NA NA	NA NA	1.22 J	0.1 U NA	4.33
Nitrogen, Kjeldahl			NA NA	NA NA	1.398 J	NA NA	6.321
Nitrogen, Nitrate as N	10		NA NA	NA NA	0.05 U	×4	0.321 0.05 U
Nitrogen, Nitrite	1	l	NA NA	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day	<u> </u>		NA NA	3 U	NA NA	4	0.03 O NA
Oxygen Demand, Chemical		<u> </u>	NA .	20 U	NA NA	78	NA NA
Phosphorus-32	· · · · · · · · · · · · · · · · · · ·		NA NA	NA NA	0.186 UJ	NA NA	0.852
Solids, Total Dissolved (Residue, Filter			46.5	NA NA	99	NA NA	25.5
Solids, Total Suspended			NA NA	NA NA	NA NA	NA NA	NA NA
Sulfate	250		NA NA	NA NA	18.5	NA NA	5.34
Sulfide	200		NA NA	NA NA	0.5 U	NA NA	0.88 U
James		<u> </u>			0.00		0.00
General Chemistry - ug/l (ug/L)		<u> </u>				_	
Ethane			NA NA	NA	NA NA	NA	NA NA
Ethene			. NA	NA	NA NA	NA.	NA NA
Methane			NA NA	NA	NA_	NA NA	NA NA
Volatile Organic Compounds (mg/l)				<u> </u>			
Ethane			NA .	NA	1.5 U	NA NA	12 J
Ethane			NA NA	NA	1.5 U	NA NA	12 J
Ethene			NA NA	NA NA	1.5 U	NA .	12 J
Ethene			NA NA	NA	1.5 U	NA	12 J
Methane			NA NA	NA .	5	NA.	62

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

302996

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17M	MA-MW-15M	MA-MW-15M	MA-MW-16S
Sample ID	GWQC	MCL	CMA019	CMA019	CMA020	CMA020	CMA021
Sample Date			09/18/2002	09/18/2002	09/23/2002	09/23/2002	09/25/2002
Sample Interval			41.82 - 51.82 ft	41.82 - 51.82 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.5 - 16.5 ft
CLP Sample ID			F14664-4	12344-10	F14721-1	K2344-3	F14762-5
Chemical Name					· · · · · · · · · · · · · · · · · · ·		
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	230	NA	182	NA NA
Carbon Dioxide			273	NA NA	247	NA	1130
Carbon, Total Organic			NA NA	5.163	NA	5 U	NA NA
Chloride	250		NA NA	73	NA	106	NA
Ethane			NA NA	NA NA	NA	NA	NA
Ethene			NA_	NA NA	NA .	NA	NA
Hardness (As CaCO3)	250		NA.	280 (A)	. NA	210	NA NA
Iron, Ferrous			NA NA	NA	11	NA	0.1 U
Methane			NA	. NA .	. NA	NA NA	NA_
Nitrogen, Ammonia as N			NA	0.832 J	NA	3.51 J	NA
Nitrogen, Kjeldahl			NA .	1.11 J	NA .	3.946 J	NA_
Nitrogen, Nitrate as N	10		NA.	0.205	NA NA	0.05 U	NA
Nitrogen, Nitrite	1		NA .	0.05 U	. NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA NA	. NA	3 U	NA NA	15
Oxygen Demand, Chemical			NA NA	NA NA	21	NA NA	94
Phosphorus-32			NA NA	2.77 J	NA	3.22 J	NA
Solids, Total Dissolved (Residue, Filter			NA NA	164	NA	39.3	NA
Solids, Total Suspended		<u> </u>	NA NA	NA NA	NA NA	NA	NA
Sulfate	250		NA NA	69	NA	54.8	NA NA
Sulfide			NA NA	0.5 UJ	NA NA	0.5 U	NA
General Chemistry - mg/kg (MG/L)		<u> </u>					
Carbon, Total Organic		I	NA NA	5.163	NA NA	5 U	NA NA
Carbon, Total Organic			144	3.103	144	3 0	1747
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			NA NA	230	NA NA	182	NA_
Carbon Dioxide			273	NA NA	247	NA NA	1130
Carbon, Total Organic			NA	5.163	NA	5 U	NA
Chloride	250		NA NA	73	NA	106	NA

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-17M	MA-MW-17M	MA-MW-15M	MA-MW-15M	MA-MW-16S
Sample ID	GWQC	MCL	CMA019	CMA019	CMA020	CMA020	CMA021
Sample Date			09/18/2002	09/18/2002	09/23/2002	09/23/2002	09/25/2002
Sample Interval			41.82 - 51.82 ft	41.82 - 51.82 ft	59.4 - 69.4 ft	59.4 - 69.4 ft	6.5 - 16.5 ft
CLP Sample ID			F14664-4	12344-10	F14721-1	K2344-3	F14762-5
Chemical Name					_		
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA	280 (A)	NA	210	NA
Iron, Ferrous			NA	NA	11	NA .	0.1 U
Nitrogen, Ammonia as N			NA NA	0.832 J	NA NA	3.51 J	NA
Nitrogen, Kjeldahl			NA NA	1.11 J	NA	3.946 J	NA
Nitrogen, Nitrate as N	10		NA NA	0.205	NA NA	0.05 U	NA NA
Nitrogen, Nitrite	1		NA	0.05 U	NA NA	0.05 U	NA .
Oxygen Demand, Biologic Five Day			NA NA	NA NA	3 U	NA NA	15
Oxygen Demand, Chemical			NA NA	NA	21	NA.	94
Phosphorus-32			NA NA	2.77 J	. NA	3.22 J	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	164	NA NA	39.3	NA NA
Solids, Total Suspended			NA NA	NA NA	NA	NA NA	NA NA
Sulfate	250		NA NA	69	NA NA	54.8	NA NA
Sulfide			NA .	0.5 UJ	NA	0.5 U	NA NA
General Chemistry - ug/l (ug/L)							
Ethane			NA .	NA NA	NA	NA NA	NA
Ethene			NA NA	NA NA	NA NA	NA NA	NA NA
Methane			NA NA	NA NA	NA	NA NA	NA NA
		<u> </u>					
Volatile Organic Compounds (mg/l)							_ /
Ethane			NA	1.5 U	NA	2	NA NA
Ethane			NA NA	1.5 U	NA	2	NA NA
Ethene			NA NA	1.5 U	NA	1.5 U	NA .
Ethene		ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NA NA	1.5 U	NA	1.5 U	NA .
Methane		<u> </u>	NA NA	1.5 U	NA NA	16	NA NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

302998

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-16S	MA-MW-17S	MA-MW-17S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	CMA021	CMA022	CMA022	CMA023	CMA023
Sample Date			09/25/2002	09/18/2002	09/18/2002	09/17/2002	09/17/2002
Sample Interval			6.5 - 16.5 ft	8 - 18 ft	8 - 18 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			K2344-18	F14664-5	12344-11	F14639-4	12344-4
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			276	NA	290	NA	460
Carbon Dioxide			NA	345	NA NA	720 J	NA NA
Carbon, Total Organic			39.58	NA	5.232	NA NA	7.988
Chloride	250		40.2	NA NA	41	NA	72.7
Ethane			NA I	NA NA	NA NA	NA	NA NA
Ethene			NA NA	NA NA	NA NA	NA ·	NA NA
Hardness (As CaCO3)	250		1060 - (A)	NA	* 328 (A)	NA	2408 (A)
Iron, Ferrous			NA NA	NA	NA NA	NA	NA
Methane			NA NA	NA	NA NA	NA NA	NA
Nitrogen, Ammonia as N			33	NA	0.565 J	NA	1.63 J
Nitrogen, Kjeldahl			39.62	NA	0.7709 UJ	NA	2.193 J
Nitrogen, Nitrate as N	10		0.05 U	NA NA	0.05 U	NA	0.055
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	NA	NA_	NA NA	NA
Oxygen Demand, Chemical			NA NA	NA NA	NA	29.7	NA
Phosphorus-32			2.6	NA _	0.152 UJ	NA .	0.961 J
Solids, Total Dissolved (Residue, Filter			32.3	NA	6.75	NA	260 J
Solids, Total Suspended			NA .	NA	NA_	NA NA	NA
Sulfate	250		65	NA	45.9	NA	22.8
Sulfide			3.04	NA	0.5 U	NA NA	0.72 U
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			39.58	NA	5.232	NA	7.988
General Chemistry - mg/l (MG/L)		I					
Alkalinity, Total as CaCO3	· · · · · · · · · · · · · · · · · · ·		276	NA NA	290	NA NA	460
Carbon Dioxide			NA NA	345	NA NA	720 J	NA NA
Carbon, Total Organic			39.58	NA NA	5.232	NA NA	7.988
Chloride	250		40.2	NA NA	41	. NA	72.7
	200		1 70.2				

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Station ID	(A)	(B)	MA-MW-16S	MA-MW-17S	MA-MW-17S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	CMA021	CMA022	CMA022	CMA023	CMA023
Sample Date			09/25/2002	09/18/2002	09/18/2002	09/17/2002	09/17/2002
Sample Interval			6.5 - 16.5 ft	8 - 18 ft	8 - 18 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			K2344-18	F14664-5	12344-11	F14639-4	12344-4
Chemical-Name							
General Chemistry - mg/l (MG/L)	250	T	1060 (A)	NIA.	3281 (A)	N/A	408 (A)
Hardness (As CaCO3)	250			NA NA		NA NA	
Iron, Ferrous	 		NA NA	NA	NA NA	NA	NA NA
Nitrogen, Ammonia as N			33	NA	0.565 J	NA NA	1.63 J
Nitrogen, Kjeldahi			39.62	NA NA	0.7709 UJ	NA NA	2.193 J
Nitrogen, Nitrate as N	10		0.05 U	NA	0.05 U	NA NA	0.055
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	NA NA	NA NA	NA NA	NA NA
Oxygen Demand, Chemical			NA NA	NA NA	NA NA	29.7	NA
Phosphorus-32			2.6	NA NA	0.152 UJ	NA	0.961 J
Solids, Total Dissolved (Residue, Filter			32.3	NA	6.75	NΑ	260 J
Solids, Total Suspended			NA NA	NA	NA NA	NA	NA NA
Sulfate	250		65	NA NA	45.9	NA	22.8
Sulfide			3.04	. NA	0.5 U	NA	0.72 U
General Chemistry - ug/l (ug/L)							
Ethane			NA	NA NA	NA NA	NA	NA NA
Ethene			NA	NA	NA NA	NA	NA NA
Methane			NA NA	NA	NA NA	NA	NA
Volatile Organic Compounds (mg/l)							
Ethane			12	NA NA	1.5 U	NA	1.5 U
Ethane			12	NA NA	1.5 U	NA	1.5 U
Ethene			2	NA NA	1.5 U	NA	1.5 U
Ethene			2	NA	1.5 U	NA NA	1.5 U
Methane			1200	NA	1.5 U	NA NA	27

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

ယ (၁

Table G.15

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-22S	MA-MW-18S	MA-MW-18S	MA-MW-18M
Sample ID	GWQC	MCL	CMA024	CMA024	CMA025	CMA025	CMA026
Sample Date	,		09/17/2002	09/17/2002	09/18/2002	09/18/2002	09/18/2002
Sample Interval			10 - 21 ft	10 - 21 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	31.77 - 41.77 ft
CLP Sample ID			F14639-3	12344-3	F14664-2	12344-8	F14664-3
Chemical Name					· 		
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			. NA	230	NA	456	NA
Carbon Dioxide			305	NA NA	485	NA NA	374
Carbon, Total Organic			NA NA	5 U	NA	5:043	NA
Chloride	250		NA NA	74.1	NA	29.7	NA
Ethane			NA .	.NA	NA .	NA NA	NA
Ethene			NA	NA NA	NA	NA NA	NA
Hardness (As CaCO3)	250		NA .	276 (A)	NA	390 (A)	NA
Iron, Ferrous			NA NA	NA	NA	NA NA	NA
Methane			NA	NA	NA ·	NA NA	NA .
Nitrogen, Ammonia as N			NA	0.1 UJ	NA	4.3 J	NA
Nitrogen, Kjeldahl			NA	0.4566 UJ	NA NA	4.864 J	NA
Nitrogen, Nitrate as N	10		NA	3.24	NA	0.05 U	NA
Nitrogen, Nitrite	1		NA .	0.05 U	NA_	0.05 U	NA
Oxygen Demand, Biologic Five Day	·		NA.	NA NA	13.4	NA NA	. NA
Oxygen Demand, Chemical			NA NA	NA	21.6	· NA	NA
Phosphorus-32			NA NA	0.1 UJ	NA	0.598 UJ	NA
Solids, Total Dissolved (Residue, Filter			NA .	6.9	NA	48	NA
Solids, Total Suspended			NA	NA NA	NA NA	NA NA	NA
Sulfate	250		NA	66.9	NA	5 U	NA
Sulfide			NA NA	0.5 U_	NA NA	0.5 U	NA
General Chemistry - mg/kg (MG/L)					.,,		
Carbon, Total Organic			NA NA	5 U_	NA .	5.043	NA NA
Sarbori, Total Organic		<u> </u>	147	 		0.040	
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3	<u></u>		NA NA	230	NA	456	NA
Carbon Dioxide			305	NA .	485	NA NA	374
Carbon, Total Organic			NA	5 U	NA	5.043	NA .
Chloride	250		NA NA	74.1	NA	29.7	NA

J - Reported value estimated in quantity
NA -Not analyzed
R- Rejected result
U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-22S	MA-MW-22S	MA-MW-18S	MA-MW-18S	MA-MW-18M
Sample ID	GWQC	MCL	CMA024	CMA024	CMA025	CMA025	CMA026
Sample Date	·		09/17/2002	09/17/2002	09/18/2002	09/18/2002	09/18/2002
Sample Interval			10 - 21 ft	10 - 21 ft	7.8 - 17.8 ft	7.8 - 17.8 ft	31.77 - 41.77 ft
CLP Sample ID			F14639-3	12344-3	F14664-2	12344-8	F14664-3
Chemical Name							
General Chemistry - mg/l (MG/L)	<u> </u>						· · · · · · · · · · · · · · · · · · ·
Hardness (As CaCO3)	250		NA NA	276 (A)	NA	390 (A)	NA
Iron, Ferrous			NA	NA	NA .	NA NA	NA
Nitrogen, Ammonia as N			NA	0.1 UJ	NA	4.3 J	NA
Nitrogen, Kjeldahl			NA ·	0.4566 UJ	NA NA	4.864 J	NA
Nitrogen, Nitrate as N	10		NA	3.24	NA	0.05 U	· NA
Nitrogen, Nitrite	1		NA	0.05 U	NA NA	0.05 U	NA
Oxygen Demand, Biologic Five Day			NA	NA NA	13.4	NA NA	NA
Oxygen Demand, Chemical			NA	NA	21.6	NA NA	NA .
Phosphorus-32			NA	0.1 UJ	NA	0.598 UJ	NA .
Solids, Total Dissolved (Residue, Filter			NA	6.9	NA	48	NA
Solids, Total Suspended			NA	NA NA	NA NA	NA NA	NA
Sulfate	250		NA	66.9	NA	5 U	NA
Sulfide			NA NA	0.5 U	NA .	0.5 U	NA
General Chemistry - ug/l (ug/L)							
Ethane			NA	NA	NA	NA NA	NA NA
Ethene			NA .	NA	NA .	NA NA	NA
Methane			NA	NA NA	NA NA	NA NA	NA
Volatile Organic Compounds (mg/l)							
Ethane			NA	1:5 U	NA	150 U	NA
Ethane		-	NA	1.5 U	NA	150 U	NA
Ethene			NA	1.5 U	NA	150 U	NA
Ethene			NA NA	1.5 U	NA	150 U	NA
Methane	<u> </u>		NA NA	1.5 U	NA	1200	NA

NA -Not analyzed

R- Rejected result

J - Reported value estimated in quantity

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18D	MA-MW-18D	MA-MW-19S	MA-MW-19S
Sample ID	GWQC	MCL	CMA026	CMA027	CMA027	CMA028	CMA028
Sample Date			09/18/2002	09/18/2002	09/18/2002	09/19/2002	09/19/2002
Sample Interval			31.77 - 41.77 ft	140 - 152 ft	140 - 152 ft	5.05 - 15.05 ft	5.05 - 15.05 ft
CLP Sample ID			12344-9	F14664-1	12344-7	F14692-6	12344-17
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			308	NA	50	NA	460
Carbon Dioxide			NA NA	58.9	NA NA	460	NA NA
Carbon, Total Organic			5 U	NA NA	5 U	NA NA	5.001
Chloride	250		52	NA	18.3	NA	91.7
Ethane			_ NA	NA	NA	NA NA	NA NA
Ethene			NA NA	NA NA	, NA	NA.	NA .
Hardness (As CaCO3)	250		304 (A)	NA	60	NA ·	400 (A)
Iron, Ferrous			NA NA	NA	NA NA	154	NA NA
Methane			NA NA	NA	NA	NA.	NA NA
Nitrogen, Ammonia as N			1.89 J	NA NA	1.58 J	NA	11.5 J
Nitrogen, Kjeldahl			2.188 J	NA NA	1.756 J	NA.	12. <u>9</u> 2 J
Nitrogen, Nitrate as N	10		0.05 ∪	NA NA	0.05 U	. NA	0.05 U
Nitrogen, Nitrite	1	·	0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day	·		NA NA	NA	NA	NA NA	NA NA
Oxygen Demand, Chemical			NA NA	NA	NA NA	NA	NA NA
Phosphorus-32			0.244 UJ	NA ·	0.208 UJ	NA NA	0.767 UJ
Solids, Total Dissolved (Residue, Filter			88	NA	120	NA	21.5
Solids, Total Suspended			NA NA	NA NA	NA NA	NA NA	NA ·
Sulfate	250		57.7	NA NA	22.7	NA NA	5 U
Sulfide			0.5 U	NA NA	0.5 U	NA	0.5 U
General Chemistry - mg/kg (MG/L)							
Carbon, Total Organic			5 U	. NA	5 U .	NA NA	5.001
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			308	NA	50	NA NA	460
Carbon Dioxide			NA NA	58.9	NA .	460	NA NA
Carbon, Total Organic			5 U	NA NA	5 U	NA NA	5.001
Chloride	250		52	NA NA	18.3	NA NA	91.7

J - Reported value estimated in quantity

NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Camden, NJ

Station ID	(A)	(B)	MA-MW-18M	MA-MW-18D	MA-MW-18D	MA-MW-19S	MA-MW-19S
Sample ID	GWQC	MCL	CMA026	CMA027	CMA027	CMA028	CMA028
Sample Date			09/18/2002	09/18/2002	09/18/2002	09/19/2002	09/19/2002
Sample Interval			31.77 - 41.77 ft	140 - 152 ft	140 - 152 ft	5.05 - 15.05 ft	5.05 - 15.05 ft
CLP Sample ID			12344-9	F14664-1	12344-7	F14692-6	12344-17
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		- JL 304 - (A)	NA NA	60	NA NA	400. (A)
Iron, Ferrous			NA	NA	NA NA	NA NA	NA NA
Nitrogen, Ammonia as N			1.89 J	NA	1.58 J	NA_	11.5 J
Nitrogen, Kjeldahl			2.188 J	NA	1.756 J	NA .	12.92 J
Nitrogen, Nitrate as N	10		0.05 U	NA	0.05 U	NA .	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA	NA	NA NA	NA.	NA
Oxygen Demand, Chemical			NA	NA	NA	NA NA	NA
Phosphorus-32			0.244 UJ	NA	0.208 UJ	NA NA	0.767 UJ
Solids, Total Dissolved (Residue, Filter			88	NA	120	NA NA	21.5
Solids, Total Suspended			NA	NA	NA	NA NA	NA
Sulfate	250		57.7	NA	22.7	NA NA	5 U
Sulfide			0.5 U	NA	0.5 U	NA NA	0.5 U
Consol Chamistry well (val)		<u> </u>				 	
General Chemistry - ug/l (ug/L) Ethane		T	NA NA	NA .	NA NA	NA NA	NA NA
Ethene		 	NA NA	NA NA	NA NA	NA NA	NA NA
Methane		 	NA NA	NA NA	NA NA	NA NA	NA NA
ivieti (arie			IVA		i iv	1	144
Volatile Organic Compounds (UG/L)) •						
Ethane			15 U	, NA	1.5 U	NA NA	8
Ethane			15 U	NA	1.5 U	NA	8
Ethene			15 U	NA	1.5 U	NA NA	1.5 U
Ethene			15 U	NA	1.5 U	NA NA	1.5 U
Methane		ļ	120	NA	1.5 U	NA NA	670

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-20R
Sample ID	GWQC	MCL	CMA029	CMA029	CMA030	CMA030	CMA031
Sample Date			09/19/2002	09/19/2002	09/19/2002	09/19/2002	09/20/2002
Sample Interval			42 - 52 ft	42 - 52 ft	103 - 113 ft	103 - 113 ft	113 - 123 ft
CLP Sample ID			F14692-3	12344-14	F14692-4	12344-15	F14715-1
Chemical Name							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	200	NA NA	20	NA
Carbon Dioxide	· ·		198	NA .	209	NA NA	104
Carbon, Total Organic			NA .	5 U	NA NA	5 U	· NA
Chloride	_ 250 -		NA .	60.7	NA NA	4630 (A)	NA
Éthane			NA NA	NA	, NA	NA NA	NA
Ethene			NA	NA NA	NA _	NA NA	NA_
Hardness (As CaCO3)	_ 250		NA	194	NA .	734	NA
Iron, Ferrous			0.11	NA _	76.9	NA NA	37.9
Methane			NA	NA	NA NA	NA NA	NA NA
Nitrogen, Ammonia as N			NA NA	0.497 J	NA NA	7.76 J	NA
Nitrogen, Kjeldahl			NA	0.6442 UJ	NA .	7.783 J	NA NA
Nitrogen, Nitrate as N	10		NA NA	0.05 U	NA	0.05 U	NA NA
Nitrogen, Nitrite	1		NA NA	0.05 U	NA NA	0.05 U	NA
Oxygen Demand, Biologic Five Day			NA .	NA	44.5 J	NA NA	NA_
Oxygen Demand, Chemical			NA NA	NA	69.5	NA NA	22.2
Phosphorus-32			NA	0.137 UJ	NA.	0.119 UJ	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	136	NA	156	NA
Solids, Total Suspended			NA	NA	NA NA	NA NA	NA NA
Sulfate	_250		NA NA	40.9	NA NA	254 (A)	NA
Sulfide	·		NA NA	0.5 U	NA NA	0.5 UJ	NA NA
General Chemistry - mg/kg (MG/L)		1				<u> </u>	
Carbon, Total Organic		·	NA NA	5 U	NA NA	5 U	NA .
Garden, Total Organio			100	<u> </u>	1		
General Chemistry - mg/l (MG/L)		,					
Alkalinity, Total as CaCO3			NA NA	200	NA NA	20	NANA
Carbon Dioxide			198	NA NA	209	NA NA	104
Carbon, Total Organic			NA	5 U	NA NA	5 U	NA NA
Chloride	250		NA	60.7	NA	4630 (A)	NA NA

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

Exceedances highlighted

(A, B) - Exceeds criteria

Station ID	(A)	(B)	MA-MW-19M	MA-MW-19M	MA-MW-19R	MA-MW-19R	MA-MW-20R
Sample ID	GWQC	MCL	CMA029	CMA029	CMA030	CMA030	CMA031
Sample Date			09/19/2002	09/19/2002	09/19/2002	09/19/2002	09/20/2002
Sample Interval			42 - 52 ft	42 - 52 ft	103 - 113 ft	103 - 113 ft	113 - 123 ft
CLP Sample ID			F14692-3	12344-14	F14692-4	12344-15	F14715-1
Chemical Name	· · · · · · · · · · · · · · · · · · ·						-
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA NA	194	NA NA	7.34 (A)	NA
Iron, Ferrous			0.11	NA	76.9	NA .	37.9
Nitrogen, Ammonia as N			NA.	0.497 J	. NA	7.76 J	, NA
Nitrogen, Kjeldahl			NA .	0.6442 UJ	NA	7.783 J	NA .
Nitrogen, Nitrate as N	10		NA	0.05 U	NA	0.05 U	NA
Nitrogen, Nitrite	1		NA NA	0.05 U	NA	0.05 U	NA .
Oxygen Demand, Biologic Five Day			NA	NA	44.5 J	NA NA	. NA
Oxygen Demand, Chemical			NA NA	NA NA	69.5	NA NA	22.2
Phosphorus-32			NA	0.137 UJ	NA .	0.119 UJ	NA .
Solids, Total Dissolved (Residue, Filter			NA	136	NA NA	156	NA
Solids, Total Suspended			NA NA	NA NA	, NA	NA	NA
Sulfate	250		NA	40.9	NA .	254 (A)	NA .
Sulfide	ν.,		NA	0.5 U	. NA	0.5 UJ	NA NA
		<u> </u>				<u> </u>	·
General Chemistry - ug/l (ug/L)	·						
Ethane			NA NA	NA NA	NA NA	NA NA	NA ⁻
Ethene			NA NA	NA	NA NA	NA NA	NA
Methane			NA NA	NA NA	NA NA	NA NA	NA NA
		<u> </u>					
Volatile Organic Compounds (mg/l)							· · · · · · · · · · · · · · · · · · ·
Ethane			NA NA	1.5 U	NA NA	2	NA
Ethane			NA NA	1.5 U	NA NA	2	NA NA
Ethene	 		NA NA	1.5 U	NA NA	1.5 U	NA NA
Ethene			NA NA	1.5 U	NA NA	1.5 U	NA NA
Methane		<u> </u>	NA NA	54	NA NA	330	NA NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20R	MA-MW-20S	MA-MW-20S	MA-MW-20M	MA-MW-20M
Sample ID	GWQC	MCL	CMA031	CMA032	CMA032	CMA033	CMA033
Sample Date			09/20/2002	09/20/2002	09/20/2002	09/20/2002	09/20/2002
Sample Interval			113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			12344-18	F14715-3	12344-20	F14715-4	K2344-1
Chemical Name							
						,	
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			20	NA NA	280	NA	370
Carbon Dioxide			NA NA	304	. NA	207	NA _
Carbon, Total Organic			5 U	. NA .	5 U	NA	6.965
Chloride	250		1300 (A)	NA .	79	, NA	89.5
Ethane			NA .	NA	NA NA	NA	NA
Ethene			NA NA	NA	NA NA	NA_	. NA
Hardness (As CaCO3)	250		306 ° (A)	NA	354 (A)	NA	340 (A)
Iron, Ferrous			NA NA	NA .	NA	3.7	NA
Methane			NA NA	NA	NA NA	NA	NA NA
Nitrogen, Ammonia as N		-	5.62	NA NA	0.1 U	NA .	6.94 J
Nitrogen, Kjeldahl			6.12	NA	1.23	NA ·	7.973 J
Nitrogen, Nitrate as N	10		0.775	NA	6.79	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA	0.05 U	NA	0.05 U
Oxygen Demand, Biologic Five Day	· · · · · · · · · · · · · · · · · · ·		NA NA	NA ,	NA NA	NA	NA NA
Oxygen Demand, Chemical	- 		NA NA	NA	NA NA	NA	NA NA
Phosphorus-32			0.1 U	NA	1.33	NA NA	0.272 UJ
Solids, Total Dissolved (Residue, Filter			79	NA	134	NA NA	208
Solids, Total Suspended			NA NA	NA .	. NA	NA .	NA NA
Sulfate	250		51.8	NA NA	57.3	NA NA	54.3
Sulfide			1.08 U	NA	0.5 U	NA	0.5 U
General Chemistry - mg/kg (MG/L)						·	
Carbon, Total Organic			5 U	NA NA	5 U	NA	6.965
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			20	NA	280	NA	370
Carbon Dioxide			NA NA	304	NA ·	207	NA NA
Carbon, Total Organic			5 U	NA _	5 U	NA	6.965
Chloride	250		1300 (A)	NA NA	79	NA _	89.5

J - Reported value estimated in quantity

NA -Not analyzed

303006

R- Rejected result

(A, B) - Exceeds criteria Exceedances highlighted

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Groundwater - Natural Attenuation Parameter Results Martin Aaron Superfund Site

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20R	MA-MW-20S	MA-MW-20S	MA-MW-20M	MA-MW-20M
Sample ID	GWQC	MCL	CMA031	CMA032	CMA032	CMA033	CMA033
Sample Date		Ì	09/20/2002	09/20/2002	09/20/2002	09/20/2002	09/20/2002
Sample Interval			113 - 123 ft	7.9 - 17.9 ft	7.9 - 17.9 ft	42 - 52 ft	42 - 52 ft
CLP Sample ID			12344-18	F14715-3	12344-20	F14715-4	K2344-1
Chemical Name							

General Chemistry - mg/l (MG/L)				·			
Hardness (As CaCO3)	250		306 (A)	NA	354 (A)	NA	340# (A)
Iron, Ferrous			NA NA	NA	NA NA	3.7	NA NA
Nitrogen, Ammonia as N			5.62	NA	0.1 U	NA	6.94 J
Nitrogen, Kjeldahl			6.12	NA	1.23	NA	7.973 J
Nitrogen, Nitrate as N	10		0.775	NA NA	6.79	NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA NA	NA	NA NA	NA	NA NA
Oxygen Demand, Chemical			NA NA	NA	NA NA	NA	NA NA
Phosphorus-32			0.1 U	NA	1.33	NA	0.272 UJ
Solids, Total Dissolved (Residue, Filter			79	NA	134	NA	208
Solids, Total Suspended			NA	NA	NA NA	NA	NA NA
Sulfate	250		51.8	NA NA	57.3	NA	54.3
Sulfide			1.08 U	NA NA	0.5 U	NA	0.5 U
General Chemistry - ug/l (ug/L)							
Ethane			NA NA	NA	NA NA	NA	NA
Ethene			NA NA	NA	NA NA	NA	NA NA
Methane		•	NA NA	NA	NA NA	NA NA	NA .
		<u> </u>					
Volatile Organic Compounds (mg/l)							
Ethane			1.5 U	NA NA	1.5 U	NA	0.7 J
Ethane	· · · · · · · · · · · · · · · · · · ·		1.5 U	NA NA	1.5 U	NA NA	0.7 J
Ethene			1.5 U	NA NA	1.5 U	NA	1.5 U
Ethene			1.5 U	NA	1.5 U	NA	1.5 U
Methane			28	NA NA	1.5 U	NA NA	10

NA -Not analyzed

R- Rejected result

 $^{{\}bf J}$ - Reported value estimated in quantity

U - Analyte not detected above reporting limit

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20D	CW-07	CW-07	MA-MW-04S
Sample ID	GWQC	MCL	CMA034	CMA034	CMA035	CMA035	CMA036
Sample Date			09/20/2002	09/20/2002	09/24/2002	09/24/2002	09/17/2002
Sample Interval			123 - 133 ft	123 - 133 ft	N/A	N/A	4 - 14 ft
CLP Sample ID			F14715-2	12344-19	F14738-6	K2344-13	F14639-2
Chemical Name				,			
							
General Chemistry (MG/L)							
Alkalinity, Total as CaCO3			NA NA	46	NA NA	74	NA NA
Carbon Dioxide			120	NA ·	81	NA NA	309
Carbon, Total Organic			NA NA	5 U	NA .	5 U	NA NA
Chloride	250		NA	1960 (A)	NA	47.7	NA
Ethane			NA NA	NA	NA NA	NA	NA
Ethene			_NA	NA	NA NA	NA	_NA
Hardness (As CaCO3)	250		NA	400 (A)	NA NA	156	NA.
Iron, Ferrous			174	NA NA	0.1· U	NA_	0.45 J
Methane			NA NA	, NA	· · NA	NA	NA
Nitrogen, Ammonia as N			NA_	6.32	NA	3.98 J	NA NA
Nitrogen, Kjeldahl			NA NA	7.042	NA	4.01 J	NA
Nitrogen, Nitrate as N	10		NA	0.05 U	NA	0.1	NA
Nitrogen, Nitrite	11		NA NA	. 0.05 U	NA .	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA NA	NA · · ·	. 3 U	NA NA	33.3 J
Oxygen Demand, Chemical	····		36.1	NA NA	20 U	NA NA	45.9
Phosphorus-32			NA NA	0.139 U	NA	0.138 UJ	NA NA
Solids, Total Dissolved (Residue, Filter			NA NA	32.7	NA NA	17	NA .
Solids, Total Suspended			NA NA	NA NA	NA	NA NA	. NA
Sulfate	250		NA NA	49	NANA	54.4	NA NA
Sulfide			NA NA	0.96 U	NA	0.5_U	NA
Canada Chamistay matter (MC/II)		<u></u>					
General Chemistry - mg/kg (MG/L)		<u> </u>	NA ·	F 11	NIA	5 11	NA NA
Carbon, Total Organic		 	NA '	5 U	NA	5 U	NA NA
General Chemistry - mg/l (MG/L)							
Alkalinity, Total as CaCO3			NA NA	46	NA_	74	NA NA
Carbon Dioxide			120	NA	81	NA NA	309
Carbon, Total Organic			NA NA	5 U	NA NA	5 U	NA NA
Chloride	250		NA	1960 (A)	NA	47.7	NA NA

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

05/26/2004 **GWQC - Groundwater Quality Criteria**

MCL - Maximum Contaminant Level

Camden, NJ

Remedial Investigation Report - May 2004

Station ID	(A)	(B)	MA-MW-20D	MA-MW-20D	CW-07	CW-07	MA-MW-04S
Sample ID	GWQC	MCL	CMA034	CMA034	CMA035	CMA035	CMA036
Sample Date			09/20/2002	09/20/2002	09/24/2002	09/24/2002	09/17/2002
Sample Interval			123 - 133 ft	123 - 133 ft	N/A	N/A	4 - 14 ft
CLP Sample ID			F14715-2	12344-19	F14738-6	K2344-13	F14639-2
Chemical Name							
General Chemistry - mg/l (MG/L)							
Hardness (As CaCO3)	250		NA NA	400 (A)	. NA	156	. NA
Iron, Ferrous			174	NA .	0.1 U	NA	0.45 J
Nitrogen, Ammonia as N			. NA	6.32	NA	3.98 J	NA
Nitrogen, Kjeldahl			NA	7.042	NA	4.01 J	NA
Nitrogen, Nitrate as N	10		NA	0.05 U	· NA	0.1	NA
Nitrogen, Nitrite	1		NA .	0.05 U	NA	0.05 U	NA NA
Oxygen Demand, Biologic Five Day			NA	NA	3 U	NA	33.3 J
Oxygen Demand, Chemical			36.1	NA NA	20 U	NA NA	45.9
Phosphorus-32			NA NA	0.139 U	NA NA	0.138 UJ	NA
Solids, Total Dissolved (Residue, Filter			NA.	32.7	NA	17	NA NA
Solids, Total Suspended			NA	NA	NA NA	NA NA	NA NA
Sulfate	250		NA NA	49	NA NA	54.4	NA
Sulfide	. :		NA NA	0.96 U	NA .	0.5 U	NA NA
General Chemistry - ug/l (ug/L)							
Ethane			NA NA	NA NA	NA .	NA NA	NA .
Ethene			NA	NA NA	NA NA	NA NA	NA
Methane			NA	NA	NA NA	NA NA	NA .
	1						
Ethane			NA NA	3 U	NA	1.5 U	NA NA
Ethane			NA NA	3 U	NA _	1.5 U	NA NA
Ethene			NA NA	3 U	NA	1.5 U	NA
Ethene			NA	3 U	NA	1.5 U	NA .
Methane			NA NA	53	NA	9	NA NA

NA -Not analyzed

J - Reported value estimated in quantity

R- Rejected result

U - Analyte not detected above reporting limit

Camden, NJ Remedial Investigation Report - May 2004

MA-MW-21S	MA-MW-21S	MA-MW-04S	(B)	(A)	Station ID
CMA037	CMA037	CMA036	MCL	GWQC	Sample ID
09/17/2002	09/17/2002	09/17/2002			Sample Date
10 - 21 ft	10 - 21 ft	4 - 14 ft			Sample Interval
12344-5	F14639-5	12344-2			CLP Sample ID
					Chemical Name
			<u> </u>		
450	A1A	000	<u> </u>		General Chemistry (MG/L)
450 NA	NA 100 L	260		 	Alkalinity, Total as CaCO3
	436 J	NA NA			Carbon Dioxide
8.123	NA NA	16.26			Carbon, Total Organic
72.8	NA	3.8		250	Chloride
NA	NA	NA NA			Ethane
NA	NA NA	NA NA			Ethene
386 (A)		256 (A)		250	Hardness (As CaCO3)
NA	NA	NA NA			Iron, Ferrous
NA	NA NA	NA NA			Methane
1.89 J	NA NA	2.18 J			Nitrogen, Ammonia as N
2.517 J	NA NA	3.392 J			Nitrogen, Kjeldahl
0.05 U	NA NA	0.17 J		10	Nitrogen, Nitrate as N
0.05 U	NA NA	0.05 U		1	Nitrogen, Nitrite
NA	2 J	NA NA			Oxygen Demand, Biologic Five Day
NA	27	NA NA	ļ <u></u>		Oxygen Demand, Chemical
1.02 J	NA	0.438 UJ			Phosphorus-32
62.3 J	NA NA	4.6			Solids, Total Dissolved (Residue, Filter
NA	NA .	NA NA			Solids, Total Suspended
23.1	NA NA	6.76 J		250	Sulfate
0.56 U	NA NA	0.76 U		-	Sulfide
			<u> </u>		General Chemistry - mg/kg (MG/L)
8.123	NA	16.26			Carbon, Total Organic
			<u> </u>		General Chemistry - mg/l (MG/L)
450	NΔ	260	T		
NA					
8.123					
72.8		······································		250	
	NA 436 J NA NA	260 NA 16.26 3.8		250	General Chemistry - mg/l (MG/L) Alkalinity, Total as CaCO3 Carbon Dioxide Carbon, Total Organic Chloride

J - Reported value estimated in quantity NA -Not analyzed R- Rejected result

U - Analyte not detected above reporting limit

(A, B) - Exceeds criteria Exceedances highlighted

Station ID	(A)	(B)	MA-MW-04S	MA-MW-21S	MA-MW-21S
Sample ID	GWQC	MCL	CMA036	CMA037	CMA037
Sample Date			09/17/2002	09/17/2002	09/17/2002
Sample Interval			4 - 14 ft	10 - 21 ft	10 - 21 ft
CLP Sample ID			12344-2	F14639-5	12344-5
Chemical Name					
General Chemistry - mg/l (MG/L)		<u></u>			
Hardness (As CaCO3)	250		256 (A).	NA	386 " (A)
Iron, Ferrous			NA NA	NA NA	NA NA
Nitrogen, Ammonia as N			2.18 J	NA	1.89 J
Nitrogen, Kjeldahl			3.392 J	NA NA	2.517 J
Nitrogen, Nitrate as N	10		0.17 J	NA NA	0.05 U
Nitrogen, Nitrite	1		0.05 U	NA NA	0.05 U
Oxygen Demand, Biologic Five Day			NA	2 J	NA NA
Oxygen Demand, Chemical			NA NA	27	NA NA
Phosphorus-32			0.438 UJ	NA	1.02 J
Solids, Total Dissolved (Residue, Filter			4.6	NA	62.3 J
Solids, Total Suspended			NA NA	NA	NA NA
Sulfate	250		6.76 J	NA	23.1
Sulfide			0.76 U	NA NA	0.56 U
General Chemistry - ug/l (ug/L)	· · · · · · · · · · · · · · · · · · ·				
Ethane			NA NA	NA NA	NA .
Ethene			NA NA	NA_	NA NA
Methane	<u> </u>		NA NA	NA	NA
Volatile Organic Compounds (mg/l)					
Ethane			7.5 U	NA NA	1.5 U
Ethane			7.5 U	NA NA	1.5 U
Ethene			7.5 U	NA NA	1.5 U
Ethene			7.5 U	NA NA	1.5 U
Methane			59 J	. NA	24

J - Reported value estimated in quantity NA -Not analyzed

R- Rejected result

U - Analyte not detected above reporting limit

Appendix H

Quality Assurance Project Plan

Quality Assurance Project Plan (QAPP)

Remedial Investigation at the Martin Aaron, Inc. Superfund Site - Camden, New Jersey

RESPONSE ACTION CONTRACT NO. 68-W6-0036 EPA WORK ASSIGNMENT NO. 953-RICO-02MN CH2M HILL PROJECT NO. 164453

Prepared for

U.S. Environmental Protection Agency

August 31, 2001

QUALITY ASSURANCE PROJECT PLAN (QAPP)

Remedial Investigation/Feasibility Study Martin Aaron Superfund Site Camden, New Jersey

WA No. 053-RICO-02MN/Contract No. 68-W6-0036

	•
Prepared by: CH2M HILL	Date: August 31, 2001
Approved by:	
EPA, Region 2, Work Assignment Manager	
Richard Ho	
EPA, Region 6, Project Officer Tom Reilly	
EPA, Region 6, Contracting Officer Deborah Ponder	
CH2M HILL, RAC Program Manager Alpheus Sloan, III	
CH2M HILL, Project Manager David Nisula	

Contents

TITLE AND APPROVAL SHEET

CONTENTS	i
TABLES	ii
Figures	
LIST OF ATTACHMENTS	
DISTRIBUTION LIST	
LIST OF ACRONYMS	iv
SECTION 1 PROJECT MANAGEMENT	1-1
1.1 Introduction	1-1
1.2 Project Organization	1-1
1.2.1 EPA Region 2 Work Assignment Manager	1-1
1.2.2 EPA Region 6 Project and Contracting Officers	
1.2.3 EPA Region 2 Contract Laboratory Program Liaison	
1.2.4 CH2M HILL Program Manager	
1.2.5 CH2M HILL QA Manager/Senior Reviewer	1-2
1.2.6 CH2M HILL Project Manager	
1.2.7 CH2M HILL Remedial Investigation Lead	1-3
1.2.8 CH2M HILL Review Team Leader	
1.2.9 CH2M HILL Analytical, Sampling, and Data Quality Evaluation Lead	1-3
1.2.10 CH2M HILL Field Team Leader and Field Data Specialist	
1.2.11 CH2M HILL Project Controls Engineer	
1.2.12 CH2M HILL Subcontracts Manager	
1.2.13 CH2M HILL Data Management and Presentation Lead	
1.2.14 CH2M HILL Technical Resources	
1.2.15 Analytical and Data Validation Support	1-5
1.3 Problem Definition / Background	
1.3.1 Soil Conditions	
1.3.2 Groundwater Conditions	
1.3.3 Radioactivity	
1.4 Project Description and Schedule	
1.5 Quality Objectives and Criteria for Measurement Data	
1.6 SPECIAL TRAINING REQUIREMENTS / CERTIFICATION	
1.7 DOCUMENTATION OF RECORDS	
1.7.1 Field Sampling Documentation	
1.7.2 Sample Identification System	
1.7.3 Hard Copy Analytical Records	
1.7.4 Electronic Analytical Records	
1.7.5 Project Record Maintenance and Storage	
SECTION 2 MEASUREMENT AND DATA ACQUISITION	2-1
2.1 Sampling Process Design and Rationale	2-1
2.2 Sampling Methods Requirements	
2.3 COORDINATING SAMPLING WITH EPA	
2.4 Sample Handling and Custody Requirements	
2.4.1 Sample Preservation and Holding Time	
2.4.2 Sample Custody and Shipping Requirements	

2.5 ANA	JLYTICAL METHOD AND QUALITY CONTROL REQUIREMENTS	2-8
2.5.1	VOC Analysis	2-8
2.5.2	SVOC Analysis	2-9
2.5.3	Metals Analysis	2-9
	Pesticide/PCB Analysis	
2.5.5	Non-CLP Analyses to be Performed	2-10
2.6 Qu <i>a</i>	ALITY CONTROL PROCEDURES	2-15
	Quality Control Samples	
	Field and Laboratory Corrective Action	
	RUMENT / EQUIPMENT TESTING, INSPECTION, AND MAINTENANCE REQUIREMENTS	
2.8 Inst	RUMENT CALIBRATION AND FREQUENCY	2-17
	Field Instruments	
	Laboratory Equipment	
	PECTION / ACCEPTANCE REQUIREMENTS FOR SUPPLIES AND CONSUMABLES	
	TA ACQUISITION REQUIREMENTS	
	l Data Acquisition Planning	
	2 Field Data Acquisition	
	3 Laboratory Data Acquisition and Reporting	
	4 Data Quality Evaluation (Validation) Data Entry and Reporting	
	TA MANAGEMENT PLAN	
	l Data Types	
	2 Data Tracking and Management	
2.11.	3 Computer Database	2-22
2.11.	4 Documentation	2-2 <i>3</i>
2.11.	5 Evidence File	2-23
2.11.	6 Presentation of Site Characterization Data	2-24
SECTION	N 3 ASSESSMENT / OVERSIGHT	3-1
3.1 Ass	ESSMENTS AND RESPONSE ACTIONS	3-1
	ORTS TO MANAGEMENT	
SECTION	N 4 DATA VALIDATION AND USABILITY	4-1
	'A REVIEW, VALIDATION, AND EVALUATION REQUIREMENTS	
	Precision	
	Accuracy	
	Completeness	
	Sensitivity	
	JDATION AND VERIFICATION METHODS	
	CONCILIATION WITH DATA QUALITY OBJECTIVES.	
4.5 KEC	ONCIDIATION WITH DATA COADIT OBJECTIVES	
Tables		
Table 1	Sample Containers, Preservatives, and Holding Times	2-3
	1	2-0
Table 2	TCL VOC List and Required Reporting Limits for CLP methods and SW-	
	846 Method 8260B	2-10
Table 3	SVOC List and Required Reporting Limits for CLP Methods and SW-846	
	Method 8270C	2-11
Table 4	Target Analyte List and Required Reporting Limits for CLP Method	
TUDIC 4		0.10
mm 1 1 =	ILM04.1 and SW-846 Methods 6010B, 9012A, and 7000 series methods	2-12
Table 5	Target Analyte List and Required Reporting Limits for CLP Methods and	
	SW-846 Method 8081A/8082	2-13
Table 6	Reporting Limits for Non-CLP Analyses	2-14

Figures

1-1 Site Location Map1-2 Organization Chart

List of Attachments

Attachment 1 QC Requirements for Field Samples
Attachment 2 New Jersey Specific Groundwater Quality Criteria and Soil Cleanup Criteria

Distribution List

Richard Ho, EPA, Region 2, Work Assignment Manager Raymond Klimcsak/ EPA, Region 2
Dave Nisula, PM/CH2M HILL, Philadelphia
Alpheus Sloan III, PGM/CH2M HILL, Dallas
Kevin Murdock, RIL/CH2M HILL, Philadelphia
Juliana Hess/CH2M HILL, New Jersey
Lalenia Ebert/CH2M HILL, Herndon
Mark Lucas, Senior Reviewer/CH2M HILL, Philadelphia
Murray Rosenberg, RTL/CH2M HILL, Philadelphia
Adminstrative Assistance (AA)/CH2M HILL, Philadelphia
Paul Arps, Chemist/CH2M HILL, Milwaukee

List of Acronyms

AA Administrative Assistant

AOC Administrative Order on Consent

BTEX Benzene, Toluene, Ethylbenzene, Xylene

CFAM Contract Financial/Administrative Manager

CLP (EPA) Contract Laboratory Program

COC Chain of Custody

DCA Dichloroethane

DCE Dichloroethene

DMP Data Management Plan

DQOs Data Quality Objectives

EB Equipment Blank

EDD Electronic Data Deliverable

EPA Environmental Protection Agency

ESD (EPAs) Environmental Services Division

FS Feasibility Study

FSP Field Sampling Plan

FTL Field Team Leader

GC Gas Chromatography

GIS Geospatial Information System

ID Identification Number

LC Liquid Chromatography

MDL Method Detection Limit

MS Mass Spectroscopy

MS/MSD Matrix Spike/Matrix Spike Duplicate

NJDEP New Jersey Department of Environmental Protection

NPL National Priorities List

PCE Project Controls Engineer

PCE Tetrachloroethylene

PGM Program Manager

PM Project Manager

PRP Potentially Responsible Party

QA Quality Assurance

QA/QC Quality Assurance/Quality Control

QAO Quality Assurance Officer

QAP Quality Assurance Plan

QAPP Quality Assurance Project Plan

QC Quality Control

RAS Routine Analytical Services

RFP Request for Proposal

RIDMS Remedial Investigation Data Management System

RIL Remedial Investigation Lead

RI/FS Remedial Investigation/Feasibility Study

RSCC (EPAs) Regional Sample Control Coordinator

RTL Review Team Leader

RL Reporting Limit

ROD Record of Decision

SAS Specialized Analytical Services

SDG Sample Delivery Group

SMO (EPAs) Sample Management Office

SOP Standard Operating Procedure

SOW Statement of Work

SQL Structured Query Language

SVOC Semivolatile Organic Compounds

SW Solid Waste

TCE Trichloroethylene

TOC Total Organic Carbon

VC Vinyl Chloride

VOC Volatile Organic Compounds

WAM Work Assignment Manager

Project Management

1.1 Introduction

CH2M HILL is performing a remedial investigation/feasibility study (RI/FS) for the Martin Aaron Superfund site, located in Camden, New Jersey, in accordance with Work Assignment No. 953-RICO-02MN Statement of Work (SOW). This Quality Assurance Project Plan (QAPP) is one of several support plans prepared in conjunction with the following documents for the Martin Aaron RI/FS submitted under separate cover:

- Final RI/FS Work Plan (approved by EPA on April 29, 2001)
- Field Sampling Plan (FSP, August 2001)
- Site Health and Safety Plan (HASP, August 2001)

The site is located at 1542 South Broadway Street in Camden, New Jersey (see Figure 1-1). The purpose of this QAPP is to present the quality assurance/quality control (QA/QC) requirements for performing the RI/FS.

This section provides an overall approach to managing the project, including:

- Project organization, roles, and responsibilities
- Project definition and background
- Project description and schedule
- Data quality objectives (DQOs)
- Special training requirements
- Documentation and records management

1.2 Project Organization

CH2M HILL is contracted to perform work for EPA through a Response Action contract with EPA Region 6. Since the Martin Aaron site is located in EPA Region 2, that region will provide technical oversight of CH2M HILL, who is responsible for all phases of the investigation activities at the Martin Aaron site. CH2M HILL will also perform the FS for the site and provide project management. The various QA and management responsibilities of key project personnel are defined below and are shown in Figure 1-2.

1.2.1 EPA Region 2 Work Assignment Manager

The work assignment manager (WAM) is Richard Ho. Mr. Ho's responsibilities include:

- overall responsibility for all phases of the RI/FS
- review and approval of this QAPP and other support plans

1.2.2 EPA Region 6 Project and Contracting Officers

Technical direction and contract administration are provided by Mr. Tom Reilly, Project Officer (PO), and Ms. Cora Stanley, Contracting Officer (CO), respectively, in EPA's Region 6 Office.

1.2.3 EPA Region 2 Contract Laboratory Program Liaison

The Contract Laboratory Program (CLP) Liaison will be assigned once the CLP laboratories are selected by EPA. The responsibilities of the CLP Liaison include managing the CLP laboratories so that they will be able to receive and analyze the field samples collected as part of the RI.

1.2.4 CH2M HILL Program Manager

The CH2M HILL Program Manager is Alpheus Sloan, III. He has overall responsibility for meeting EPA objectives and CH2M HILL quality standards. In addition, the Program Manager is responsible for technical QC and project oversight.

1.2.5 CH2M HILL QA Manager/Senior Reviewer

The QA manager/senior reviewer is Mark Lucas. The QA manager will remain independent of direct job involvement and day-to-day operations and has direct access to management staff to resolve QA disputes, as necessary. Specific functions and duties include the following:

- Directing the QA review of the various phases of the project, as necessary
- Directing the review of QA plans and procedures
- Providing QA technical assistance to project staff, as necessary

1.2.6 CH2M HILL Project Manager

The CH2M HILL project manager (PM) is David Nisula. The PM is responsible for implementing the project and is authorized to commit resources to meet project objectives and requirements. The PM's primary function is to achieve technical, financial, and scheduling objectives. The PM will report directly to the EPA Region 2 WAM and will be the major point of contact for matters concerning the project. Specific functions and duties include the following:

- Define project objectives and develop a detailed work plan and schedule
- Establish project policy and procedures to address the specific needs of the project as a whole, as well as the objectives of each task
- Acquire and apply technical and corporate resources to meet budget and schedule constraints
- Orient field leaders and support staff with regard to the project's special considerations
- Monitor and direct other team members

- Develop and meet ongoing project or task staffing requirements, including mechanisms to review and evaluate each task product
- Review the work performed on each task to ensure quality, responsiveness, and timeliness
- Review and analyze overall task performance with regard to planned schedule and budget
- Review external reports (deliverables) before submission to EPA Regions 2 and 6
- Represent the project team at meetings and public hearings

1.2.7 CH2M HILL Remedial Investigation Lead

Kevin Murdock is CH2M HILL's Remedial Investigation Lead (RIL). The RIL is responsible for implementing the investigation as described in the site-specific planning documents. Mr. Murdock will serve as the alternate contact for the site and will lead the technical team in the preparation of the RI report.

1.2.8 CH2M HILL Review Team Leader

The Review Team Leader is Murray Rosenberg. Mr. Rosenberg's role as the review team leader is to support the PM in site management activities and to coordinate CH2M HILL internal reviews. The review team leader will also be involved in ongoing planning activities.

1.2.9 CH2M HILL Analytical, Sampling, and Data Quality Evaluation Lead

The CH2M HILL analytical, sampling, and data quality evaluation lead (project chemist and sample manager) is Paul Arps. He (or his designee) will be responsible for sample management and tracking during and after field activities. Specific responsibilities include the following:

- Schedule the sampling events with EPA's Regional Sample Control Coordinator (RSCC)
- Prepare sampling trip reports and submit them to EPA
- Monitor the laboratory/data validation process
- Relay data schedule or quality issues to the RSCC
- Maintain internal tools to track the receipt and content of data packages
- Prepare adequate storage facilities for hardcopy and electronic data files
- Coordinate non-CLP subcontracted laboratories for geotechnical, wipe/chip, and natural attenuation parameter sample
- Evaluate the usability (e.g., format of submittal, completeness of the dataset, and comments on the data qualifier) of electronic and hardcopy results from one out of every 10 samples
- Provide direction to the CH2M HILL Environmental Information Specialist (EIS) in the data management process

1.2.10 CH2M HILL Field Team Leader and Field Data Specialist

CH2M HILL's Field Team Leader (FTL) is Wojciech Winkler. The FTL is responsible for coordinating field efforts, making available and maintaining sampling equipment and materials, and providing shipping and packing materials. The FTL supervises the completion of chain-of-custody (COC) records, supervises the proper handling and shipping of samples, and is responsible for accurate completion of the field logbook. As the lead field representative, the FTL is responsible for consistently implementing the required QA/QC measures and performing field activities in accordance with approved policies and field procedures.

The CH2M HILL Field Data Specialist (FDS) will provide part time field support specifically to prepare sample labels and containers, complete chain-of-custody documentation, process samples for shipment, and transport the sample containers to an overnight shipping facility. The FDS is cross-trained to support the technical field activities and members of the field team as needed.

1.2.11 CH2M HILL Project Controls Engineer

Sam Brock is CH2M HILL's Project Controls Engineer (PCE). Mr. Brock's specific responsibilities include the following:

- Establishing and maintaining the project schedule;
- Establishing and maintaining the project financials, and;
- Preparing schedule and financial documents for work plans, work plan revision requests and monthly progress reports.

Mr. Brock will work with CH2M HILL's Contract Financial/Administrative Manager (CFAM), Kristina Staley, to provide contract administration and financial project controls support.

1.2.12 CH2M HILL Subcontracts Manager

Beverly Brooks is CH2M HILL's Subcontract's Manager. Ms. Brooks will work with CH2M HILL's CFAM, Kristina Staley, to provide contract administration controls support. Ms. Brooks will be responsible for the contract documents created in support of RI activities. Specific responsibilities include the following:

- Procuring the subcontractor;
- Resolving and contract dispute;
- Issuing change orders, as necessary, and;
- Closeout of the subcontracts.

1.2.13 CH2M HILL Data Management and Presentation Lead

Lalenia Ebert will serve as the Data Management and Presentation Lead. Ms. Ebert will coordinate the compilation and evaluation of historic data generated at the site and the incorporation and evaluation of new RI data. She will coordinate with EPA Region 2 in creating and implementing the Remedial Investigation Data Management System (RIDMS),

1-4

prior to loading the initial configuration data, and will support the ongoing management of the RIDMS toolkit. Ms. Ebert will also lead establishment of a standard process for requesting data and figures to support the preliminary evaluation of the data set.

1.2.14 CH2M HILL Technical Resources

CH2M HILL will draw on its corporate resources to identify appropriate technical resources to gather and analyze data and prepare various task reports and support materials. The PM, along with the other team members previously identified will coordinate the technical resources as needed to support each task.

1.2.15 Analytical and Data Validation Support

This task includes work efforts involved in scheduling, coordinating, tracking, and overseeing sample analyses and validating analytical data produced. The soil and groundwater samples collected during the RI will be analyzed for Target Compound List (TCL) and Target Analyte List (TAL) constituents through the EPA regional Contract Laboratory Program (CLP). CH2M HILL will directly procure required special analytical services, including geotechnical and natural attenuation parameters, from qualified, independent, non-CLP laboratories.

EPA will assign the CLP laboratories prior to the field sampling events (these laboratories are yet to be identified). CH2M HILL will select the non-CLP laboratories.

1.3 Problem Definition / Background

Information in this section was obtained primarily from the report entitled, Draft Remedial Investigation Report (RI Report, dated June 2000), prepared by L. Robert Kimball and Associates, Inc. for the New Jersey Department of Environmental Protection (NJDEP).

The 2.4-acre Martin Aaron site is located at 1542 South Broadway Street in the City of Camden, Camden County, New Jersey (Figure 1-1). The property is identified as Lot 1 of Block 460 in the Camden County Tax Assessor records for the City of Camden (see Figure 1-2A in the FSP). The property is situated on relatively level land in an area of mixed industrial and residential zoned properties. The site is roughly rectangular with about 309 feet adjoining the east line of the South Broadway Street right-of-way and about 334 feet adjoining the west line of the Sixth Street right-of-way (see Figure 1-2A in the FSP). A junkyard (Lots 10 and 4) and Everett Street are located north of the Site. A food processing company (Comarco) is located south of the site (Lots 26 and 3). During summer months, the site is mostly covered by dense vegetation.

Various companies, including Martin Aaron, Inc., used the site for drum recycling for approximately 30 years. Historically, Kifferty Morocco Manufacturing Co. operated a tannery at the site from 1887 until 1908. Castle Kid Company purchased the property in 1908 and manufactured glazed leathers until the City of Camden seized the property for tax delinquency in 1940. Benjamin Schmerling bought the property in 1940 and leased portions to H. Preston Lowden Co. for wool and hair blending and to American Chain and Cable Company-PA Lawnmower Division for manufacturing. Martin Aaron, Inc. purchased the property from Benjamin Schmerling in 1969, and operated a drum reconditioning facility

until 1985 under the name Drum Service of Camden. In 1985, Martin Aaron, Inc. sold the business to a corporation jointly owned by Westfall Ace Drum Company (Wadco) and Rhodes Drum Co, two major clients of the former Drum Service of Camden. Wadco occupied the majority of the facility and ceased operations in March 1995. Rhodes Drum Company operated at the building near the southeast corner of the site until they ceased operations in 1998. It is reported that a trucking company recently used the property for the storage and transfer of trailers and parking of automobiles. Martin Aaron, Inc. still owns the property.

Access to the site is restricted by a chain-linked fence with a locked gate. The City of Camden demolished the main structure, formerly located at the southwest portion of the Site and occupied by the Westfall Ace Drum Company (Wadco) (except for the concrete floor) in November 1998. Three underground storage tanks (USTs) were formerly located in the processing area just north of the former structure, and one UST was located east of the former structure. These USTs and associated contaminated soil were removed by the NJDEP during the spring and summer of 1999. In addition, five above ground storage tanks (ASTs) associated with the former operations were removed by the NJDEP prior to the start of RI activities in 1997. The remaining concrete floor of the former building contains a number of floor drains that led to three former settling basins. According to former site operators, all three basins reportedly received drum rinseate waters from site operations, and discharged to the Camden County Municipal Utility Authority (CCMUA) sanitary sewer system (although the actual discharge for basins 2 and 3 remains unknown). According to the RI Report, Basin 1 was removed by the NJDEP during UST removal activities in 1999.

The only remaining surficial structure, formerly occupied by Rhodes Drum Company, is located in the southeast portion of the lot (see Figure 1-2A in the FSP). According to the RI Report, one processing vessel and a single skimming basin (basin 4) were located near the east end of the building, and were removed by EPA in the winter of 1999. The basin received drum rinseate effluent from Rhodes Drum Company operations and discharged to the CCMUA sanitary sewer system, following pre-treatment activities. The remaining portions of the Site were historically used for drum storage, and consist of paved and unpaved surfaces; these areas are predominately open. Most or all of the stacked drums were removed by NJDEP.

An additional property of concern is located west of the Martin Aaron property, at 1535 South Broadway Street (Lot 15, Block 458), and is owned by the South Jersey Port Corporation (SJPC). The SJPC property was formerly leased to Wadco, which used it for office space and drum receiving/sorting. Three commercial buildings occupy the lot, with the remaining acreage consisting of paved and unpaved lots (see Figure 1-2B in the FSP).

Numerous areas of concern have been identified at the site. The processing rooms, where drums were drained, pressure-washed with caustic solutions, and rinsed, are major areas of concern. The residues from drum contents, rinseate runoff, and steam blowdown were collected in drainage tanks and floor drains. There was a baghouse for dust collection from drum sandblasting and a paint booth where oil-based paint was applied. Various ASTs and USTs were also associated with the site processes. The outdoor paved and unpaved portions of the property were used for drum storage. Leaking roll-off containers and drums had been observed on the site. The NJDEP confirmed reports of disposal, observed buried drums of hazardous waste, and found contaminated soils at depths below the water table. Numerous

sampling events conducted by the NJDEP between 1986 and 1998 identified volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and inorganic constituents in site settling basins and drums, as well as soil and groundwater. The highest concentrations of these constituents were detected near the drum processing areas where the settling basins are located.

The NJDEP RI was conducted in three phases (May to September 1997, September to November 1998, and December 1999 to March 2000). The RI included primarily site reconnaissance, a geophysical investigation over the yard area of the Martin Aaron property, a soils investigation including soil borings (with prefix "SB") and test trenches/pits (with prefix "TP"), a hydrogeologic investigation including the installation and sampling of 14 monitoring wells on the Martin Aaron property and two wells on the SJPC property, and site mapping and surveying.

1.3.1 Soil Conditions

Seventeen (17) VOCs were detected in site surface and/or subsurface soils at concentrations exceeding the NJDEP soil cleanup criteria. The primary VOCs of concern include 1,2-dichloroethane, 1,2-dichloroethene (total), 1,2-dichloropropane, benzene, tetrachloroethene, toluene, trichloroethene, vinyl chloride and xylenes (total). Several chlorinated VOCs are present across the entire Martin Aaron property and extend beyond the property boundaries to the northeast, east, and possibly south. Aromatic VOCs detected at concentrations in excess of NJDEP soil cleanup criteria are generally located around the former USTs immediately north of the former Martin Aaron building, and in the area northeast of the Rhodes Drum building.

Twelve (12) SVOCs were detected in site surface and/or subsurface soil at concentrations above the NJ soil cleanup criteria. The SVOCs of concern generally include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene and naphthalene. The majority of total SVOC results in excess of 150 mg/kg were identified on the Martin Aaron property extending beyond the property border to the northeast, and in the northern portions of the SJPC property.

Pesticide compounds of concern include aldrin, dieldrin and heptachlor found in site surface and subsurface soils. The highest pesticide concentrations were identified in soil borings located immediately north and east of the former Martin Aaron building and immediately north of the Rhodes Drum building with contamination in excess of 100 times the current NJDEP Residential Direct Contact Soil Cleanup Criteria (RDCSCC).

Total PCB concentrations in excess of the NJ soil cleanup criteria were detected at several sampling locations on the Martin Aaron property. Total PCB concentrations in samples from the SJPC property did not exceed the NJDEP soil cleanup criteria.

Metals of concern include arsenic, beryllium, cadmium, chromium, copper, lead, thallium and zinc, which were found in site and off-site surface and subsurface soils at concentrations above the NJDEP soil cleanup criteria. The horizontal extent of metals contamination possibly emanating from the site has not been fully delineated.

1.3.2 Groundwater Conditions

The VOCs found in the shallow portion of the Potomac-Raritan-Magothy (PRM) aquifer system consist of both aromatic VOCs (benzene and xylenes) and chlorinated VOCs (tetrachloroethene, trichloroethene, and 1,2-dichloroethene). Aromatic VOCs were found at the highest levels in wells MW5S, MW7S, and MW2S while the highest level of chlorinated VOCs were detected in wells MW7S and MW5S. Only one VOC (tetrachloroethene) was found above the NJDEP groundwater quality standard (GQS) in groundwater samples from the intermediate wells.

The SVOCs found in samples from the shallow wells consisted mainly of naphthalene in MW1S and MW2S. Only one SVOC (bis[2-ethylhexyl]phthalate) was detected above the NJDEP GQS in one intermediate wells (MW11M).

Metals at levels above the NJDEP GQS were detected in all monitoring wells (shallow and intermediate) during each sampling round. In general, metals at concentrations above the NJDEP GQS were more prevalent and at higher concentrations in the shallow groundwater zone. The most common analytes detected above the NJDEP GQS included aluminum, arsenic, iron, lead and manganese. Each of these analytes were found to be relatively widespread in the site surface and subsurface soils.

Pesticide and PCB contamination in the shallow groundwater zone was limited to one occurrence of aldrin in MW6S, one occurrence of dieldrin in MW11S, and one occurrence of total PCBs in well MW6S. No pesticide/PCB compounds were detected above the NJDEP GQS in samples from the intermediate wells.

1.3.3 Radioactivity

Radioactivity was tested for but not detected in groundwater samples at the site. No site soils were tested for radioactivity (personal communication with Richard Robinson, EPA Remedial Project Manager [RPM] for the Welsbach Superfund Site, May 31, 2001).

1.4 Project Description and Schedule

The goal of the RI/FS is to develop the minimum amount of data necessary to support the selection of an approach for site remediation, and then to use these data to prepare a well-supported Record of Decision (ROD) within 18 months after approval of the Project Management and Work Plans. The estimated completion date for this work assignment is October 18, 2002. A detailed project schedule is provided as part of the RI/FS Work Plan (April 2001). The general objectives of the RI/FS for the Martin Aaron site are to:

- Define the nature and extent of contamination in surface and subsurface soil and groundwater to support the assessment of potential risk to human health and the environment and to determine whether remedial actions are necessary.
- Determine whether nonaqueous phase liquids (NAPLs) are present around the
 identified potential source area (e.g., former settling basins, processing rooms,
 aboveground and underground storage tanks, and outside drum storage areas) such
 that remedial action alternatives can be evaluated.

- Field verify with a radiation detector the presence or absence of radiation in surface and subsurface soils.
- Collect site-specific geologic and hydrogeologic information necessary for the evaluation of risk and remedial action alternatives.
- Perform a structural analysis to determine the integrity of the Rhodes building. In addition, if the structural evaluation of the building shows that safety of those performing the investigation is adequate, determine if contamination exists in the Rhodes building that may affect the future actions for the building.

These objectives will be accomplished by obtaining and analyzing surface and subsurface soil and groundwater samples from the Martin Aaron site, and obtaining and analyzing chip and wipe samples from the Rhodes building. Information on site geological conditions, including lithology and the physical properties of underlying soils, will be obtained for the evaluation of remedial alternatives. The hydrogeologic conditions affecting vertical and horizontal chemical migration at the site will be assessed through water level monitoring, collection of geochemical data, insitu hydraulic testing, and a tidal influence study. A structural analysis for the Rhodes building will also be conducted to evaluate future remedial alternatives. Specific objectives for each media are presented in the RI/FS Work (April 2001) and the FSP (August 2001).

1.5 Quality Objectives and Criteria for Measurement Data

Data quality objectives (DQOs) are qualitative and quantitative statements that specify the quality of data required to support decisions made during or after site-related activities. Project specific DQOs are developed with the seven-step process presented below.

Step 1: State the Problem

The Martin Aaron site has been used by various industries since 1887. Different areas of the site were used for leather tanning and manufacture, wool and hair blending, and drum reconditioning and recycling. Several investigations were conducted by the NJDEP between 1986 and 2000. The presence of VOCs and metals associated with the drum processing activities has been documented in soils to depths of up to 8 feet, and 1,2-dichloroethene has been detected in groundwater approximately 50 feet below ground surface in the lower portion of the PRM aquifer. A site visit by EPA Region 2 and CH2M HILL on September 20, 2000 was conducted to develop a conceptual understanding of the site and its environs and discuss the scope of the RI/FS. This information was used to help confirm data gaps identified during review of the existing site data and to focus the investigation. The basis and key assumptions used to develop the scope of the field investigation at the Martin Aaron site is contained in Task 3 (Field Investigation) of the RI/FS Work Plan and the FSP.

Step 2: Identify the Decision

The main objective of this RI/FS is to obtain data on the nature and extent of site-related contaminants and determine whether the site presents a risk to human health or the surrounding environment, and if it does, evaluate the best alternatives for remedying the risk. This will be accomplished by collecting the minimum amount of information necessary to support the risk assessment, the feasibility study, and ultimately the ROD.

Step 3: Identify the Inputs to the Decision

The most current information about the site consists of historical site information, information on industrial practices, and analytical data, and is contained in the Draft Remedial Investigation Report for Martin Aaron Site (L. Robert Kimball and Associates, June 2000). Based on the comparison of the available data with the EPA's generic soil screening levels (SSLs), the nature and extent of contamination in surface and subsurface soil have not been adequately defined. Data gaps were also identified when comparing the available groundwater data to the EPA's Drinking Water Standards (i.e., the Maximum Contaminant Levels [MCLs] and Health Advisories (Lifetime)). In addition, based on the disturbances to the site due to soil and structure removal actions undertaken by the NJDEP and EPA after generation of the draft RI, the existing soil data are assumed to not be representative of current conditions. Sampling will be conducted to supplement the historical site data, and to determine the extent of contamination based on comparison with EPA and NJDEP soil and groundwater quality standards. Remedial action alternatives will be evaluated using the resulting analytical data, additional geotechnical and hydrogeologic information, and the Rhodes building structural integrity assessment. Provided that the safety of those performing the investigation is adequate per the structural evaluation, chip and wipe samples will be collected from the Rhodes building to determine the extent of residual contamination (all collected during the RI). The geotechnical and hydrogeologic information will also be used to evaluate the contaminant fate and transport in groundwater beneath the site.

Step 4: Define the Boundaries of the Study

The Martin Aaron site, located at 1542 South Broadway Street, consists of approximately 2.4 acres located in a mixed industrial and residential area of Camden, New Jersey. The site is roughly rectangular with about 309 feet adjoining the east line of the South Broadway right-of-way and about 334 feet adjoining the west line of Sixth Street right-of-way (see Figure 1-1). North of the site is a junkyard (Lots 10 and 4) and Everett Street. The properties south of the site include a trucking company (Lots 26 and 3).

An additional property of concern is located west of the Martin Aaron property, at 1535 South Broadway (Lot 15, Block 458), and is owned by the South Jersey Port Corporation (SJPC). The SJPC property was formerly leased to Wadco, which used it for office space and drum receiving/sorting. Three commercial buildings occupy the lot, with the remaining acreage consisting of paved and unpaved lots.

The site is currently surrounded by paved roadway surfaces and storm sewers connected to the CCMUA combined storm/sewer system. The nearest surface water to the site is the Delaware River that is located about 0.75 miles to the west. Therefore, no surface water or sediment samples will be collected during the site investigation.

The site overlies the most productive source of groundwater in Camden, the PRM aquifer system. There is hydraulic interconnection vertically throughout the PRM aquifer system in the Camden area. Public water-supply wells tapping the PRM aquifer system within 4 miles of the site provide water to approximately 105,000 persons. The nearest of these wells is a Camden City well located approximately 1.75 miles to the east-northeast.

Analytical data collected from the proposed soil, groundwater and Rhodes building (chip and wipe) sample locations will help characterize current conditions relative to site-related contamination, and help assess the potential for site contaminants to migrate offsite and impact the City of Camden's water supply. The overall goal is to obtain the data necessary to determine the potential risk at the site from exposure to site contaminants, and to support the selection of a site remedial approach within 18 months after approval of the project management work plans.

Step 5: Develop a Decision Rule

The soil and groundwater samples will be collected to confirm previously obtained data and to further characterize and delineate the extent of contamination throughout the site. The Rhodes building chip and wipe samples will be collected to assess residual contaminant levels in the building materials and to evaluate future options for the building. These results will be used in both environment risk assessment and to evaluate remedial action alternatives. The nature and extent of soil contamination will initially be determined based on the lower of EPA's generic SSLs and NJDEP's Soil Cleanup Criteria. Similarly, the nature and extent of groundwater contamination will initially be determined based on the lower of EPA's Drinking Water Standards (MCLs) and NJDEP's Ground Water Quality Standards. The action levels have not yet been set for the FS.

Step 6: Specify Limits on Decision Errors

The environmental conditions at the site will be assessed through sample collection and analysis. The probability of sampling and measurement errors that exist at any site under investigation necessitates the development of sampling guidelines and the collection of quality control samples. The sampling locations and frequency are selected to minimize error in assessment of environmental conditions, while QC samples are collected to monitor the precision and accuracy of both the sampling team and the analytical methods. Field errors are also minimized by requiring each field team member to follow the same standard operating procedures (SOPs). The sampling techniques are discussed (or referenced) in detail in the FSP.

The acceptable limits on the probability of making a decision error are dependent on the consequences of the error. The data collected from the RI will be used to assess risk from exposure to site contaminants, and to propose and implement site remedial alternatives. Therefore, the acceptable limits for the error in making a decision are relatively low. The sampling events are focused on providing accurate and sufficient data for characterizing current site conditions; therefore the probability of error in data interpretation and decision making is low.

Step 7: Optimize the Design

The main goals of the RI are to delineate the extent of contamination in soil and groundwater, assess the Rhodes Drum building, and obtain sufficient data to assess the potential risk to human health and the environment, and develop remedial alternatives that eliminate, reduce or control such risk. A preliminary review of the soil data presented in the *Draft Remedial Investigation Report* indicates that the nature and extent of contamination in the surface and subsurface soils have not been defined. Although the "hot spot" areas (i.e., areas exceeding the NJDEP soil cleanup criteria) have been identified and characterized, the limits of contamination have not been adequately delineated based on EPA's generic SSLs.

Also, based on disturbance of the site due to the soil and structure removal actions undertaken by NJDEP and EPA subsequent to information presented in the *Draft Remedial* Investigation Report, the existing soil data is assumed to not be representative of these disturbed areas. The sampling procedures are specified in Task 3 (Field Investigation) of the Work Plan and the FSP. The investigation is designed to collect just enough data to support project objectives, avoiding any unnecessary sample collection.

1.6 Special Training Requirements / Certification

As described in Section 1.2 (Project Organization), CH2M HILL project team members have been selected with the necessary experience and technical skills to perform the required project tasks. The subcontractors procured to complete tasks such as drilling and laboratory analysis will meet the project specific requirements and the general requirements of the EPA and the State of New Jersey.

1.7 Documentation of Records

1.7.1 Field Sampling Documentation

The field team members will keep a daily record of significant events, observations, and measurements during sampling. The required contents of the field logbook are specified in the FSP. A field logbook will be initiated at the start of the first onsite activity and maintained to record onsite activities during all sampling events. The field logbook will be supplemented by COC forms and/or notes recorded on site maps or maps of adjoining properties. All documents generated during the field effort are controlled documents that become part of the project file.

1.7.2 Sample Identification System

Unique site-specific identifiers and sample numbers will be assigned to soil, groundwater, and building samples to establish database integrity, using the sample identification procedures in the FSP. The unique sample identifiers and sample numbers are used to prevent sample number duplication in the database. The unique sample identifier and sample number, as well as the corresponding soil boring, well location, or building location, and sample time and date, will be recorded in the field logbook (and on soil boring logs and other field data sheets, if appropriate). The field analysis data will be recorded in the field logbooks or recorded on data sheets along with sample identification information while in the custody of the sampling team.

In addition, sample labels and COC forms will list the unique sample identifiers and sample numbers, as well as date, time, samplers, and other relevant information.

1.7.3 Hard Copy Analytical Records

CASTOR\PROJ\160849\SITE SPECIFIC PLANS\FINAL DOCS AUG 31\083101 MA QAPP.DOC

The EPA-selected CLP laboratories will be used for analysis of TCL and TAL analytes. These laboratories will provide CLP deliverables consistent with the CLP SOW (Rev. 8/94). After the CLP analyses are complete, the data packages will be sent immediately to EPA for validation before the results are supplied to CH2M HILL.

The non-CLP laboratories, directly subcontracted to CH2M HILL, will provide two hard copies of the data deliverables to CH2M HILL. One copy will be bound for archiving. The other will be unbound for the purpose of data validation/evaluation. The data will be in a CLP-equivalent format to ease the data validation effort.

The non-CLP hardcopy deliverable format will consist of:

- 1. Table of Contents
- 2. Case Narrative containing all relevant information pertaining to any deviations from the established QC criteria
- 3. Sample Description/Laboratory ID and Client ID Cross Reference
- 4. Explanation of Abbreviations
- 5. Analytical Tests Requested by Sample
- Analytical Results
- 7. QC Summaries
- 8. Chain-of-Custody
- 9. Miscellaneous (FedEx receipts, invoices, sample receipt form, etc.)
- 10. Volatile GC/MS Supporting Documentation/Raw Data
- 11. Semivolatile GC/MS Supporting Documentation/Raw Data
- 12. Metals Supporting Documentation/Raw Data
- 13. General Chemistry Supporting Documentation/Raw Data
- 14. Subcontracted Results (Note, all subcontractors must be brought to CH2M HILL's attention for approval prior to utilization)

The independent laboratories shall maintain a record of the data for a period of no less than seven years.

1.7.4 Electronic Analytical Records

CH2M HILL will request that one ASCII text file be generated by the non-CLP independent laboratories. The files will be named "*.txt", where "*" represents the batch sample delivery group (SDG) number. Specific instructions regarding the ASCII text file will be communicated to the laboratory in the laboratory contract or SOW.

The CLP laboratories will supply electronic deliverables in the format specified under the most recent CLP SOW. CH2M HILL is anticipating receipt of validated CLP data from EPA in a Lotus spreadsheet format. This data format will need to be converted to one that is consistent with input requirements of the EquIS database.

1.7.5 Project Record Maintenance and Storage

Project records will be stored and maintained in accordance with CH2M HILL's data management plan (Section 2.11 of this QAPP). Each project team member is responsible for filing all project information or providing it to the administrative assistant familiar with the

project filing system. Individual team members may maintain separate files or notebooks for individual tasks but must provide such files for incorporation into the project files upon completion of each task.

The general project file categories are as follows:

- Correspondence
- Non-laboratory request for proposals (RFPs), Bids, Contracts, SOWs
- Field Data
- Data Evaluation and Calculations
- Site Reports from Others
- Non-laboratory project invoices and approvals by Vendor
- Original Unbound Reports
- Bound Report Copies
- Photographs
- Insurance Documentation
- Laboratory Analytical Data and associated Documents/Memos
- Regulatory Submittals, Licensing, and Permitting Applications
- Site and Reference Material
- Health and Safety Plans
- Figures and Drawings

A project-specific index of file contents will be kept with the project files at all times.

Measurement and Data Acquisition

This section describes the procedures for collecting, handling, measuring, acquiring, and managing data to be performed in support of the RI/FS. It addresses the following aspects of measurement and data acquisition:

- Sampling process design
- Sampling method requirement
- Coordinating sampling with EPA
- Sample handling and custody requirements
- Laboratory analytical methods requirements
- Laboratory QC requirements
- Field and laboratory instrument calibration and frequency
- Inspection and acceptance requirements for supplies and consumables
- Data acquisition requirements
- Data management process
- Data Management tools
- Field and laboratory instrument and equipment testing, inspection, and maintenance requirements

2.1 Sampling Process Design and Rationale

The FSP provides the sampling and analytical requirements for this project. The SOPs for each field sampling method are provided in or are attached to the FSP. The following media will be sampled and analyzed as part of this project:

- Soil (from boring locations designated "SB"), which includes both surface soil (0 to 6 inches below ground surface [bgs]) and subsurface soil (more than 6 inches bgs).
- Groundwater, which includes samples from monitoring wells (MW) and a City of Camden municipal well (CW).
- **Investigation derived waste (IDW),** which consists of wastewater (DL) and sediment (DS) from well drilling, well development, well purging, and decontamination activities (temporarily stored on site in a 20,000-gallon frac tank), and soil cuttings (DS) that have been stored in roll-off containers.

The planned sampling locations, rationale for selection, and analytical parameters for each location are detailed in the FSP. It should be noted that the exact sample locations and the

total number of samples might change from those described in the FSP, depending on field conditions encountered.

2.2 Sampling Methods Requirements

The SOPs for each field sampling method are contained in the FSP. Common sampling and associated procedures include:

- Surface and subsurface soil sampling
- Sample documentation and sample packing and shipping
- Water level and well measurements
- Monitoring well and municipal well sampling
- IDW characterization sampling
- Field measurements (e.g., pH, specific conductance, dissolved oxygen, etc.) and field screening (organic vapor and radiation)
- Personnel and equipment decontamination

The FTL is responsible for assuring that samples are collected in accordance with the SOPs. The FTL may implement corrective actions, as described in Section 2.6.2 of the QAPP, if a need arises to assure data quality and/or personnel health and safety.

2.3 Coordinating Sampling with EPA

To initiate a CLP Analytical Services (CLPAS) request, the RSCC or Regional/Agency designee will contact the appropriate CLASS Coordinator by telephone, fax, or e-mail and provide a complete description of the analytical requirements. The information required to initiate a CLPAS request includes the sampler's name (CH2M HILL), sampler's phone number, site name, city and state where the site is located, site spill identification number, expected date of sample shipment, number of samples, type of analyses, turn-around time, fractions to be analyzed, and sample matrix.

By noon eastern time on the Wednesday of the week prior to the scheduled start of a planned sampling activity, the RSCC or Regions/Agency designee will contact the CLASS Coordinator to place a CLPAS request and to provide scheduling information to the CLASS contractor. This lead-time enables the laboratories to prepare for EPA samples, and to provide for resolution of sampling questions. It also allows the sampler (CH2M HILL) time to prepare the required sample documentation prior to field activity, if appropriate. Late scheduling requests (i.e., requests received between Wednesday noon and the date of sampling) are accommodated with available laboratory capacity. In order to allow the RSCC to satisfy their obligations, CH2M HILL will forward the completed "EPA Region 2 CLP RAS Request Form" as early in the week as possible.

2.4 Sample Handling and Custody Requirements

2.4.1 Sample Preservation and Holding Time

Table 1 summarizes the requirements for sample containers, preservatives, and sample holding times for individual analytical methods and media to be sampled. The sample containers for CLP analyses shall be supplied by a bottle vendor to CH2M HILL and must be certified by the generator/vendor as pre-cleaned. Preservation of these sample containers shall be done in the field. All sample containers supplied by the CH2M HILL-subcontracted, non-CLP laboratories shall be I-CHEM Series 200 type, or equivalent. The laboratory shall follow the "Specifications and Guidance for Obtaining Contaminant-Free Sample Containers", OSWER Directive #9240.0-05 (rev. 6/90). Preservatives will be prepared using reagent grade chemicals and added to the sample bottles by the laboratory prior to shipment to the field site. Samples will be stored on ice to 4°C for preservation.

TABLE 1
SAMPLE CONTAINERS. PRESERVATIVES, AND HOLDING TIMES

Analysis			Preservation/	
	Method	Container	Storage	Maximum Hold Time
Soil				
TCL VOCs	OLM04.2	Soil = 3x5-gram Encore™ Sampling receptacle and 1x60-ml jar (non-preserved)	4°C	48 hours until preservation by the laboratory
TCL SVOCs	OLM04.2	8-oz bottle, Teflon cap	4°C	7 days to extraction, 40 days from extraction to analysis
TAL Metals	ILM04.1	8-oz bottle, Teflon cap	4°C	6 months
TCL Pesticides/PCBs	OLM04.2	8-oz bottle, Teflon cap	4°C	7 days to extraction, 40 days from extraction to analysis
TOC	Walkley-Black Method	8-oz bottle, Teflon cap	4°C	48 hours
Porosity	ASTM D4404-84	4 oz. Glass jar	NR	NR
Moisture Content	EPA 160.3	4 oz. Glass jar	4°C	NR
РΗ	SW-846 9045	4 oz. Glass jar	4°C	Immediately
Grain Size	ASTM D422-63	4 oz. Glass jar	NR	NR
Bulk Density	ASTM D4531-86	4 oz. Glass jar	NR	NR
DNAPL	Field Observation	_		_
Radioactivity	Field Measurement (Radiation Monitor)	_		

TABLE 1
SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

	Analysis			Preservation/	
-		Method	Container	Storage	Maximum Hold Time
	Groundwater				
	TCL VOCs	OLC03.2	Three 40-mL vials	HCI to pH ≤ 2, 4°C	14 days
	TCL SVOCs	OLC03.2	Two 1-liter amber glass jars, Teflon cap	4°C	7 days to extraction, 40 days from extraction to analysis
	TAL Metals – total and dissolved	ILM04.1	1 L polyethylene bottle	HNO₃ to pH ≤ 2	6 months
-	Sulfate *	EPA 375.4	250 mL polyethylene bottle	4°C	28 days
••	Sulfide *	EPA 376.1	500 mL polyethylene bottle	4°C, Zn acetate, NaOH to pH>9	7 days
	Nitrate *	EPA 352.1	100 mL polyethylene bottle	4°C	48 hours
-	Chloride *	EPA 300.0	250 mL polyethylene bottle	4°C	28 days
	Methane/Ethene/Ethane	RSK 175	3 x 40mL amber glass vials	HCL to pH <2, 4°C	14 days
-	Alkalinity *	EPA 310.2	100 mL polyethylene bottle	4°C	14 days
-	Carbon Dioxide *	SM 4500-CO2 D	100 mL polyethylene bottle	4°C	Immediately
_	TOC *	SW-846 9060	100 mL polyethylene bottle	HC110 pH <2, 4°C	28 days
,	Ferrous Iron (Fe II) *	SM 3500-Fe D	100 mL polyethylene bottle	4°C	Immediately
•	TSS*	EPA 160.2	500 mL polyethylene bottle	4°C	7 days
-	TDS*	EPA 160.1	100 mL polyethylene bottle	4°C	7 days
-	Hardness*	EPA 130.1	100 mL polyethylene bottle	H₂SO₄ to pH <2, 4°C	6 months
-	Total Iron*	SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
-	Dissolved Iron*	SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
_	Dissolved Arsenic*	SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤ 2	6 months
	Ammonia*	EPA 350.3	500 mL polyethylene bottle	H ₂ SO ₄ to pH <2, 4°C	28 days
		•			

TABLE 1
SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

Anal	ysis	Method	Container	Preservation/ Storage	Maximum Hold Time
► TKN*		EPA 351.3	500 mL polyethylene bottle	H₂SO₄ to pH <2, 4°C	28 days
- Nitrite*		EPA 354.1	100 mL polyethylene bottle	4°C	48 hours
- Calcium*		SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
Potassium [⋆]		SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
→ Manganese*		SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
• Phosphorous	s, Total*	EPA 365.2	200 mL polyethylene bottle	H₂SO₄ to pH <2, 4°C	28 days
Sodium*		SW-846 6010B	500 mL polyethylene bottle	HNO₃ to pH ≤2	6 months
BOD*		EPA 405.1	1 L polyethylene	4°C	48 hours
COD*		EPA 410.1	100 mL polyethylene	H₂SO₄ to pH <2, 4°C	28 days
Dissolved Ox	xygen *	Field Measurement			
pH *		Field Measurement		-	
Conductivity	*	Field Measurement	_		
Temperature	*	Field Measurement		-	
Oxidation Re Potential *	eduction	Field Measurement	-		
Turbidity		Field Measurement		•	
Investigatio	n Derived W	aste (characterization	sampling)		
TCLP VOCs		SW 846 1311/8260B	Three 40-mL vials	4°C	14 days
TCLP SVOC	S	SW-846 1311/8270C	Two 1-liter amber glass jars, Teflon cap	4°C	7 days to extraction, 4 days from extraction to analysis
TCLP Pestic	ides/PCBs	SW-846 1311/8081	Two 1-liter amber glass jars, Teflon cap	4°C	7 days to extraction, 4 days from extraction to analysis
TCLP Metals	S	SW-846 1311/6010B or 7000 series	500 mL polyethylene	4°C	6 months

TABLE 1
SAMPLE CONTAINERS, PRESERVATIVES, AND HOLDING TIMES

Analysis			Preservation/	
	Method	Container	Storage	Maximum Hold Time
TCL VOCs	OLC03.2	Three 40-mL vials	HCl to pH ≤ 2, 4°C	14 days
TCL SVOCs	OLC03.2	Two 1-liter amber glass jars, Teflon cap	4°C	7 days to extraction, 40 days from extraction to analysis
TCL Pesticides/PCBs	OLC03.2	Two 1-liter amber glass jars, Teflon cap	4°C	7 days to extraction, 40 days from extraction to analysis
TAL Metals	ILM04.1	1L polyethylene bottle, Teflon cap	HNO₃ to pH ≤2	6 months

^{--- =} Not applicable

2.4.2 Sample Custody and Shipping Requirements

2.4.2.1 Sample Custody

The sample custody procedures include the use of field logbooks, sample labels, custody seals, COC forms, and database tracking. Each person involved with sample handling must be trained in COC procedures before the start of field operations. The COC form must accompany the samples during shipment from the field to the laboratory.

A sample is under custody under the following conditions:

- It is in one's actual possession.
- It is in one's view, after being in one's physical possession.
- It was in one's physical possession and that person locks it up to prevent tampering.
- It is in a designated and identified secure area.

Each laboratory receiving samples from this project must comply with the laboratory sample custody requirements outlined in the laboratory's own quality assurance plan (QAP). A field team member or project chemist will notify the RSCC or non-CLP laboratory (and the CH2M HILL Project EIS) of upcoming field sampling activities and the subsequent transfer of samples to the laboratory. This notification will include information concerning the number and type of samples to be shipped and the expected date of arrival. Additional details about laboratory sample custody are provided in the analytical laboratory QAP or most recent CLP SOW.

^{*} Indicates Natural Attenuation parameter selected from Table 2.3 of *EPA's Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater*, 1998. The VOC parameters from Table 2.3 (BTEX, PCE, TCE, DCE, VC, DCA, 1,1,1-TCE, carbon tetrachloride, chloroethane, and chloroform) will be analyzed as part of TCL VOC list.

2.4.2.2 Sample Shipping and Chain of Custody

Proper sample handling, shipment, maintenance of a COC, sample tracking and recordkeeping are key components of building the documentation and support for data that can be used to make project decisions. It is important that all sample handling and sample COC requirements are performed completely, accurately, and consistently.

A properly completed COC form, either manually or through *FORMS II-Lite*, will accompany samples to the laboratory. The unique sample identifiers, numbers and descriptive information (soil boring or well location, date, time, etc.) will be listed on the COC form. When transferring possession of samples, the individuals relinquishing and receiving them will sign, date, and note the time on the record. The COC record documents transfer of sample custody from the sampler to the offsite laboratory.

The samples will be properly packaged for shipment and dispatched to the appropriate laboratory for analysis with a separate signed custody record enclosed in each sample box or cooler. Samples will be shipped to the laboratory using an overnight delivery service. The following sample packaging and shipping procedures are minimal requirements.

Prepare Bottles for Shipment

- Affix appropriate adhesive labels from assigned traffic report to each container. Protect with clear label tape
- Arrange decontaminated sample containers in groups by sample number
- Ensure sample lids are tight
- Arrange containers in front of assigned cooler
- Enclose each sample in a clear resealable bag making sure that sample labels are visible

Prepare Coolers for Shipment

- Tape drains shut
- Affix "This Side Up" labels on all four sides and "Fragile" labels on at least two sides of each cooler
- Place mailing label with laboratory address on top of the coolers
- Place inert cushioning material in the bottom of the cooler
- Place appropriate tracking reports, packing lists and chain of custody records with corresponding custody seals on top of each cooler
- Double bag and seal loose ice in resealable plastic bags to prevent melting ice from soaking the packing material. Place sufficient ice in cooler to maintain the internal temperature at 4°C during transport
- Fill cooler with enough absorbent material and packing material to prevent breakage of the sample bottles and to absorb the entire volume of the liquid being shipped
- Sign chain of custody form and indicate the time and date it was relinquished to carrier

- Separate copies of the forms. Seal proper document copies within large resealable plastic bag and tape to inside of the cooler
- Close cooler and place custody seals over opposite corners of the cooler. Cover seals with clear plastic tape
- Secure cooler with strapping tape
- Relinquish cooler to carrier

Commercial carriers are not required to sign off on the custody form as long as the custody form is sealed inside the sample cooler and the custody seals remain intact. The COC form identifying the contents will accompany all shipments. The original record will accompany the shipment, and the field copies will be retained by the sampler. A copy of the field copy will then be forwarded to EPA's RSCC and CLASS and the CH2M HILL EIS for data tracking and management. The copy of the COC form will be used to answer questions from the analytical laboratory regarding that day's sample shipment.

2.4.2.3 Laboratory Sample Custody

The analytical laboratories must comply with the laboratory sample custody requirements as outlined in the appropriate CLP SOW or the subcontracted laboratory's internal COC SOP. The FTL or project chemist will notify the laboratory of upcoming field sampling activities and the subsequent transfer of samples to the laboratory. This notification will include information concerning the number and type of samples to be shipped, and the expected date of arrival.

2.5 Analytical Method and Quality Control Requirements

Samples will be analyzed using EPA-approved methods or other recognized standard methods. The principal sources for analytical methods, in order of preference, are:

- EPA CLP Laboratory Analytical Procedures
- SW-846, Test Methods for Evaluating Solid Wastes
- Water/Wastewater EPA Methods

Table 1 lists the analytical methods to be used in analyzing the target compounds. The methods are expected to be sufficient for the data needs of the project.

Nominal reporting limits are shown in the analyte tables for the selected analytical methods. The scope of the method and a summary of the analytical QA/QC are provided in this document. The QA/QC criteria for non-CLP SOW methods are those listed in Attachment 1 to this QAPP. The QA/QC criteria for the CLP analytical methods are those stated within the referenced CLP SOWs. For comparison purposes, Attachment 2 contains the New Jersey Specific Groundwater Quality Criteria and Soil Cleanup Criteria.

2.5.1 VOC Analysis

The site samples will be analyzed in accordance with the analytical protocol taken from EPA CLP SOW method OLC03.2 for aqueous samples (*Organic Low Concentration Statement of*

Work) and OLM04.2 for solid samples (*Organic Statement of Work*). Methods OLC03.2 and OLM04.2 are to be used for soil and groundwater sample analyses, respectively. The CLP compound list and CLP SOW-required detection limits are those provided in Table 2.

The non-CLP analytical laboratories will use method SW-846 8260B to analyze the selected soil samples and TCLP extracts for VOCs. The solid reporting limits (RLs) to be used by the contracted laboratories are provided in Table 2.

The QC requirements for method 8260B are contained within Attachment 1 to this QAPP.

2.5.2 SVOC Analysis

The site samples will be analyzed in accordance with analytical protocol taken from EPA CLP SOW method OLC03.2 (*Organic Low Concentration Statement of Work*) for aqueous samples and OLM04.2 (*Organic Statement of Work*) for soil samples. Methods OLC03.2 and OLM04.2 are to be used for the CLP soil and groundwater analyses, respectively. The CLP compound list and required CLP SOW-required reporting limits are provided in Table 3.

The non-CLP analytical laboratories will use method SW-846 8270C to analyze for SVOCs in the selected soil samples, and TCLP extracts. The solid RLs to be used by the contracted laboratories are provided in Table 3. The QC requirements for method 8270C are contained within Attachment 1 to this QAPP.

2.5.3 Metals Analysis

The site soil and groundwater samples will be analyzed in accordance with analytical protocol taken from EPA CLP Method ILM04.1 (Inorganic Statement of Work). The CLP compound list and CLP SOW-required RLs are listed in Table 4.

The non-CLP analytical laboratories will use methods SW-846 6010B, 9012A, and other 7000-series methods to analyze for inorganic compounds and cyanide in selected soil samples, and in TCLP extracts. The solid RLs to be used by the contracted laboratories are provided in Table 4.

The QC requirements for methods 6010B, 9012A, and other 7000 series methods are contained in Attachment 1 to this QAPP.

2.5.4 Pesticide/PCB Analysis

The site soil and groundwater samples will be analyzed in accordance with the analytical protocol taken from EPA CLP Method OLC03.2 (*Organic Low Concentration Statement of Work*) for aqueous samples and OLM04.2 (*Organic Statement of Work*) for soil samples. Methods OLC03.2 and OLM04.2 are to be used for soil and groundwater analyses, respectively. The CLP compound list and CLP SOW-required RLs are provided in Table 5.

The non-CLP analytical laboratories will use methods SW-846 8081A and 8082 to analyze for Pesticides and PCBs, respectively, in selected soil samples, and TCLP extracts. The solid RLs to be used by the contracted laboratories are provided in Table 5.

The QC requirements for methods 8081A/8082 are contained within Attachment 1 to this QAPP.

2.5.5 Non-CLP Analyses to be Performed

The analyses listed in Table 6 will be performed by the CH2M HILL-subcontracted, non-CLP laboratories in accordance with the specifications of the designated EPA methods and with the QC limits presented in Attachment 1 to this QAPP.

TABLE 2
TCL VOC LIST AND REQUIRED REPORTING LIMITS FOR CLP METHODS AND SW-846 METHOD 8260B

		Water ¹	Solid ²			Water ¹	Solid ²
	Compound	RL (μg/L)	RL (μg/kg)		Compound	RL (μg/L)	RL (μg/kg)
1	Acetone	5.0	10	26	1,2-Dichloropropane	0.5	10
2	Benzene	0.5	10	27	cis-1,3-Dichloropropene	0.5	10
3	Bromodichloromethane	0.5	10	28	trans-1,3-Dichloropropene	0.5	10
4	Bromoform	0.5	10	29	Ethylbenzene	0.5	10
5	Bromomethane	0.5	10	30	2-Hexanone	5.0	10
6	2-Butanone	5.0	10	31	Methyl acetate	0.5	10
7	Carbon disulfide	0.5	10	32	Methylene chloride	0.5	10
8	Carbon tetrachloride	0.5	10	33	4-Methyl-2-pentanone	5.0	10
9	Chlorobenzene	0.5	10	34	Styrene	0.5	10
10	Chloroethane	0.5	10	35	1,1,2,2-Tetrachloroethane	0.5	10
11	Chloroform	0.5	10	36	Tetrachloroethene	0.5	10
12	Chloromethane	0.5	10	37	Toluene	0.5	10
13	Dibromochloromethane	0.5	10	38	1,1,1-Trichloroethane	0.5	10
14	1,1-Dichloroethane	0.5	10	39	1,1,2-Trichloroethane	0.5	10
15	1,2-Dichloroethane	0.5	10	40	Trichloroethene	0.5	10
16	1,1-Dichloroethene	0.5	10	41	Bromochloromethane	0.5	10
17	Cis-1,2-Dichloroethene	0.5	10	42	Vinyl chloride	0.5	10
18	Trans-1,2-dichloroethene	0.5	10	43	1,1,2-Trichloro-1,2,2- trifluoroethane	0.5	10
19	Dichlorodifluoromethane	0.5	10	44	Xylenes (total)	0.5	10
20	Methyl tert-butyl ether	0.5	10	45	1,4-Dichlorobenzene	0.5	10
21	Cyclohexane	0.5	10	46	1,2-Dichlorobenzene	0.5	10
22	Methylcyclohexane	0.5	10	47	1,2-Dibromo-3- chloropropane	0.5	10
23	1,2-Dibromomethane	0.5	10	48	1,2,4-Trichlorobenzene	0.5	10
24	Isopropyl benzene	0.5	10	49	1,3-Dichlorobenzene	0.5	10
25	Trichlorofluoromethane	0.5	10	50	1,2,3-Trichlorobenzene	0.5	10

Soil results must be reported on a dry weight basis.

Soil RLs will vary between samples and must be included with individual sample results.

^{1 =} CLP method OLC03.2

^{2 =} CLP method OLM04.2 and SW-846 method 8260B

TABLE 3
SVOC LIST AND REQUIRED REPORTING LIMITS FOR CLP METHODS AND SW-846 METHOD 8270C

		Water ¹	Solid ²			Water ¹	Solid ²
	Compound	RL (μg/L)	RL (μg/kg)		Compound	RL (μg/L)	RL (μg/kg)
1	Acenaphthene	5.0	330	34	4,6-Dinitro-2-methylphenol	20	830
2	Acenaphthylene	5.0	330	35	2,4-Dinitrophenol	20	330
3	Anthracene	5.0	330	36	2,4-Dinitrotoluene	5.0	330
4	Benzoic acid	5.0	330	37	2,6-Dinitrotoluene	5.0	330
5	Benzo(a)anthracene	5.0	330	38	Fluoranthene	5.0	330
6	Benzo(b)fluoranthene	5.0	330	39	Fluorene	5.0	330
7	Benzo(k)fluoranthene	5.0	330	40	Hexachlorobenzene	5.0	330
8	Benzo(g,h,l)perylene	5.0	330	41	Hexachlorobutadiene	5.0	330
9	Benzo(a)pyrene	5.0	330	42	Hexachlorocyclopentadiene	5.0	330
10	Bis(2-Chloroethoxy)methane	5.0	330	43	Hexachloroethane	5.0	330
11	Bis(2-Chloroethyl)ether	5.0	330	44	Indeno(1,2,3-cd)pyrene	5.0	330
12	Bis(2-Chloroisopropyl)ether	5.0	330	45	Isophorone	5.0	330
13	Bis(2-Ethylhexyl)phthalate	5.0	330	46	2-Methylnaphthalene	5.0	330
14	4-Bromophenyl phenyl ether	5.0	330	47	2-Methylphenol	5.0	330
15	Butyl benzyl phthalate	5.0	330	48	4- Methylphenol	5.0	330
16	4-Chloroaniline	5.0	330	49	Naphthalene	5.0	330
17	4-Chloro-3-methylphenol	5.0	330	50	2-Nitroaniline	20	830
18	2-Chloronaphthalene	5.0	330	51	3-Nitroaniline	20	830
19	2-Chlorophenol	5.0	330	52	4-Nitroaniline	20	830
20	4-Chlorophenyl phenyl ether	5.0	330	53	Nitrobenzene	5.0	330
21	Chrysene	5.0	330	54	2-Nitrophenol	5.0	330
22	Dibenz(a,h)anthracene	5.0	330	55	4-Nitrophenol	20	830
23	Dibenzofuran	5.0	330	56	N-Nitrosodiphenylamine	5.0	330
24	Di-n-butyl phthalate	5.0	330	57	N-Nitrosodi-n-propylamine	5.0	330
25	Di-n-octyl phthalate	5.0	330	58	Pentachlorophenol	5.0	830
26	1,2-Dichlorobenzene	5.0	330	59	Phenanthrene	5.0	330
27	1,3-Dichlorobenzene	5.0	330	60	Phenol	5.0	330
28	1,4-Dichlorobenzene	5.0	330	61	Pyrene	5.0	330
29	3,3'-Dichlorobenzidine	5.0	330	62	1,2,4-Trichlorobenzene	5.0	330
30	2,4-Dichlorophenol	5.0	830	63	2,4,5-Trichlorobphenol	20	830
31	Diethyl phthalate	5.0	330	64	2,4,6-Trichlorophenol	5.0	330
32	2,4-Dimethylphenol	5.0	330	65	2,4,5-Trichlorobphenol	5.0	330
33	Dimethyl phthalate	5.0	330		•		

Soil results must be reported on a dry weight basis.

Soil RLs will vary between samples and must be included with individual sample results.

^{1 =} CLP method OCL03.1

^{2 =} CLP method OLM04.2 and SW-846 method 8270C

TABLE 4
TARGET ANALYTE LIST AND REQUIRED REPORTING LIMITS FOR CLP METHOD ILM04.1 AND SW-846 METHODS
6010B, 9012A, AND 7000 SERIES METHODS

		Water	Solid			Water	Solid
	Analyte	RL (μ g/L)	RL (mg/kg)		Analyte	RL (μg/L)	RL (mg/kg)
1	Aluminum	200	40	13	Lead	3	0.6
2	Antimony	60	12	14	Magnesium	5000	1000
3	Arsenic	10	2	15	Manganese	15	3
4	Barium	200	40	16	Mercury	0.2	0.1
5	Beryllium	5	1	17	Nickel	40	8
6	Cadmium	5	1	18	Potassium	5000	1000
7	Calcium	5000	1000	19	Selenium	5	1
8.	Chromium	10	2	20	Silver	10	10
9	Cobalt	50	10	21	Sodium	5000	1000
10	Copper	25	5	22	Thallium	10	2
11	Cyanide	10	1	23	Vanadium	50	10
12	Iron	100	20	24	Zinc	20	4

Soil results must be reported on a dry weight basis.

Soil RLs will vary between samples and must be included with individual sample results.

TABLE 5
TARGET ANALYTE LIST AND REQUIRED REPORTING LIMITS FOR CLP METHODS AND SW-846 METHOD 8081A/8082

		Water ¹	Solid ²			Water ¹	Solid ²
	Analyte	RL (μ g/L)	RL (μ g/kg)		Analyte	RL (μg/L)	RL (μg/kg)
1	alpha-BHC	0.01	1.7	15	4,4'-DDT	0.02	3.3
2	beta-BHC	0.01	1.7	16	Methoxychlor	0.10	17
3	delta-BHC	0.01	1.7	17	Endrin ketone	0.02	3.3
4	gamma-BHC (Lindane)	0.01	1.7	18	Endrin Aldehyde	0.02	3.3
5	Heptachlor	0.01	1.7	19	Alpha-chlorodane	0.01	1.7
6	Aldrin	0.01	1.7	20	Gamma- chlorodane	0.01	1.7
7	Heptachlor epoxide	0.01	1.7	21	Toxaphene	1.0	170
8	Endosulfan I	0.01	1.7	22	Aroclor-1016	0.20	33
9	Dieldrin	0.02	3.3	23	Aroclor-1221	0.40	67
10	4,4'-DDE	0.02	3.3	24	Aroclor-1232	0.20	33
11	Endrin	0.02	3.3	25	Aroclor-1242	0.20	33
12	Endosulfan II	0.02	3.3	26	Aroclor-1248	0.20	33
13	4,4'DDD	0.02	3.3	27	Aroclor-1254	0.20	33 °
14	Endosulfan Sulfate	0.02	3.3	28	Aroclor-1260	0.20	33

Soil results must be reported on a dry weight basis.

Soil RLs will vary between samples and must be included with individual sample results.

CLP method OLM04.2 and SW-846 methods 8081A and 8082

^{1 =} CLP method OCL03.2

TABLE 6
REPORTING LIMITS FOR NON-CLP ANALYSES

Analysis	Method	Reporting Limit
Soil		(mg/Kg)
Bulk Density	ASTM D2937-94	
Grain Size	ASTM D422	0.5%
Moisture Content	EPA 1603	
PH	SW-846 9045	
Porosity	ASTM D4404-84	
Total Organic Carbon	SW-846 Method 9060	1
TCLP	See Table 3	_
Groundwater		(mg/L)
Sulfate	EPA 375.4	1.0
Sulfide	EPA 376.1	1.0
Chloride	EPA 300.0	1.0
Methane/Ethene/Ethane	RSK 175	0.5 ug/L
TSS	EPA 160.2	4
TDS	EPA 160.1	10.
Hardness	EPA 130.2	1
Total Iron	SW-846 6010B	0.1
Dissolved Iron	SW-846 6010B	0.1
Ammonia	EPA 350.3	1
TKN	EPA 351.3	1
Nitrate	EPA 352.1	0.5
Nitrite	EPA 354.1	0.3
Calcium	SW-846 6010B	5
Potassium	SW-846 6010B	5
Manganese	SW-846 6010B	0.015
Phosphorous, Total	EPA 365.2	0.01
Sodium	SW-846 6010B	5
BOD	EPA 405.1	1
COD	EPA 410.1	1
Alkalinity	EPA 310.2	1
Carbon Dioxide	SM 4500-CO2 D	1
TOC	SW-846 9060	1
Ferrous Iron (Fe II)	SM 3500-Fe D	1
рН	Field Measurement	_
Dissolved Oxygen	Field Measurement	_
Specific Conductance	Field Measurement	_
Temperature	Field Measurement	and the section of th
Oxidation Reduction Potential	Field Measurement	_
Turbidity	Field Measurement	

2.6 Quality Control Procedures

2.6.1 Quality Control Samples

The CLP and non-CLP analytical laboratories have QC programs to assess the reliability and validity of the analyses being performed. The purpose of QC samples is to aid in the assessment of the precision and accuracy of the analytical results. The collection of QC samples is discussed in more detail in the FSP. A table outlining the number of QC samples to be collected is included as Table 3-1 in the FSP.

The QC procedures for field parameter measurements include calibrating or verifying the calibration of the field instruments daily (more frequently if required), measuring duplicate samples at a frequency of 10 percent, and checking the reproducibility of the measurements by taking multiple readings from a single sample at a frequency of 10 percent.

Trip blanks (TB) will be used to detect VOC contamination during sample shipping and handling, to assess possible contamination through sample transportation. The subcontracted, non-CLP analytical laboratories will provide trip blank samples to be analyzed. CH2M HILL will prepare trip blanks that will be sent with the VOC samples to be analyzed by the CLP laboratories. Trip blanks will consist of a preserved, certified clean VOC sample vial filled with ASTM Type II water or contaminant-free laboratory water. The vials will contain no air bubbles. One trip blank sample will be sent for each day VOC samples are shipped to the laboratory, in each cooler containing VOC samples. Corrective action measures will be implemented if analyte concentrations are greater or equal to the specified reporting limits.

Equipment rinsate blanks (EB) are samples of ASTM Type II water passed through and over the surface of decontaminated sampling equipment. The rinse water is collected in sample bottles, preserved, and handled in the same manner as the field samples. EBs are used to monitor effectiveness of the decontamination process. The typical frequency for EBs is 1 per 20 field samples, or 5 percent. Typically, if more than one type of equipment is used to collect samples for a particular matrix, an EB is collected and submitted for each representative group of equipment. EBs will be analyzed for the same analytes as the corresponding samples. Corrective action measures will be implemented if analyte concentrations are greater than or equal to the specified reporting limits.

Duplicate or "blind" field samples (field duplicate samples) are collected to monitor the precision of the field sampling process. The identity of the duplicate samples is not noted on the laboratory COC form. The FTL will select 1 of every 20 sample locations for collection of a field duplicate sample for each sample medium. The identity of the duplicate samples will be recorded in the field-sampling logbook. Aqueous field duplicate samples will be collected by filling the native sample first and then filling the duplicate sample container immediately following. Soil field duplicate samples will be collected by homogenizing the field sample and then collecting two samples from the same sample volume. VOC soil duplicate samples can not be taken in this manner. VOC soil duplicates (co-located samples) will be obtained by first collecting the native sample and then collecting the duplicate sample as close as possible to the native sample. The precision required for field duplicates varies depending on the matrix. Corrective action measures will be implemented if aqueous duplicate sample results are ± 20 percent when compared to the native sample. Due to

concrete and soil sample heterogeneity, corrective action measures will be implemented if solid matrix duplicate sample results are \pm 30 percent when compared to the native sample. Professional judgement will also be used in the evaluation of the field duplicate samples.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are collected to assess possible matrix interference with analyte recoveries in the samples. One MS and one MSD sample pair will be collected for every 20 water and soil samples. Corrective action measures will be taken if percent recoveries are outside those stated in Attachment 1 to this QAPP.

2.6.2 Field and Laboratory Corrective Action

2.6.2.1 Field Corrective Action

Any project team member may initiate a field corrective action process. The corrective action process consists of identifying a problem, acting to eliminate the problem, monitoring the effectiveness of the corrective action, verifying that the problem has been eliminated, and documenting the corrective action.

Corrective actions include correcting COC forms, problems associated with sample collection, packaging, shipping, field recordkeeping, or additional training in sampling and analysis. Additional approaches may include resampling or evaluating and amending sampling procedures. The team member in charge of field operations (the FTL) will summarize the problem, establish possible causes, and designate the person responsible for a corrective action. The FTL will verify that the action has been taken and that it appears to be effective. The FTL will additionally follow up at a later date to verify that the problem has been resolved. The EIS will be notified by the FTL or project chemist of all corrective actions in order to insure that the project database contains current and accurate data.

2.6.2.2 Laboratory Corrective Action

The laboratory department supervisors' review the data generated to verify that all QC samples have been run as specified in the procedure. Laboratory personnel are alerted that corrective actions may be necessary under the following conditions:

- QC data are outside the warning or acceptable windows for precision and accuracy established for laboratory samples
- Blanks contain contaminants at concentrations above the reporting limits specified in this QAPP
- Deficiencies are detected by the laboratory QA director during internal or external audits, or from the results of performance evaluation samples

Corrective actions are implemented immediately when nonconformances in QC sample results are identified by the bench analyst. Corrective action procedures are handled initially at the bench level by the analyst, who reviews the preparation or extraction procedure for possible errors and checks such parameters as instrument calibration, spike and calibration mixes, and instrument sensitivity.

The analyst immediately notifies his or her supervisor of the problem and the investigation being done. If the problem persists or cannot be identified, the matter must be referred to the laboratory supervisor and QA/QC officer for further investigation. All CLP laboratory

CASTOR\PROJ\160849\SITE SPECIFIC PLANS\FINAL DOCS AUG 31\MKE/083101 MA QAPP DOC

QC problems that will affect the final data must be discussed with the EPA RSCC or CH2M HILL Chemist/SM as part of the corrective action process. Once resolved, full documentation of the corrective action procedure must be filed with the laboratory supervisor, and the QA/QC officer must be provided with a corrective action memorandum for inclusion into the project file if data are affected.

Corrective actions may include:

- Reanalyzing suspect samples
- · Recalibration with new standards
- Eliminating blank contamination
- Resampling and analyzing new samples
- Evaluating and amending sampling and analytical procedures
- Accepting data with an acknowledged level of uncertainty
- Recalibrating analytical instruments
- Qualifying or rejecting the data

After implementation of the required corrective action measures, data deemed unacceptable may not be accepted by the SM and follow-up corrective actions may be explored. Details of laboratory corrective actions are in the Laboratory's QAP. CH2M HILL assumes that all internal CLP laboratory corrective measures will be resolved by EPA prior to the submittal of validated data deliverables to CH2M HILL. For non-CLP laboratories, CH2M HILL reserves the right to perform an external laboratory audit, if deemed necessary as part of a corrective measures initiative.

2.7 Instrument / Equipment Testing, Inspection, and Maintenance Requirements

Field equipment testing, inspection, and maintenance will be in accordance with the SOPs in the FSP as well as instrument-specific operation manuals.

Laboratory equipment testing, inspection, and maintenance will be in accordance with the laboratory's QAP. The laboratory QAP will discuss the schedule, procedures, criteria, and documentation for verifying that all analytical equipment is operating in an accurate and precise manner. Laboratory equipment testing and inspection will also be evaluated through the analysis of QC samples.

2.8 Instrument Calibration and Frequency

2.8.1 Field Instruments

Because instruments used during field activities may be of several models and manufacturers, it is not feasible to present instrument-specific details in this section. Instrument-specific calibration must be performed in accordance with the manufacturer's instruction.

Field instruments will be calibrated daily in accordance with manufacturers' specifications before the beginning of sampling activities. For field instruments calibrated by the manufacturer, calibration will be verified daily. Standards used to calibrate the field survey instruments will be traceable to the standards of the National Institute of Standards and Technology whenever possible. Examples of methods and frequency of calibration for instruments described in the manufacturers' instructions are provided below.

Instrument	Calibration Activity	Frequency
OVM-PID	Calibrate to isobutylene and zeroed to ambient air or background levels	Beginning of each sampling day
OVA-FID	Calibrate to 100 ppm methane	Beginning of each sampling day
pH Meter	Calibrate against standard pH solutions (either 4.0 and 7.0 SU, or 7.0 and 10.0 SU)	Beginning of each sampling day
Field Multi-meter	Check pH, temperature, conductivity, oxidation reduction potential, turbidity, and dissolved oxygen with known solutions	Beginning of each sampling day
Radiation Monitor	Calibrate against radiation standard	Beginning of each sampling day

If a field instrument cannot be adjusted to be within calibration, documentation of the deficiency will be made in the field logbook and the instrument must not be used and be replaced with a functioning instrument.

2.8.2 Laboratory Equipment

Laboratory instruments will be calibrated in accordance with manufacturers' directions and applicable method specifications. Laboratory instrument calibration procedures are summarized in the laboratory QAP, which will be reviewed and approved by the lead chemist before samples are submitted for analysis. The laboratory QAP shall be supplied upon request.

2.9 Inspection / Acceptance Requirements for Supplies and Consumables

It is expected that several contractors will provide various services to multiple projects. The required services must meet the project scope, specified levels of quality, and the submittal schedule. The FTL will inspect each item supplied by subcontractors or vendors before they are deemed acceptable for use in the field. All unacceptable supplies will not be used in the project.

2.10 Data Acquisition Requirements

This subsection introduces the subject of data acquisition, identifies the components of data acquisition, and provides a reference for more detailed information. The data requirements are outlined in the scopes of work supplied to the subcontracted laboratory(ies) or the most

recent CLP SOW. It discusses the flow of information and data from planning through reporting including data obtained through non-direct measurements.

2.10.1 Data Acquisition Planning

In the data acquisition planning activity, the project team outlines the RI objectives, primary outputs, data formats, and data that will be collected. Data acquisition is focused on collecting the minimal amount of data necessary to create the desired outputs. Project objectives are outlined in detail in the project Work Plan and summarized in the DQO process discussed in Section 1.5 of this QAPP. Typically, the data needed to achieve the project objectives include site maps, sampling location selection, sampling location coordinates, data qualifiers, and sample identifiers, laboratory method selection and detection limit verification, analytical parameter lists and critical values, field parameter measurement list, and a project schedule. This information is included in a combination of the project Work Plan, FSP, and this QAPP.

As part of the setup activity, the team defines the historic and reference information to be used. If previous analytical information for the site is available, the project team will evaluate its data quality and confirm its accuracy in the database. Data that does not contain sufficient quality will not be used in the planning of the project. The product of this activity is a database containing complete and accurate site-specific reference information.

2.10.2 Field Data Acquisition

During field data acquisition, the field team performs the sample collection and field analytical work. This activity includes surveying, water level measurement, and collecting stratigraphic and hydrogeologic information in accordance with the SOPs located in the FSP. The product of these activities is a field data set that is complete, accurate and properly formatted. This dataset will be reviewed and approved by the project chemist before being sent to the EIS for processing.

Sample labels will be generated through the software program *FORMS II-Lite* and will be supplied to the field team. COC records completed either manually or through the software program *FORMS II-Lite*, are signed by the sampler, and accompany the sample bottles in the cooler shipped to the laboratory. Copies of the COC records are placed into the project files and used to track work received from the laboratory. Copies of COC records will also be forwarded to the EPA RSCC and CLASS, and CH2M HILL's EIS, to form the basis for establishing sampling records within the database.

2.10.3 Laboratory Data Acquisition and Reporting

During the laboratory data acquisition activity, the laboratory performs the sample analyses and generates hard copy and EDD analytical reports that have been processed through the Lab Data Checker within the turn-around time stated in the appropriate laboratory's SOW. The laboratory's Data Quality Manager verifies hard copy and electronic deliverables before they are released. The hard copy and electronic reports must match the requested sample analyses. The product of this activity is accurate and complete analytical information ready for data validation and database entry.

2.10.4 Data Quality Evaluation (Validation) Data Entry and Reporting

The EPA will perform the data validation for the CLP analyses of the project while CH2M HILL will subcontract data validation for the non-CLP analyses. CH2M HILL's Project Chemist will review the results of the validation efforts. Ten percent of the data validated through the subcontract will be evaluated to assess the accuracy of the validation efforts. This evaluation will include checking the complete Chain-of-Custody against the laboratory Form Is, the data validation reports, and the electronic data to make sure all analyses asked for were performed and reported and that no errors appear in the sample ID name. In addition, 10% to 100% (as deemed necessary) of the results will be checked for accuracy of the concentrations and data validation qualifiers by checking the laboratory case narrative, data validation reports, reporting forms and electronic data spreadsheets. The electronic data will be converted as necessary, uploaded to the EquIS database, and verified against the hard copy reports.

2.11 Data Management Plan

This DMP defines the responsibilities and procedures for sample tracking, data formats, data processing, data management personnel, and expected outputs from the database (i.e., RI report tables and figures and statistical analyses for the human health risk assessment), and the database and visualization software that will be used. In addition to compiling data gathered during the remedial investigation, data gathered during previous site investigations will be reviewed, reformatted, consolidated and compiled into a project environmental database system, which can be used to evaluate site conditions and data trends. This DMP will serve as a guide for all database users. The DMP is subject to future revision to allow for modifications as implementation of the database management system proceeds.

Data management for the project has the following objectives:

- Establish a controlled, functional, and efficient data management system and accompanying procedures to collect, format, process, analyze, report/present, and transfer the environmental data that are collected and generated during the investigation.
- Maintain a usable and accurate database throughout the life of the project.
- Process specific data requests from project team members.

CASTOR\PROJ\160849\SITE SPECIFIC PLANS\FINAL DOCS AUG 31\MKE/083101 MA QAPP.DOC

- Transfer the database or specific data components to EPA and other parties, as appropriate.
- Archive the database and related documentation upon project closeout.

2.11.1 Data Types

Activities performed at the site will involve accessing a number of different types of data collected or retained for various uses. The following generally describes the overall contents of the project database, based upon the available data and data to be collected.

2.11.1.1 Screening Data

Screening data typically include such field measurements as temperature, pH, and specific conductance. Screening data will also include organic vapor screening completed to monitor breathing zone or vapors emanating from a soil or water sample as well as on-site radiation monitoring. Screening data are generally used based upon very limited QA/QC and documentation in comparison to the rigorous review of data quality required for the definitive data sets.

The FTL or if appropriate, the Project Chemist, will review the screening data and accept or qualify them. Unusual readings will be recorded in the field logbook, along with the rationale for accepting or qualifying the data. In order for the FTL to review the results, the following types of field data will be recorded in the field logbooks by trained field personnel:

- Instrument identification
- Calibration information and/or verification (standards utilized and results)
- Date and time of calibration and sample measurement
- Sample results
- Supporting information (e.g., temperature for pH reading)

2.11.1.2 Definitive Data

Definitive data are data of known quality. The definitive data results are:

- used to show that an area has or has not been impacted (e.g., GeoprobeTM samples) by site-related activities;
- used in the identification of site-related source area;
- used to evaluate the nature and extent of site-related constituents;
- used for remedial action design (such as alkalinity, hardness, grain size); and
- collected for risk assessment purposes.

Definitive data can be generated by various measurements, ranging from onsite field analyses to laboratory analyses.

In the evaluation of definitive data, not all data require the same effort for validation. For example, in assessing the extent of site-related constituents, only samples that mark the boundary between "present" and "not present" areas may require full validation. The level of validation for results near or at the critical values will be more detailed in order to assess whether the project objectives have been met. Sample results from the interior of impacted areas may only require minimal review to make the same assessment.

Screening and definitive data include both data collected during previous investigations and newly acquired data that will be used to further characterize the site. These data are defined as either "Historical Data" or "Site Characterization Data."

2.11.1.3 Historical Data

The historical data compiled to date include information collected by other parties to characterize conditions at the site. That information includes both chemical and physical data for the site and surrounding area, and is summarized in the Draft RI Report (L. Robert Kimball and Associates, June 2000). The historical data will be reviewed to assess the level of quality and acceptability. The acceptable level of error in the historical data is very low because the historical data, along with the site characterization data, will guide this RI.

2.11.1.4 Site Characterization Data

The FSP identifies additional data to be collected for further characterization of the site. These data will be added to the project database as they become available. The data will include screening and engineering data collected in the field and laboratory data that has been validated by both EPA and CH2M HILL's subcontractor. The source of the data will be noted in the database. Procedures for incorporating the data into the database are presented in subsequent sections of this DMP.

2.11.2 Data Tracking and Management

2.11.2.1 Hard Copy

Measurements made during field data collection activities will be recorded in the field logbooks. Field logbooks will be consecutively paginated with the data, field team members, and weather conditions recorded for each day of sampling. Indelible ink pens will be used to make entries into the logbook. The field data will be reviewed, summarized and where applicable, loaded into the database. These data will also be stored along with the field logbooks.

All raw analytical laboratory data are stored as the original hard copy. Hard copy information includes chain-of-custody forms, analytical bench sheets, instrument printouts and chromatograms, certificates of analyses, and QA/QC report summaries. The non-CLP analytical laboratories will supply two copies of the hard copy analytical reports and EDD to CH2M HILL. The CLP laboratory will supply the hard copy reports directly to the EPA, and EPA will provide hard copy reports and EDD of the validated data to CH2M HILL.

2.11.2.2 Data Input Procedures

The sampling information, analytical results, applicable QA/QC data, and data validation qualifiers will be entered into an environmental database for storage and retrieval during data evaluation and report development. The data will be manually and electronically entered into the database from files received from the analytical laboratory and the field team. The correct data entry will be confirmed by printing data reports and manually comparing them to the hard copy deliverables from the laboratory and field team. The correct manual entry of the historical data will be confirmed by comparing a hard copy printout of the entered data to the hard copy used to perform the data entry. All data entry validation procedures and results will be documented.

2.11.3 Computer Database

The Remedial Investigation Data Management System (RIDMS) will be created. Both the historical and new data will be loaded and retrieved from the RIDMS throughout the

investigation using Earthsoft's EquIS database and GIS toolkits, and/or customized tools. Prior to loading the initial configuration data, senior IS resources will work with EPA Region 2 to define and implement data management standards and specifications. Documentation of these data management specifications and GIS functions will be prepared in easy-to-understand project instructions.

The database will be used to store, manipulate, and report the sampling and analytical data. The database's two main components, chemistry and geology, are linked together to provide an overall view of the data relationships. The data within the database will be electronically exported to a suite of standard data evaluation and display software applications. The EquIS database and GIS toolkits, and/or customized tools will be used to generate the risk assessment tables, boring logs, tabular data, and through interfaces to GIS and other applications, contour maps and site figures.

The database must be protected from unauthorized access, tampering, accidental deletions or additions, and data or program loss that can result from power outages or hardware failure. The following procedures will be adopted to ensure this protection:

- The master database will be stored on CH2M HILL's local area network (LAN) file server. Daily backups (to the extent practicable) will be made of the database to ensure the data will not be lost due to problems with the network.
- The access and security of the database will be centrally managed by the RIDMS System Administrator.
- Access to the data will be controlled through the use of user specific security settings.

2.11.4 Documentation

Documentation of data management activities is critical because it provides:

- A hard copy record of project data management activities
- Reference information critical for database users
- Evidence that the activities have been properly planned, executed, and verified
- Continuity of data management operations when personnel changes occur

This DMP will serve as the initial general documentation of the project data management efforts. Additional documentation will also be maintained to document specific issues such as database structure definitions, database inventories, database maintenance, user requests, database issues and problems, and client contact.

2.11.5 Evidence File

The final evidence file will be the central repository for all documents that constitute evidence relevant to sampling and analysis activities. CH2M HILL is the custodian of the evidence file and maintains the contents of the evidence files, including all relevant records, reports, logs, field logbooks, pictures, contractor reports, and data reviews in a secured, limited access area.

CH2M HILL will keep all records until the project is completed and the Work Assignment is closed out. As necessary, records may be transferred to an offsite record storage facility. The record storage facility must provide secure, access-controlled storage of records. The subcontracted laboratory(ies) will be asked by CH2M HILL to maintain records of raw analytical laboratory data, quality assurance data, and reports for a minimum of ten years.

2.11.6 Presentation of Site Characterization Data

In addition to laboratory data, other physical data will be collected during the field efforts, including (but not limited to) water level data, well construction details, boring logs, and field measurements of pH, conductivity, dissolved oxygen, oxidation reduction potential, and temperature. This information will be stored in the project database. Other types of data elements may be added as the field investigation needs and activities evolve.

Depending on the data user needs, data presentation may consist of, but will not be limited to, any of the following formats:

- Tabulated results of data summaries or raw data
- Figures showing concentration isopleths or location-specific concentrations
- Tables providing statistical evaluation results or calculation results
- Presentation tools such as ARC/INFO or other similar analysis/presentation aids

2-24

Assessment / Oversight

3.1 Assessments and Response Actions

Assessment and oversight activities are performed to determine whether the QC measures identified in the FSP and this QAPP are implemented and documented as required. The PM, RIL and the FTL will perform assessment and oversight to check conformance to plans. For example, during a field review, the FSP may be checked to verify that a monitoring well has been correctly sampled or that field QC samples were collected at the appropriate frequency. Additional checks may address the questions:

- Is the FSP being adhered to?
- Is nonconformance being identified, resolved, and documented with a process or system?
- Are identified deficiencies being corrected?
- Are sampling operations being performed as stated in the FSP?
- Are the sample labels being filled out completely and accurately?
- Are the COC forms complete and accurate?
- Are the field logbooks being filled out completely and accurately?
- Are the documents generated during assessment activities being stored as described in the QAPP?

The need for a check can be determined independently by the PM or assigned by the PM to another team member. Assessment activities may include surveillance, inspection, peer review, management system review, performance evaluation, and data quality assessment. The results of the assessment and oversight activities will be reported to the PM or RIL, who will be responsible for ensuring that the corrective action response is completed, verified, and documented.

3.2 Reports to Management

CH2M HILL will provide status reports to EPA's management that will, at a minimum, discuss current activities, problems encountered and their resolution, and planned work. Written monthly status reports will be provided and supplemented with weekly verbal reports.

The analytical laboratory will provide sample acknowledgment letters and sample status updates by phone or e-mail to the EPA RSCC or CH2M HILL. These requirements will be specified in each laboratory SOW or the most recent CLP SOW.

Data Validation and Usability

4.1 Data Review, Validation, and Evaluation Requirements

Data validation is the process by which data generated in support of a project are reviewed against the project's QA/QC requirements. The data are evaluated for precision and accuracy against the analytical protocol requirements. Nonconformance or deficiencies that could affect the precision or accuracy of the reported result are identified and noted. The effect on the result is then considered when assessing whether the result is sufficient to achieve DQOs.

Data validation of CLP analytical results will be performed by EPA and reported in final form to CH2M HILL. The non-CLP analytical data will be validated by a CH2M HILL subcontractor.

4.1.1 Precision

Precision is a measure of the agreement or repeatability of a set of replicate results obtained from duplicate analyses made under identical conditions. Precision is estimated from analytical data and cannot be measured directly. The precision of a duplicate determination can be expressed as the relative percent difference (RPD), as calculated as

RPD = {(|X₁ - X₂|)/(X₁ + X₂)/2} x 100 =
$$\frac{\left| \frac{|X_1 - X_2|}{\left(X_1 + X_2\right)} \right|}{2} x 100$$

where X_1 is the result from the investigative sample, and X_2 is the result from the duplicate sample. The field duplicate precision criteria are described in Section 2.6 and Attachment 1 to this QAPP.

4.1.2 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. Accuracy is estimated through the use of known reference materials or matrix spikes. It is calculated from analytical data and is not measured directly. Spiking of reference materials into a sample matrix is the preferred technique because it provides a measure of the matrix effects on analytical accuracy. Accuracy, defined as percent recovery (P), is calculated as

$$P = \left[\frac{(SSR - SR)}{SA} \right] \times 100$$

where SSR is the spiked sample result, SR the sample result (investigative), and SA the spike concentration added to the spiked sample. The criteria for matrix spike/matrix spike duplicate recoveries are presented in Attachment 1.

4.1.3 Completeness

Completeness of the field- and laboratory-generated analytical data will be assessed for compliance with the amount of data required for decision making. The calculation for determining completeness is

% Completeness = <u>Valid Data Obtained</u> × 100 Total Data Obtained

The completeness goal for the project data is 95 percent. Qualified data, if not rejected, can still be used to make project decisions and be considered valid data.

4.1.4 Sensitivity

Sensitivity is establishing method detection limits (MDLs) at sufficient levels so that the project DQOs are met and maintained. The sensitivity of the instruments will be monitored so that the data quality requirements of the risk assessments are met.

4.2 Validation and Verification Methods

The data validation process is conducted to assess the effect of the overall sampling and analysis process on the usability of the data. There are two areas of review: laboratory performance evaluation, and the effect of matrix and sampling interference. Evaluation of laboratory performance is a check for compliance with the method requirements and is a straightforward examination. The laboratory either did or did not analyze the samples within the QC limits of the analytical method and according to protocol requirements. The assessment of potential matrix and sampling affects consists of a QC evaluation of the analytical results and also the results of testing blank, duplicate, and matrix spike samples, and then assessing how, if at all, this could affect the usability of the data.

All analytical data will be supported by a data package. The data package will contain the supporting QC data for the associated field samples (see Section 1.7 of this QAPP for the data package content requirements). Before the laboratory will release each data package, the laboratory QA officer (or the analytical section supervisor) must carefully review the sample and laboratory performance QC data to verify sample identity, the completeness and accuracy of the sample and QC data, and compliance with method specifications.

Data validation will be performed for CLP-laboratory generated data by EPA in a manner consistent with EPA's Laboratory Data Validation Functional Guidelines for Evaluating Data Quality. Data validation will be performed for non-CLP generated data by CH2M HILL's subcontractor using the Laboratory Data Validation Functional Guidelines for Evaluating Data Quality as a template. When EPA Region 2 Data Validation SOP is not available to perform data validation, CH2M HILL will use the quality control criteria that are stated in the analytical method. The sample results will then be assigned a degree of usability based upon overall data quality.

The CH2M HILL project team will evaluate the data validation results. This evaluation will assess how the data, as qualified by the data validation, can be used on the project.

The data will be verified by comparing tabulated field measurements with sample logbooks and COC forms to assess if the correct analyses were performed on the samples. Printouts of electronic data reports will also be compared with hardcopy reports to assess the accuracy of the project database.

When an EPA Region 2 Data Validation SOP is not available to perform data validation, the reviewer should use the quality control criteria that are stated in the analytical method.

4.3 Reconciliation with Data Quality Objectives

The final activity of the data validation process is to assess whether or not the data fulfilled the planned objectives for the project. The final results, as adjusted for the findings of any data validation/data evaluation, will be checked against the DQOs. The data acquired from the additional site investigation should fulfill the project objective, which is to obtain data on the nature and extent of site-related contaminants and determine whether the site presents a risk to human health or the surrounding environment, and if so, what are the best alternatives for remedying it. The main project objective should be met assuming the 95% data completeness goal is obtained after all of the data has undergone sufficient data validation. If the main project objective is not met, future data collection will be required and implemented accordingly. If the data, after validation and evaluation, are sufficient to achieve project objectives, the data quality and project managers will release the data and work may proceed.

Figures

Attachment 1 QC Requirements for Field Samples

ATTACHMENT 1 QA Criteria for Martin Aaron Field Sampling

303067

Parameter	Matrix	Method	Units	Field Duplicate Precision	MS/MSD Accuracy/Precision	LCS Accuracy	Completeness	Blanks
VOCs	Soil	OLM04.2	ug/kg	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP S
				Sampling: +- 30%				
SVOCs	Soil	OLM04.2	ug/kg	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP So
				Sampling: +- 30%				
Vietais	Soil	ILM04.1	mg/kg	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP S
			4	Sampling: +- 30%				
Pesticides/PCBs	Soil	OLM04.2	ug/kg	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP S
				Sampling: +- 30%				
гос	Soil	Walkley-Black Method	mg/kg	+- 30%	75-125% / 20%	80 – 120%	95%	< RL
Porosity	Soil	ASTM D4404-84	%	NA	NA	NA	95%	NA
Moisture Content	Soil	EPA 160.3	%	+-30%	NA	NA	95%	NA
Н	Soil	SW-846 9045	NA	+- 30%	NA	NA	95%	NA
Grain Size	Soll	ASTM D422	%	NA	NA	NA	95%	NA .
Bulk Density	Soil	ASTM D2937-94	Lbm/ft3	NA	NA	NA	95%	NA

ATTACHMENT 1
QA Criteria for Martin Aaron Field Sampling

Parameter	Matrix	Method	Units	Field Duplicate Precision	MS/MSD Accuracy/Precision	LCS Accuracy	Completeness	Blanks
VOCs	Groundwater	OLCO3.2	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP SO
				Sampling: +- 20%				
SVOCs	Groundwater	OLC03.2	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP So
				Sampling: +- 20%				
Metals-total and dissolved	Groundwater	ILM04.1	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP So
		i.		Sampling: +- 20%				
Sulfate	Groundwater	EPA 375.4	mg/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Sulfide	Groundwater	EPA 376.1	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Nitrate	Groundwater	EPA 352.1	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Chloride	Groundwater	EPA 300.0	mg/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Methane/Ethane/ Ethene	Groundwater	RSK-175	ug/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
TSS	Groundwater	EPA 160.2	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
rds	Groundwater	EPA 160.1	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Alkalinity	Groundwater	EPA 310.2	mg/L	+- 20%	75-125% / 20%	80 120%	95%	< RL
Carbon Dioxide	Groundwater	SM-4500 CO2 D	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL

303069

ATTACHMENT 1
QA Criteria for Martin Aaron Field Sampling

Parameter	Matrix	Method	Units	Field Duplicate Precision	MS/MSD Accuracy/Precision	LCS Accuracy	Completeness	Blanks
TOC	Groundwater	SW-846 9060	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Ferrous Iron, Fe(II)	Groundwater	SM 3500-Fe D	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Hardness	Groundwater	EPA 130.1	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Total Iron	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Dissolved Iron	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Dissolved Arsenic	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Ammonia	Groundwater	EPA 350.3	mg/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
TKN	Groundwater	EPA 351.3	mg/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Nitrite	Groundwater	EPA 354.1	mg/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Calcium	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Potassium	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
Manganese	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 – 120%	95%	< RL
Phosphorous, Total	Groundwater	EPA 365.2	mg/L	+- 20%	75-125% / 20%	80 120%	95%	< RL
Sodium	Groundwater	SW-846 6010B	ug/L	+- 20%	75-125% / 20%	80 - 120%	95%	< RL
BOD	Groundwater	EPA 405.1	mg/L	+- 20%	NA	NA	95%	< RL
COD	Groundwater	EPA 410.1	mg/L	+- 20%	NA	NA	95%	< RL
SVOCs	Building Wipes	SW-846 8270	ug/kg	+- 30%	NA	NA	95%	< RL
Pesticides/PCBs	Building Wipes	SW-846 8081	ug/kg	+-30%	NA	NA	95%	< 'RL

ATTACHMENT 1 QA Criteria for Martin Aaron Field Sampling

303070

Parameter	Matrix	Method	Units	Field Duplicate Precision	MS/MSD Accuracy/Precision	LCS Accuracy	Completeness	Blanks
SVOCs	Building Chips	SW-846 8270	ug/kg	+- 30%	NA	NA	95%	< RL
Pesticides/PCBs	Building Chips	SW-846 9091	ug/kg	+- 30%	NA	NA	95%	< RL
Metals	Building Chips	SW-846 6010B	ug/kg	+- 30%	NA	NA	95%	< RL
TCLP VOCs	IDW	SW-846 8260B	ug/L	+- 20%	75 – 125% / 20%	80 – 120%	95%	< RL
TCLP SVOCs	IDW	SW-846 8270C	ug/L	+- 20%	75 – 125% / 20%	80 - 120%	95%	< RL
TCLP Pesticides/PCBs	IDW	SW-846 8081	ug/L	+- 20%	75 – 125% / 20%	80 – 120%	95%	< RL
TCLP Metals	WDI	SW-846 6010B or 7000 series	ug/L	+- 20%	75 – 125% / 20%	80 - 120%	95%	< RL
TCL VOCs	IDW	OLC03.2	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP So
		:		Sampling: +- 20%			,	
TCL SVOCs	IDW	OCL03.2	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP SC
				Sampling: +- 20%				
TCL Pesticides/PCBs	IDW	OCL03.2	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP SC
				Sampling: +- 20%				
TAL Metals	IDW	ILM04.1	ug/L	Analytical: Per CLP SOW	Per CLP SOW	Per CLP SOW	95%	Per CLP SC

ATTACHMENT 1

QA Criteria for Martin Aaron Field Sampling

Parameter	Matrix	Method	Units	Field Duplicate Precision	MS/MSD Accuracy/Precision	LCS Accuracy	Completeness	Blanks
				Sampling: +- 20%				
CLP = Toxicity Cha	aracteristic Leachat	e Procedure						
CL = Target Compo	ound List							
AL = Target Analyte	e List							
/OCs = Volatile Org	anic Compounds							

SVOCs = Semivolatile Organic Compounds

CLP SOW = Contract Laboratory Program Statement of Work

NA = Not Applicable

The precision, accuracy and sensitivity for the field parameters are based on performance of the multimeter

Attachment 2 New Jersey Specific Groundwater Quality Criteria and Soil Cleanup Criteria

DWM Homepage > Programs > Ground Water Quality Standards > Table 2

Division of Watershed Management

Ground Water Quality Standards N.J.A.C. 7:9-6

TABLE 1

Specific Ground Water Quality Criteria -IIA and Practical **Quantitation Levels**

Constituent	CASRN	Ground Water Quality Criteria*	Practical Quantitation Levels (PQLs)	Higher of PQLs and Ground Water Quality Criteria*
Acenaphthene	83-32-9	400	10	400
Acenapthylene	208-96-8	NA	. 10	NA
Acetone	67-64-1	700	NA	700
Acrolein	107-02-8	NA	50	NA
Acrylamide	79-06-1	0.008	NA	0.008
Acrylonitrile	107-13-1	0.06	50	50
Adipates (Di(ethylhexyl)adipate)	103-23-1	NA	. 6	NA
Alachlor	15972-60-8	0.43	2	2
Aldicarb sulfone	1646-88-4	2	3	3
Aldrin	309-00-2	0.002	0.04	0.04
Aluminum	7429-90-5	200	200	200
Ammonia		500	200	500
Anthracene	120-12-7	2000	10	2000
Antimony	7440-36-0	2	20	20
Arsenic (Total)	7440-38-2	0.02	8	8
Asbestos	1332-21-4	7X10 ⁶ f/L>10um ^a	10 ⁵ f/L>10um ^a	7X10 ⁶ f/L>10um ^a
				303073

NJ Groundwater Quality Standards Table 1

Atrazine	1912-24-9	3	1	3
Barium	7440-39-3	2,000	200	2000
Benz(a)anthracene	56-55-3	NA	10	NA
Benzene	71-43-2	0.2	1	1
Benzidine	92-87-5	0.0002	50	50
Benzyl Alcohol	100-51-6	2000	NA	2000
Benzo(a)pyrene (BaP)	50-32-8	NA	20	NA
3,4-Benzofluoranthene (Benzo(b)fluoranthene)	205-99-2	NA	10	NA
Benzo(ghi)perylene	191-24-2	NA	20	NA
Benzo(k)fluoranthene	207-08-9	NA	2	NA
Beryllium	7440-41-7	0.008	20	20
alpha-BHC (alpha-HCH)	319-84-6	0.006	0.02	0.02
beta-BHC (beta-HCH)	319-85-7	0.2	0.04	0.2
gamma-BHC (gamma-HCH/Lindane)	58-89-9	0.2	0.2	0.2
Bis(2-chloroethyl) ether	111-44-4	0.03	10	10
Bis(2-chloroisopropyl) ether	39638-32-9	300	10	300
Bis(2-ethylhexyl) phthalate	117-81-7	3	30	30
Bromodichloromethane (Dichlorobromomethane)	75-27-4	0.3	1	1
Bromoform	75-25-2	4	0.8	4
Butylbenzyl phthalate	85-68-7	100	20	100
Cadmium	7440-43-9	4	2	4
Carbofuran	1563-66-2	40	7	40
Carbon tetrachloride	56-23-5	0.4	2	2
Chlorobenzene	108-90-7	4	2	. 4
Chlordane	57-74-9	0.01	0.5	0.5
Chloride	16887-00-6	250,000	2000	250,000
Chloroform	67-66-3	6	. 1	6

Page 3 of 7

4-Chloro-3-methyl (o-chloro-m-cresol)	59-50-7	NA	20	NA
2-Chlorophenol	95-57-8	40	20	40
Chlorpyrifos	2921-88-2	20	0.2	20
Chromium (Total)	7440-47-3	100	10	100
Chrysene	218-01-9	NA	20	NA
Color		10 CU	20 CU	20 CU
Copper	7440-50-8	1,000	1,000	1,000
Cyanide	57-12-5	200	40	200
2,4-D	94-75-7	70	5	70
Dalapon	75-99-0	200	10	200
4,4'-DDD (p,p'-TDE)	72-54-8	0.1	0.04	0.1
4,4'-DDE	72-55-9	0.1	0.04	0.1
4,4'-DDT	50-29-3	0.1	0.06	0.1
Demeton	8065-48-3	0.3	NA	0.3
Dibenz(a,h)anthracene	53-70-3	NA	20	NA
Dibromochloromethane (Chlorodibromomethane)	124-48-1	10	1	10
1,2-Dibromo-3- chloropropane (DBCP)	96-12-8	NA	2	NA
Di-n-butyl phthalate	84-74-2	900	20	900
1,2-Dichlorobenzene	95-50-1	600	5	600
1,3-Dichlorobenzene	541-73-1	600	5	600
1,4-Dichlorobenzene	106-46-7	75	5	75
3,3'-Dichlorobenzidine	91-94-1	0.08	60	60
1,1-Dichloroethane	75-34-3	70	NA	70
1,2-Dichloroethane	107-06-2	0.3	2	2
1,1-Dichloroethylene	75-35-4	1	2	2
cis-1,2-Dichloroethylene1	56-59-2	10	2	10
trans-1,2-Dichloroethylene	156-60-5	100	2	100
2,4-Dichlorophenol	120-83-2	20	10	20
1,2-Dichloropropane	78-87-5	0.5	1	1

NJ Groundwater Quality Standards Tab	ole :	1	
--------------------------------------	-------	---	--

cis-1,3-Dichloropropene	10061-01-5 NA		5	NA
trans-1,3Dichlorpropene	10061-02-6	NA	7	NA
1,3-Dichloropropene (cis and trans)	542-75-6	0.2	NA	.02
Dieldrin	60-57-1	0.002	0.03	0.03
Diethyl phthalate	84-66-2	5,000	10	5,000
2,4-Dimethylphenol	105-67-9	100	20	100
Dimethyl phthalate	131-11-3	·	10	
4,6-Dinitro-o-cresol	534-52-1	NA	60	NA
2,4-Dinitrophenol	51-28-5	10	40	40
2,4-Dinitrotoluene /2,6-Dinitrotoluene mixtur	121-14-2 e	0.05	10	10
2,6-Dinitrotoluene	606-20-2	NA	10	NA
Di-n-octyl phthalate	117-84-0	100	NA	100
Dinoseb	88-85-7	7	2	7
1,2-Diphenylhydrazine	122-66-7	0.04	NA	0.04
Diquat	85-00-7	20	NA	20
Endosulfan	115-29-7	0.4	NA	0.4
alpha-Endosulfan (Endosulfan I)	959-98-8	0.4	0.02	0.4
beta-Endosulfan (EndosulfanII)	33213-65-9	0.4	0.04	0.4
Endosulfan sulfate	1031-07-8	0.4	0.08	0.4
Endothall	145-73-3	100	NA	100
Endrin	72-20-8	2	0.04	2
Epichlorohydrin	106-89-8	4	NA	4
Ethylbenzene	100-41-4	700	5	700
Ethylene dibromide	106-93-4	0.0004	0.05	0.05
Fluoranthene	206-44-0	300	10	300
Fluorene	86-73-7	300	10	300
Fluoride	16984-48-8	2000	500	2000
Foaming agents (ABS/LAS)		500	0.5	500
Glyphosate	1071-83-6	700	NA	700
			303076	

Hardness (as CaCO3)		250mg/L	10 mg/L	250 mg/L
Heptachlor	76-44-8	0.008	0.4	0.4
Heptachlor epoxide	1024-57-3	0.004	0.2	0.2
Hexachlorobenzene	118-74-1	0.02	10	10
Hexachlorobutadiene	87-68-3	1	1	1
Hexachlorocyclopentadiene	77-47-4	50	10	50
Hexachloroethane	67-72-1	0.7	10	10
Hydrogen sulfide	7783-06-4	20	NA	20
Indeno(1,2,3-cd)pyrene	193-39-5	NA	20	NA
Iron	7439-89-6	300	100	300
Isophorone	78-59-1	100	10	100
Lead (Total)	7439-92-1	5	10	10
Malathion	121-75-5	200	5	200
Manganese	7439-96-5	50	6	50
Mercury (Total)	7439-97-6	2	0.5	. 2
Methoxychlor	72-43-5	40	10	. 40
Methyl bromide (bromomethane)	74-83-9	10	2	10
Methyl chloride (chloromethane)	74-87-3	30	2	30
Methyl ethyl ketone	78-93-3	300	NA	300
3-Methyl-4-chlorophenol	59-50-7	NA	20	NA
Methylene chloride	75-09-2	2	2	2
4-Methyl-2-pentanone	108-10-1	400	NA	400
Mirex	2385-85-5	0.01	NA	0.01
Nickel (Soluble salts)	7440-02-0	100	10	100
Nitrate (as N)	14797-55-8	10,000	400	10,000
Nitrate and Nitrite (as N)	10,000	NA	10,000	
Nitrite (as N)	14797-65-0	1,000	400	1,000
Nitrobenzene	98-95-3	3	10	10
N-Nitrosodimethylamine	62-75-9	0.0007	20	20
N-Nitrosodiphenylamine	86-30-6	7	20	20
N-Nitrosodi-n-propylamine	621-64-7	0.005	20	20

Odor		3 ^b	NA	3 ^b
Oil & Grease and Petroleum Hydrocarbons (PHC)		None Noticeable	NA	None Noticeable
Oxamyl	23135-22-0	200	20	200
PCBs (Polychlorinated biphenyls)	1336-36-3	0.02	0.5	0.5
Pentachlorophenol	87-86-5	0.3	1	1
pН		6.5-8.5	NA	6.5-8.5
Phenanthrene	85-01-8	NA	10	NA
Phenol	108-95-2	4000	10	4000
Picloram	1918-02-1	500	1	500
Pyrene	129-00-0	200	20	200
Selenium (Total)	7782-49-2	50	10	50
Silver	7440-22-4	NA	2	NA
Simazine	122-34-9	1	0.8	1
Sodium	7440-23-5	50,000	400	50,000
Styrene	100-42-5	100	5	100
Sulfate	14808-79-8	250,000	5000	250,000
Taste		None Objectionable	NA	None Objectionable
TCDD (2,3,7,8- Tetrachlorodibenzo -p- dioxin)	1746-01-6	0.0000002	0.01	0.01
1,1,1,2-Tetrachloroethane	630-20-6	10	NA	10
1,1,2,2-Tetrachloroethane	79-34-5	2	1	2
Tetrachloroethylene	127-18-4	0.4	1	1
2,3,4,6-Tetrachlorophenol	58-90-2	. NA	10	NA
Thallium	7440-28-0	0.5	10	10
Toluene	108-88-3	1,000	5	1000
Total dissolved solids (TDS)	500,000	10,000	500,000	
Toxaphene	8001-35-2	0.03	3	3
2,4,5-TP	93-72-1	50	5	50

1,2,4-Trichlorobenzene	120-82-1	9	1	9
1,1,1-Trichloroethane	71-55-6	30	i	30
1,1,2-Trichloroethane	79-00-5	3	2	3.
Trichloroethylene	79-01-6	1	1	1
2,4,5-Trichlorophenol	95-95-4	700	· 10	700
2,4,6-Trichlorophenol	88-06-2	3	20	20
Vinylchloride	75-01-4	0.08	5	5
Xylenes (Total)	1330-20-7	40	2	40
m&p-Xylenes	NA	NA	2	NA
o-Xylene	NA	NA	1	NA
Zinc	7440-66-6	5,000	30	5000
Microbiological criteria ^m , Radionuclides & Turbidity		prevailing Safe Drinking Water Act Regulations (N.J.A.C. 7:10-1 et seq.)		

Explanation of Terms:

= Ground Water Quality Criteria and PQLs are expressed as ug/L unless otherwise noted.

Table 1 criteria are all maximum values unless clearly indicated as a range for which the minimum value is to the left and the maximum value is to the right.

PQL -- Practical Quantitation Level as defined in N.J.A.C. 7:9-6.4

CASRN - Chemical Abstracts System Registration Number

NA = not available for this constituent.

a = Asbestos criterion is measured in terms of fibers/L longer than 10 micrometers (f/L > 10 um)

ug = micrograms, L = liter, f = fibers, CU= Standard Cobalt Units

b = Odor Threshold Number, mg = milligrams, H = Hardness

(Total) means the concentration of metal in an unfiltered sample following treatment with hot dilute mineral acid (as defined in "Methods for Chemical Analysis of Water & Wastes", EPA-600/4-79-020, March 1979) or other digestion defined by the analytical method. However samples that contain less than 1 nephlometric turbidity unit (NTU) and are properly preserved, may be directly analyzed without digestion.

m = Pursuant to prevailing Safe Drinking Water Act Regulations any positive result for fecal coliform is in violation of the MCL and is therefore an exceedance of the ground water quality standards.

This listing represents the combination of Tables 3-2 and 7-1 from the Department of Environmental Protection and Energy's February 3, 1992 proposed rule entitled Cleanup Standards for Contaminated Sites, N.J.A.C. 7:26D, as corrected based upon errors identified by the Department during or subsequent to the comment period as well as new toxicological or other information obtained since the rule proposal. Please refer to the respective footnotes for more detail. Notwithstanding, where the following criteria are based on human health impacts, the Department shall still consider environmental impacts when establishing site specific cleanup criteria. This along with other site-specific factors including background conditions may result in site specific cleanup criteria which differ from the criteria listed below. Therefore, this list shall not be assumed to represent approval by the Department of any remedial action or to represent the Department's opinion that a site requires remediation.

Note: Material bracketed [thus] is deleted and material underlined thus is added

	,		Residential Direct Contact Soil Cleanup	Non- Residential Direct Contact Soil	Impact to Ground water Soil
			Criteria (a) (b)	Cleanup Criteria (a) (b)	Cleanup Criteria (b)
Contaminant		CASRN	(RDCSCC)	(NRDCSCC)	(IGWSCC)
Acenaphthene		83-32-9	3400	10000(c)	100
Acetone	(2-propanone)	67-64-1	1000(d)	1000(d)	100
Acrylonitrile		107-13-1	1	5	. 1
Alekh 2		\$60 (3 LOGS) 2			
Antiracene		7 27 28 12 1	I FAUNCE TO SERVICE TO	Tarrent S	act.
Parietory		7940.36+9			
Arsenic		7440-38-2	20 (e)	20 (e)	(h)
Barium		7440-39-3	700	47000(n)	(h)
Benzene		71-43-2	3	13	1
Bengoloffieranthe		201794			
Berfze e antivacene	i (i A Benganulaans) .	56.55-6			5 500
Benzo aleweere	(Barte) Fr	3 50 22 8		980	
Benzo(k)fluoranthe	ne	207-08-9	0.9	4	500
Benzyl Alcohol		100-51-6	10000(c)	10000(c)	50
Beryllium		7440-41-7	[1(f)] <u>2 (e)</u>	[1(f)] <u>2 (e)</u>	(h)
Bisteriorceinifie	mar () ()		10.66(f)		

303081

Contaminant		CASRN	(RDCSCC)	(NRDCSCC)	(IGWSCC)
BISI2 chieroisopropyle					
	TO A STREET THE PARTY OF THE PA	77.81 7 B			
Which is No. 13 (1991) William to Flore - Carrier of Market Color	(Dichlorobromomethane)	75-27-4	11	46	1
Bromoform		75-25-2	86	370	1
• • • • • • • • • • • • • • • • • • • •	Methyl bromide)	74-83-9	79	1000 (d)	1
z-sustense Meliylei	y Ketonej (viški)		1900 (d)		50
Butylbarry phiralate				######################################	
Carbon tetrachloride		56-23 - 5	2 (k)	4 (k)	1
	o-Chloroaniline)	106-47 - 8	230	4200	(r)
Chlorobenzene	, o,	108-90-7	37	680	1
Chierorem			# #9 (#)		
a Chieno Carehyliasen			T STOREGOT	TO TOTAL TOT	100
Chioregreinane (Metry enlorise)	7(587.9)			
•	o-Chlorophenol)	95-57-8	280	5200	10
Chromium – hexavalent		18540-29-9	240; 270 (g); (i)	6100; 20 (g); (i)	<u>(h)</u>
Chromium – trivalent (III	i) Disala di dibung nggasa di mananan	16065-83-1	<u>120,000</u>		
Onnysare		7240-528			
Copper Cvanide		E2.10 E			
4,4'-DDD (p,p'-TDE) Hilling ang na sat ang ang kalangsay an ang anag ang m	72-54-8	3 3	12	50
4,4'-DDE (p,p'-DDX	•	72-55-9	2	9	50
4,4'-DDT	•	50 - 29-3	2	9	500
Liberz adlarih acene		en en en en e		0.55 (f)	
COLUMN TO THE PARTY OF THE PART	i Criwrosi Bramsine i reine ich	1/2 - 1/2 - 1/2 1		3000 5);	
		THE PART OF THE PA			100
Di-n-octyl phthalate	(a Diablambanzana)	117-84-0 95-50-1	1100 5100	10000 (c) 10000 (c)	50
1,2-Dichlorobenzene 1,3-Dichlorobenzene	(o-Dichlorobenzene) (m-Dichlorobenzene)	541-73-1	5100	10000 (c)	100
1,3-Dictioloneurene	(m-Dicinoronenzena)	041"/O-1	3.00	10000 (0)	• • •

Page 2 of 5.

SOIL CLEANUP CRITERIA (mg/kg) (LAST REVISED - 5/12/99)

Contaminant	CASRN	(RDCSCC)	(NRDCSCC)	(IGWSCC)
134-Cithiangoenzene Colomorobenze				
BOS DEVISION PROFITE TO THE PROFITE	75-34-3	570	1000 (d)	100 10
1,1-Dichloroethane			24	10
1,2-Dichloroethane	107-06-2	6	2 4 150	10
1,1-Dichloroethene	75-35-4			TU
12-Dichorsethene (trans)			# CD: trial 11 10: 10: 11 11 11 11 11 11 11 11 11 11 11 11 11	
1,2:Dkgivomethenė (ClS)	15859 2		NOGTO)	
2.4 Dishlerophenal				
1,2-Dichloropropane	78-87-5 542 - 75-6	10	43	(r)
1,3-Dichloropropene(cis and trans)	60 - 57-1	0.042	5 (k) 0.18	50
Dieldrin				
Gieffy phthalae Total Control				
2 4-0 inethy phena				110
Timely attack .				
2,4-Dinitrophenol	51-28-5	110	2100	10
Dinitrotoluene(2,4-/2,6-mixture)	25321-14-6	1 (1)	4 (1)	10 (1)
Endosulfan	115-29-7	340	6200	50
Endin 2	7244-8	17		. Contribution of the street of the state of the street of
Ethylbenzene	100-114	1 1000 (d)	100000	700 4 700
rius railberie		2300	12000 (6)	
Fluorene	86-73-7	2300	10000 (c) 0.65	100 50
Heptachlor	76-44-8	0.15	0.00	
Hexachlorobenzene	118-74-1	0.66 (f)		100 (1810) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814) (1814
Hexachierothitadiene				
Hexachionecyclogentadiene				
Hexachigractians.	EXTY2:			
Indeno(1,2,3-cd)pyrene	193-39-5	0.9	4	500
Isophorone	78-59-1	1100	10000 (c)	50
Lead	7439-92-1	400 (p)	600 (q)	(h)
	Page 3	of 5.		

Contaminant	CASRN	(RDCSCC)	(NRDCSCC)	(IGWSCC)
Tindare (Jamma BHC) (gamma HCH)	511-22-3			
2-Mathylphena Jo-creasoll	95 -28 -7 F	2600 Ci	1000 ETC	
4-Methylphenol (<i>p</i> -creosol)	106-44-5	2800	10000 (c)	(L) A DEBINERATION DE SERVICION DE LA COMPANSION DE LA CO
Methoxychlor	72-43-5	280	5200	50
Mercury	7439-97-6	14	270	(h)
4-Methyl-2-pentagone IMIEK	103-167	1000 HE		50
Methylene Chorine (Dichloremethene)	75-09-2	442		
Naghthalens	20-3	250	\$200 (1)	
Nickel	7440-02-0	250	2400 (k) (n)	(h)
Nitrobenzene	98-95-3	28	520	10
N-Nitrosodiphenylamine	86-30-6	140	600	100
N-Microsodi-n-presylapjine	621484-7		N888 (f)	# 10 hs
PCBs #Polycinioranatea o phanyls)		### ### ### ##########################		50
Remachlorephero		6		
Phenol	108-95-2	10000 (c)	10000 (c)	50
Pyrene	129-00-0	1700	10000 (c)	100
Selenium	7782-49-2	63	3100 (n)	(h)
	742, 22, 2			(1)
Styrene : : : : : : : : : : : : : : : : : :				
In 12 Tetrachioroethane				
1,1,2,2-Tetrachloroethane	79-34-5	34	70 (k)	1
Tetrachloroethene (Tetrachloroethylene) (PCE)	127-18-4	4 (k)	6 (k)	1.
Thallium	7440-28-0	2 (f)	2 (f) mannennamenengapankungsannnangsann	(h) Hannaratanikaszasztakanananakszasz
Taluens	Jakesa			
Toxagnena				
12.4-Trichlore Denzene				50
1,1,1-Trichloroethane	71-55-6	210 22	1000 (d) 420	อบ 1
1,1,2-Trichloroethane	79-00-5 79-01 - 6	22 23	420 54 (k)	1
Trichloroethene (Trichloroethylene) (TCE)	79-01-0 Page 4		0 1 (N)	• .

Contaminant	CASRN	(RDCSCC)	(NRDCSCC)	(IGWSCC)
231,5 Trich Größherör		5 8 80	LL Mooranti Li	50
2.4.6-Tcichloraphenol			N 200 3	
Vanadium .	7440-62-2	370	7100 (n)	(h)
Vinyl chloride	75-01-4	2	7	10
XXIebies (Cottl)	YSSQ-Ziju j	18 18 10 E		
Zipc .	74409966	5 1000 (mi	3960 (m)	

Footnotes:

- Criteria are health based using an incidental ingestion exposure pathway except where noted below. (a)
- Criteria are subject to change based on site specific factors (e.g., aquifer classification, soll type, natural background, environmental impacts, etc.). (b)
- Health based criterion exceeds the 10,000 mg/kg maximum for total organic contaminants. (c)
- Health based criterion exceeds the 1000 mg/kg maximum for total volatile organic contaminants. (d)
- Cleanup standard proposal was based on natural background. (e)
- Health based criterion is lower than analytical limits; cleanup criterion based on practical quantitation level. (f)
- Criterion based on the inhalation exposure pathway. (g) (h)
- The impact to ground water values for inorganic constituents will be developed based upon site specific chemical and physical parameters.
- Site specific determination required for SCC for the allergic contact dermatitis exposure pathway.
- (i) (j) Contaminant not regulated for this exposure pathway.
- Criteria based on inhalation exposure pathway, which yielded a more stringent criterion than the incidental Ingestion exposure pathway. (k)
- No criterion derived for this contaminant.
- (m)Criterion based on ecological (phytotoxicity) effects.
- Level of the human health based criterion is such that evaluation for potential environmental impacts on a site by site basis is recommended. (n)
- Level of the criterion is such that evaluation for potential acute exposure hazard is recommended. (0)
- Criterion based on the USEPA Integrated Exposure Uptake Biokinetic (IEUBK) model utilizing the default parameters. The concentration is considered (p) to protect 95% of target population (children) at a blood lead level of 10 ug/dl.
- Criteria were derived from a model developed by the Soclety for Environmental Geochemistry and Health (SEGH) and were designed to be protective (q) for adults in the workplace.
- Insufficient information available to calculate impact to ground water criteria. (r)
- Criterion based on new drinking water standard. **(s)**

Appendix I

Human Health Risk Assessment

The Human Health Risk Assessment was submitted to the EPA under separate cover on May 14, 2004.

Appendix J

Screening Level Ecological Risk Assessment (SLERA)

The Screening Level Ecological Risk Assessment (SLERA) was submitted to the EPA under separate cover on April 15, 2004.